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In the ideal disorder-free situation, a two-dimensional band gap insulator has an activation energy for conduc-

tivity equal to half the band gap ∆. But transport experiments usually exhibit a much smaller activation energy

at low temperature, and the relation between this activation energy and ∆ is unclear. Here we consider the

temperature-dependent conductivity of a two-dimensional insulator on a substrate containing Coulomb impuri-

ties, with random potential amplitude Γ ≫ ∆. We show that the conductivity generically exhibits three regimes

of conductivity, and only the highest temperature regime exhibits an activation energy that reflects the band gap.

At lower temperatures, the conduction proceeds through activated hopping or Efros-Shklovskii variable-range

hopping between electron and hole puddles created by the disorder. We show that the activation energy and

characteristic temperature associated with these processes steeply collapse near a critical impurity concentra-

tion. Larger concentrations lead to an exponentially small activation energy and exponentially long localization

length, which in mesoscopic samples can appear as a disorder-induced insulator-to-metal transition. We also

arrive at a similar steep disorder driven insulator-metal transition in thin films of three-dimensional topological

insulators with large dielectric constant, for which Coulomb impurities inside the film create a large disorder

potential due to confinement of their electric field inside the film.

I. INTRODUCTION

In a band gap insulator, charged impurities often play a de-

cisive role in determining the properties of the insulating state.

Due to the long-ranged nature of the Coulomb potential that

they create, such impurities produce large band bending that

changes qualitatively the nature of electron conduction rela-

tive to the ideal disorder-free situation. An illustrative case is

that of a three-dimensional completely-compensated semicon-

ductor, for which positively-charged donors and negatively-

charged acceptors are equally abundant and randomly dis-

tributed in space. In this case, the impurity potential has

large random fluctuations, which can be screened only when

the amplitude of this potential Γ reaches ∆, where 2∆ is the

band gap. This screening is produced by sparse electron and

hole droplets, concentrated in spatially alternating electron

and hole puddles [1–3]. At high enough temperatures the elec-

trical conductivity is due to activation of electrons and holes

from the chemical potential to the energy associated with clas-

sical percolation across the sample. At lower temperatures the

conductivity is due to hopping between nearest-neighbor pud-

dles. At even smaller temperatures it is due to variable-range

hopping between puddles. Crucially, in each of these tempera-

ture regimes the naive relationEa = ∆ is lost, whereEa is the

activation energy for conductivity. Only in the highest temper-

ature regime is there a direct proportionality between Ea and

∆ (with a nontrivial small numeric prefactor) [3, 4]; at lower

temperatures the observed activation energy is non-universal

and disorder-dependent [1, 2].

In this paper we consider a similar problem in two dimen-

sions, focusing on the case of strong disorder,Γ ≫ ∆. Specifi-

cally, we consider a two-dimensional small band gap semicon-

ductor resting on a thick substrate with a three-dimensional
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concentration of randomly-positioned impurities. We de-

rive the temperature dependence of the electrical conductivity

across all temperature regimes and show that observed activa-

tion energy can be very small.

Understanding the relation between the energy gap and the

observed activation energy for transport is of crucial impor-

tance for studying a variety of 2D electron systems. For ex-

ample, recent studies of 2D topological insulators (TIs) [5–7],

films of 3D TIs [8–20], bilayer graphene (BLG) with an or-

thogonal electric field [21, 22] and twisted bilayer graphene

(TBG) [23–27] use the transport activation energy as a way

of characterizing small energy gaps. In all these cases the

observed activation energy is much smaller than the energy

gap that is expected theoretically or measured through lo-

cal probes like optical absorption or scanning tunneling mi-

croscopy.

Here, we show that there is indeed no simple proportion-

ality between the energy gap and the activation energy ex-

cept at the highest temperature regime, which is likely irrel-

evant for many experimental contexts. Instead, we find a wide

regime of temperature and disorder strength for which the ac-

tivation energy is parametrically smaller than the energy gap.

At the lowest temperatures the conductivity follows a Efros-

Shklovskii (ES) law [28] rather than an Arrhenius law, and

this dependence can give the appearance of a small activation

energy.

Let us dwell on two likely applications of our theory. First,

our results may be especially relevant for ongoing efforts to

understand the energy gaps arising in TBG at certain commen-

surate fillings of the moiré superlattice [23–27]. Such gaps

apparently arise from electron-electron interactions, but the

observed activation energies of the maximally-insulating state

are typically an order of magnitude smaller than the naive in-

teraction scale (see, e.g., Refs. 24 and 25), and they vary sig-

nificantly from one sample to another. Scanning tunneling mi-

croscopy studies also suggest a gap on the order of ten times

larger than the observed activation energy [29, 30]. The theory
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Figure 1. Schematic picture of a cross section of puddles in the case

Γ ≫ ∆. The wavy lines show the conduction band bottom and the

valence band ceiling separated by the gap 2∆ . The red shaded region

above the chemical potential µ = 0 represents a hole puddle, while

the blue shaded region below µ represents an electron puddle, Γ is

the amplitude of the disorder potential, λ is the screening length, and

w is the width of the barrier between neighboring puddles.

we present here offers a natural way to interpret this discrep-

ancy.

Second, our theory can be applied to the huge body of ex-

perimental work on thin films of a 3D TI, where the surface

electrons have a small gap 2∆ due to hybridization of the sur-

face states of two surfaces [8, 9], or due to intentionally intro-

duced magnetic impurities [10–20]. Understanding the origin

of the small apparent activation energy Ea ≪ ∆ is crucial for

achieving metrological precision of the quantum anomalous

Hall effect [11, 13, 16, 19, 20, 31, 32] and the quantum spin

Hall effect [9, 33–35].

The model we consider of is a two-dimensional semi-

conductor with band gap 2∆ atop a substrate with a three-

dimensional concentration N of random sign charged impuri-

ties. We assume that the semiconductor has a gapped Dirac

dispersion law

ǫ2(k) = (~vk)2 +∆2, (1)

where ǫ is the electron energy, k is the 2D wave vector, v is

the Dirac velocity, and ~ is the reduced Planck constant. We

are interested in the case when the amplitude Γ of spatial fluc-

tuations of the random potential satisfies Γ ≫ ∆, so that elec-

tron and hole puddles occupy almost half of the space each

and are separated by a small insulating gap which occupies

only a small fraction of space (see Fig. 1). This system is an

insulator because in 2D neither electron nor hole puddles per-

colate, and they are disconnected from each other (neglecting,

for now, the possibility of quantum tunneling between pud-

dles). Throughout this paper we focus on the case of zero

chemical potential, for which electron and hole puddles are

equally abundant and the system achieves its maximally insu-

lating state. We argue that this situation is likely realized in

the experiments of Refs. 5–27, 29, and 30.

The remainder of this paper is organized as follows. In

the following section we first summarize our main results for

the temperature-dependent conductivity. In Sec. III we review

the fractal geometry of two-dimensional puddles for the case

Γ ≫ ∆. In Sec. IV we calculate the action accumulated by

electrons tunneling across the gap between two neighboring

puddles, the corresponding localization length, and the critical

value (Γ/∆)c of the ratio Γ/∆, at which crossover to “almost

metallic conductivity” takes place. In Sec. V we calculate the

hopping conductivity at 1 ≪ Γ/∆ ≪ (Γ/∆)c . Section VI

deals with the generalization of our results to thin TI films.

Because of the intense recent interest in such films [8–10, 12–

20, 31–45] in this section we add a fair amount of numerical

estimates. We close in Sec. VII with a summary and conclu-

sion.

II. SUMMARY OF RESULTS

In situations where the typical tunneling transparency P =
exp(−S) of the insulating barrier separating neighboring pud-

dles is small (the action S in units of ~ is large), one can envi-

sion a sequence of three mechanisms of activated transport re-

placing each other with decreasing temperature, as in a lightly

doped wide gap semiconductor [2]. This three-mechanism se-

quence is illustrated in Fig. 2. At relatively large tempera-

ture T electrons and holes can be activated from the chemical

potential to the percolation level (i.e., the classical mobility

edge). As we show in detail in Appendix A, the activation en-

ergy for this process is exactly equal to ∆ when the chemical

potential µ = 0 (i.e., at the charge neutrality point). Thus, the

conductivity at such large temperatures is given by

σ = σ1 exp(−∆/T ), (T1 ≪ T ≪ ∆) (2)

with the prefactor σ1 ∼ e2/~. Here and everywhere in this

paper we use energy units for the temperature T (absorbing

kB in its definition).

At lower temperatures this mechanism yields to hopping of

electrons between electron and hole puddles near the chemical

potential. Similarly to the case of granular metals [46, 47], the

activation energy of such hopping is first determined by the

typical puddle charging energy EC

σ = σ2 exp(−EC/T ), (T2 ≪ T ≪ T1). (3)

Here the prefactor σ2 ∼ (e2/~) exp(−S) ≪ (e2/~). We

show below that

EC = α2∆(∆/Γ)4/3 ≪ ∆. (4)

Here α = e2/(κ~v) is the analog of the fine structure constant

and κ is the dielectric constant of the substrate. With the stan-

dard semiconductor value v ∼ 106 m s−1; and with κ = 4 for

SiO2, 11 for insulating GaAs, 20 for HfO2 and 1000 for PbTe;

α can vary from 1 to 10−3. Below in our theory we use α as a

small parameter, α ≪ 1.

At even lower temperatures the activated hopping (AH)

crosses over to the Efros-Shklovskii (ES) law

σ = σ3 exp
[

− (TES/T )
1/2

]

, (T ≪ T2), (5)
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Figure 2. Schematic plot of the logarithm of the dimensionless con-

ductivity σ/(e2/~) as a function of the inverse temperature T−1.

At high temperature T > T1 = ∆/S, the conductivity has activa-

tion energy ∆. At intermediate temperature T2 < T < T1 where

T2 = E2

C/TES, the conductivity is dominated by activated hopping

(AH). At low temperature such that T < T2, AH is replaced by ES

law. Numbers adjacent to different parts of the line show correspond-

ing equations.

with σ3 ∼ e2/~. We show below that in this regime

TES = α∆(∆/Γ)37/9 ≪ ∆, (6)

and the temperatures associated with the crossover between

the different regimes are

T1 = α∆(Γ/∆)34/9, (7)

T2 = α3∆(Γ/∆)13/9. (8)

Above we assumed that metallic gates are far enough from the

semiconductor so that there is no screening of electron-hole

Coulomb interaction leading to a crossover between ES and

Mott law of variable range hopping. Such crossover happens

when the hop length becomes larger than the distance to the

gate [48, 49].

Similar results for all three mechanisms of conductivity are

obtained below for thin films of 3D topological insulators.

However, such a three-mechanism sequence is not observed in

most experiments [5–27, 29, 30]. Instead, experiments tend to

report an activated conductivity with activation energy much

smaller than ∆.

Here we suggest a possible explanation for such low acti-

vation energies. We show that at Γ/∆ > (Γ/∆)c, electrons

are not localized in single puddles and the first two regimes

of conductivity are absent. For presented above general case

(Γ/∆)c = α−9/41. The only remaining mechanism is the ES

law with very small TES. This means that the low tempera-

ture “local activation energy” is much smaller than ∆. Such

a theory predicts that the prefactor should be close to e2/~.

This prediction agrees with some experiments [16, 19], but

disagrees with others [18, 20].

III. FRACTAL GEOMETRY OF PUDDLES

In this section we briefly review some geometrical fractal

properties of 2D puddles at Γ ≫ ∆ [50]. The characteristic

size (diameter) of a puddle is given by

a = λ(Γ/∆)ν , (9)

where ν = 4/3 and λ is the electron screening radius. The

perimeter of a puddle is

L = a(Γ/∆) = λ(Γ/∆)ν+1. (10)

The perimeter L is parametrically longer than the diameter a
because puddles have many “fingers”, which are interlocked

with other fingers of neighboring puddles [see Fig. 3]. The

area of a puddle is given by

A = λ2(Γ/∆)2ν−β , (11)

where β = 5/36. The typical separation distance between

nearest-neighbor puddles is

w = λ∆/Γ. (12)

In order to estimate Γ and λ we can use the self-consistent

theory of Ref. 51, which dealt with the disorder potential at

the surface of a bulk TI created by charged impurities with 3D

concentration N . In our case the substrate plays the role of

the TI bulk and the two-dimensional semiconductor plays the

role of the TI surface. The band gap ∆ that exists in our case

is not important for determining the values of Γ and λ when

Γ ≫ ∆. To begin, we relate Γ to λ as the typical Coulomb

energy created by charge fluctuations in a volume λ3:

Γ =
e2

κλ
(Nλ3)1/2. (13)

This relation leads to a typical 2D density of states

g = κ2α2Γ/e4, (14)

which in turn leads to the screening radius

λ =
κ

e2g
=

e2

α2κΓ
. (15)

Solving Eqs. (13) and (15) for Γ and λ we get [51]

Γ =
e2N1/3

κα2/3
, (16)

λ = α−4/3N−1/3. (17)

IV. TUNNELING ACTION, LOCALIZATION LENGTH

AND CONDUCTANCE

Let us now calculate the hopping conductivity of the sys-

tem of fractal metallic puddles separated by narrow insulating

gaps shown in Fig. 1. In this section we estimate the dimen-

sionless tunneling action S. The value of S is determined by
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the tunneling length r = ∆/eE in the spatially-varying elec-

tric field E created by impurities:

S =
r∆

~v
=

∆2

eE~v
. (18)

It is tempting to use Γ/eλ for E and arrive at S =
α−1(∆/Γ)2. However, the electric field has strong fluctua-

tions at short distances, so the typical electric field depends

on the tunneling distance r. Since a cube of size r has a typ-

ical excess impurity charge
√
Nr3, the typical electric field

associated with the length scale r is E(r) = e(Nr3)1/2/κr2,

which grows with decreasing r. Also, due to the large perime-

ter length L of puddles we can find rare places where the ran-

dom electric field is created by a larger-than-average number

of excessive charges, M ≫ (Nr3)1/2, leading to even larger

electric field E(r) = eM/κr2. Below we find the optimal val-

ues of M and r which determine S, and we arrive at a value of

S much smaller than the naive estimate quoted above. Our op-

timization procedure is a mesoscopic version of the optimiza-

tion used in the theory of the interband absorption of light in

compensated three-dimensional semiconductors [2, 52]. It is

also similar to the theory of fluctuation-induced excess cur-

rents in reverse biased p-n junctions [53].

Below we use S to calculate the localization length ξ that

determines hopping transport. Thus, we are interested in fluc-

tuations of electric field which, although rare, happen roughly

once at every interface between nearest-neighboring puddles.

Thus,

(L/λ) exp

[

− M2

Nr3

]

= 1. (19)

Here we use the Gaussian probability of finding net charge

M in a cube of size r. For tunneling across the gap 2∆ we

need the potential difference across the cube Me2/κr = ∆.

In other words, r = r(M) = Me2/κ∆. Substituting r(M)
into Eq. (19) and solving for M gives

M =
α−2(∆/Γ)3

ln[(Γ/∆)7/3]
, (20)

which at Γ ≫ ∆ corresponds to r(M) ≪ w ≪ λ.

Substituting the electric field E = Me/κr2(M) into the

tunneling action Eq. (18) we have

S =
α−1(∆/Γ)3

ln[(Γ/∆)7/3]
≃ α−1(∆/Γ)34/9. (21)

In the last step we used the power-law approximation lnx ≈
x1/3, which is valid valid for x ∈ (3, 100) with accuracy bet-

ter than 30% .

Now we can calculate the electron localization length, ξ,

which we need below to calculate the hopping conductivity.

Consider a tunneling path with a displacement x ≫ a. The

action associated with this path is dominated by the action for

tunneling across the narrow insulating gaps between puddles,

which the electron must cross every time it displaces across

one puddle diameter ξ. Consequently, the total action of the

tunneling path is Sx/a = x/ξ where

ξ = a/S = αa(Γ/∆)34/9. (22)

Notice, however, that the fast decrease of S with growing

Γ/∆ leads to a fast increase of the dimensionless conductance

between two neighboring puddles

G = (L/λ) exp(−S), (23)

so that we get G = 1 at some critical value (Γ/∆)c. Substi-

tuting Eq. (21) into Eq. (23) and setting G = 1, we arrive at

an estimate for the critical disorder strength [54]

(Γ/∆)c = α−9/41, (24)

valid for α ∈ (1.2× 10−4, 0.12). This range of α is obtained

by substituting Eq. (24) into the requirement for the argument

of the logarithm (Γ/∆)7/3 ∈ (3, 100) [55].

At larger Γ/∆ the localization length grows exponentially

as ξ = aeG. This growth leads to a dramatic growth of the

conductivity, which we dub an “insulator - almost metal tran-

sition” (IAMT), if the sample size is much larger than ξ. For

a sufficiently small sample, (Γ/∆)c effectively plays the role

of disorder-induced insulator-metal transition.

V. HOPPING CONDUCTIVITY

At moderate disorder when 1 < Γ/∆ < (Γ/∆)c electrons

are well localized within a single puddle and the temperature

dependence of the conductivity follows the three-mechanism

sequence described above, for which with decreasing temper-

ature the activated conductivity with activation energy ∆ is

replaced first by AH and then by the ES law. In this case

the system is similar to a network of densely packed metallic

granules separated by a thin insulating matrix with Coulomb

impurities, and we can follow the calculation of their conduc-

tivity [46, 47].

Let us start from the discussion of AH conductivity at

∆/T ≫ S or T ≪ T1 = ∆/S. [One arrives at Eq. (7) for T1

with the help of Eq. (21)]. In this case, the charging energy of

a puddleEC replaces∆ as the activation energy for conductiv-

ity. In the case of large Γ/∆ we study the fractal structure of

puddles which leads to a peculiar expression for EC , smaller

than the standard expression EC = e2/κa. Namely we are

going to show that

EC =
e2∆

κaΓ
. (25)

Substituting Eqs. (9) and (15) into Eq. (25) one arrives at

Eq. (4). Let us illustrate how this happens by comparing the

self-capacitance of an isolated puddle, C0 ∼ κa, with the ca-

pacitance C of the same puddle surrounded by other puddles.

In the latter case, because our puddle has metallic properties,

an excess electron charge e spreads to the border (perimeter),

while neighboring metallic puddles provide opposite charge

on the other side of the border. Thus, all electric field is con-

centrated at the border between two puddles, mostly between

long fingers of electron and hole puddles shown in Fig. 3.

This mechanism of enhanced capacitance was recognized

by the electrical engineering community [56]. In our system

it means that C ∼ κL, and EC = e2/C leads to Eq. (25).
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Figure 3. Schematic picture of interlocked “fingers” of neighboring

puddles. Here the length of “fingers” a is of order of the puddle

diameter. One can imagine that Fig. 1 shows a vertical cross section

of Fig. 3.

The use of the activation energy EC is justified when it is

larger than the energy level spacing in a puddle. The level

spacing is given by

δ = (gA)−1 = α2(∆/Γ)55/36∆, (26)

where g is the 2D DOS given by Eq. (14), and A is the area

of a puddle given by Eq. (11). Therefore the ratio δ/EC =
(∆/Γ)7/36 ≪ 1 and our use of EC is legitimate.

Let us now consider the ES conductivity which replaces AH

at low temperatures. In the ground state, each puddle i of our

system is charged by a random fractional charge |qi| ≤ e/2.

This charging happens because some impurities contribute

their potential to neighboring puddles effectively by sharing

their charge between neighboring puddles, so that each puddle

effectively gets a fraction of impurity charge e. On the other

hand, electrons contribute their integer charge e to their pud-

dles. Fractional charging provides background disorder and

creates a random potential that results in localized electron

states and enables the formation of the Coulomb gap around

the chemical potential [46, 47]. This Coulomb gap leads again

to conductivity described by the ES law in the low temperature

limit.

We can calculate the constant TES in the ES law starting

from the standard expression TES = e2/κξ [2, 28]. Using

Eq. (22) for ξ we arrive at Eq. (6). We see now that TES ≪ ∆.

Equating (TES/T )
1/2 to EC/T with the help of Eqs. (6), we

arrive at the expression of T2 as Eq. (8).

VI. THIN FILM OF 3D TOPOLOGICAL INSULATOR

In previous sections we dealt with a general model of a triv-

ial 2D semiconductor with gapped Dirac spectrum Eq. (1).

In this section we concentrate on the special case of a thin

film of 3D TI, where the narrow gap 2∆ can be a result of

the hybridization of surface states on opposite surfaces of the

film [8, 9, 33–39] or may be created by a finite concentration

of magnetic dopants like Cr [10–20, 40, 41]. Because of the

promise of such films to achieve metrological precision of the

quantum anomalous Hall effect [11, 13, 16, 19, 20, 31, 32]

and the quantum spin Hall effect [9, 33–35], in this section

we are more specific with material parameters and numerical

estimates.

We have in mind TI thin films based on (Bix
Sb1−x)2Te3 [8], or (Bix Sb1−x)2 (Tey Se1−y)3 [9] which

have very large dielectric constant κ ∼ 200 [57–59]. Using

κ ∼ 200 and the Fermi velocity of TI v ∼ 4 × 105 m/s [60],

one gets α ∼ 0.027. We assume that such a film of width

d ∼ 7 nm is deposited on a substrate with much smaller di-

electric constant κe ≪ κ, so that the electric field created

by Coulomb impurities residing inside the film are trapped

within the film [61–64]. This trapping slows down the de-

cay of the Coulomb potential with distance and enhances the

role of impurities. TI films typically have a large (N ∼ 1019

cm−3) concentration of Coulomb impurities, which allows us

to study only their effect and to assume that impurities inside

the substrate play no role.

As in the previous section, we calculate the tunneling action

S and the critical ratio (Γ/∆)c, and we describe the hopping

conductivity of the film. According to Ref. [64], due to the

peculiar electrostatics of TI films, the expression of Γ is the

same as Eq. (16), while the expression for λ becomes

λ = α−2/3(Nd3)−1/6d, (27)

which is valid if λ > d. Using the above estimates of α, d and

N , we get λ ∼ 50 nm, so that this estimate is valid.

Notice that the electric field in the plane of the film created

by charge fluctuations in a disk of radius r and thickness d is

given by

E =
e
√
Nr2d

κrd
=

e

κ

√

N

d
, (28)

which turns out to be independent of r. Therefore, there is no

enhancement of the electric field at scales shorter than λ, as

there was in Sec. IV. Substituting Eq. (28) (or, equivalently,

E = Γ/eλ) into Eq. (18), we arrive at the action

S =
w∆

~v
=

λ∆2

~vΓ
= α−1/3(Nd3)1/6(∆/Γ)2 (29)

for tunneling between neighboring puddles. However, the

electric field E = eM/κλd can still be enhanced by a

rare fluctuation of the number of charges M ≫ (Nλ2d)1/2

with Gaussian probability exp
(

−M2/Nλ2d
)

. This replaces

Eq. (19) by

(L/λ) exp

[

− M2

Nλ2d

]

= 1. (30)

Solving the above equation we obtain the largest M available

in the perimeter

M =
{

Nλ2d ln[(Γ/∆)7/3]
}1/2

. (31)

Now substituting the electric field E = eM/κλd into the ac-

tion Eq. (18) gives

S =
α−1/3(Nd3)1/6(∆/Γ)2

{

ln[(Γ/∆)7/3]
}1/2

≃ α−1/3(Nd3)1/6(∆/Γ)43/18,

(32)
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which is smaller than the action given by Eq. (29). In the last

step, as in the Sec. IV we used the power-law approximation

lnx = x1/3 valid for x ∈ (3, 100) with accuracy better than

30%.

Substituting Eq. (32) into the expression of G, Eq. (23), and

setting G = 1, we arrive at the critical point [65]

(Γ/∆)c = α−2/19(Nd3)1/19. (33)

Using the estimates α ∼ 0.027, N ∼ 1019 cm−3 and d = 7
nm we get (Γ/∆)c = 1.6.

Let us switch to hopping conductivity of thin TI film and

start from the charging energy of a puddle. Similarly to

Sec. III, capacitance of a puddle within the film is determined

by long border of the puddle with neighboring puddles. Near

the border there are two stripes of the length L and width λ
with charges −e and e. But now electric field at the border is

concentrated in the film of width d ≪ λ with the large dielec-

tric constant κ. This changes the capacitance of the puddle

border to C ∼ κL(d/λ) and leads to

EC = (e2/κd)(λ/L) = (e2/κd)(∆/Γ)7/3, (34)

At lower temperatures T < T2 conductivity obeys the ES

law with the characteristic temperature TES = e2/κeξ, where

ξ = a/S. Note that here we use κe because at large distances

electric field lines leave the film and go through the environ-

ment. Using Eqs. (9) and (32) we get

TES = α(κ/κe)∆(∆/Γ)49/18. (35)

Eqs. (35) and (33) show that in TI films, as in trivial semi-

conductors [c.f. Eqs. (6) and (24)], a reduction of TES and a

crossover from strong localization to practically metallic con-

ductivity happens dramatically quickly when Γ exceeds ∆.

We now estimate the characteristic energies Γ, ∆, EC , TES,

T1, and T2 for TI thin films based on (Bix Sb1−x)2 (Tey
Se1−y)3. Using κ = 200, α = 0.027, N = 1019 cm−3,

we have Γ ≃ 17 meV. The hybridization gap is related to the

thickness by ∆ = ∆0e
−d/d0 with ∆0 = 0.5 eV and d0 = 2

nm [9]. For example, if d = 7 nm, then Γ ≃ 17 meV, ∆ ≃ 15
meV, S ≃ 3, EC ≃ 0.8 meV, and TES ≃ 130 K (here assume

that the film has BN on both sides and use κe = 5). Tem-

peratures T1 = ∆/S ≃ 60 K and T2 = E2
C/TES = 0.6 K

are obtained by equating Eqs. (2) to (3), and (3) to (5) respec-

tively. In this case, apparently ES conductivity starts when

(TES/T2)
1/2 ∼ 15 so that ES law is hardly observable be-

cause of very large resistance. Thus, observable activation

energy is given by EC ∼ 0.05∆.

In slightly thicker films with d ≥ 8 nm the half-gap∆(d) ≤
9 meV and Γ/∆ > (Γ/∆)c, so that they are almost metal-

lic and show ES conductivity with much smaller TES. On

the other hand, one can show that in thinner films, d < 7
nm, for which ∆ > Γ activation energy Ec = e2/κd and

TES = α(κ/κe)∆ so that practically conductivity is similar to

films with d = 7 nm. Notice that critical thickness d = dc = 7
nm is very sensitive to values of ∆0, N , κ, α, and most impor-

tantly d0, which are different for different materials. This can

explain differences between experimental results in Refs. 8

and 9.

For the case of magnetically doped TI thin films, the ex-

change half-gap ∆ induced by magnetic impurities is not di-

rectly related to d and is of order of 20 meV [19, 20, 45], so

that we have practically the same numbers as in the previous

example.

VII. SUMMARY AND CONCLUSION

In this paper we have considered the temperature-

dependent conductivity of a two-dimensional insulator sub-

jected to the random potential created by Coulomb impurities

in the substrate. Our primary results can be summarized as

follows. First, the random potential of charged impurities nec-

essarily produces large band bending. We focus here on the

case where the impurity concentration is large enough that

the disorder potential Γ ≫ ∆, and the system can be de-

scribed as a network of large and closely-spaced fractal pud-

dles [Fig. 1] separated by narrow insulating barriers [Fig. 3].

This case is characterized by the “three-mechanism sequence”

of temperature-dependent conductivity illustrated in Fig. 2.

Only the highest-temperature regime has an activation energy

Ea equal to half the band gap ∆. The middle regime, ac-

tivated hopping between puddles (AH), exhibits a parametri-

cally smaller activation energy whose value depends on the

impurity concentration, while the lowest temperature regime

corresponds to Efros-Shklovskii conductivity, which may ap-

pear as an even smaller activation energy when measured over

a limited temperature range.

Second, when the impurity concentration N exceeds some

critical value the tunnel barriers between puddles become

thin enough to be nearly transparent, and electrons are delo-

calized across many puddles. In this limit the localization

length grows exponentially with increased disorder, and the

corresponding activation energy falls exponentially, so that

in mesoscopic samples one effectively has a disorder-induced

insulator-to-metal transition.

Our results have implications for a wide variety of exper-

iments on 2D electron systems with a narrow energy gap.

Some of these include 2D and thin 3D TIs, Bernal bilayer

graphene with a perpendicular displacement field, and twisted

bilayer graphene, as mentioned in the Introduction. In such

systems the temperature-dependent conductivity is often used

as a primary way to diagnose the magnitude of energy gaps.

Our results here suggest that such studies suffer an essentially

unavoidable limitation, since the apparent activation energy

Ea at low temperature has no simple relation to the energy

gap, and in general Ea can be taken only as a weak lower

bound. No wonder that the transport activation energy in many

cases is 100 times smaller than the value expected theoreti-

cally or measured by probes like optical absorption or tunnel-

ing spectroscopy.

In principle, one can infer the band gap by measuring the

activation energy at the highest temperature regime. However,

the existence of this regime practically requires a low enough

disorder that electron and hole puddles are small and well sep-

arated from each other. Even in this case, experiments using

transport to estimate ∆ should first demonstrate two distinct
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regimes of constant activation energy, and then use only the

value from the higher-T regime as an estimate of ∆.

The existence of an apparent disorder-induced IMT at

Γ/∆ > (Γ/∆)c is an especially striking result of our analysis.

For conventional insulators, this apparent transition cannot be

called a true IMT, since in 2D the zero-temperature conduc-

tance flows toward zero in the thermodynamic limit for any

finite amount of disorder [66]. However, the situation may be

different for thin TI films, since the spin-orbit coupling of the

TI surface states permits a stable metallic phase [67, 68]. A

full theory of this IMT in TI films is beyond the scope of our

current analysis.
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Appendix A: Activation to the classical mobility edge

1. Percolation-based argument for Ea = ∆

In this Appendix we consider the process of thermal activa-

tion of electrons from the chemical potential to the classical

mobility edge. We show that, generically, this process leads

to an activation energy

Ea = |Ebe − µ|, (A1)

where Ebe = ±∆ represents the mean energy of the nearest

band edge (conduction band or valence band) and µ is the

chemical potential, both defined relative to the mid-gap [69].

In the maximally-insulating state, where µ = 0, this equation

gives

Ea = ∆, (A2)

as in the non-disordered system.

To show this result, we first consider the case µ = 0. In this

case the mean energy of the conduction band edge is +∆ and

the mean energy of the valence band edge is −∆, although

the disorder potential causes both band edges to wander in

energy as a function of position. (See Fig. 1.) Let us now

consider the process of drawing spatial contours of constant

energy E for one of the two band edges (say, the conduction

band). The contours corresponding to E = 0 are small closed

curves which surround electron puddles. As the energy E is

increased, these contours grow in diameter and an increasing

fraction of the system’s area is inscribed within such contours.

This inscribed area corresponds to the regions of the system

that is accessible to conduction band electrons with energy E.

At some point, as the contour energy E is increased, the

area inscribed within contours becomes large enough that it

comprises half of the total area of the system. At this energy

Ep there is a percolation transition, such that a conduction

band electron with E > Ep can move freely across a macro-

scopic distance and contribute to bulk conduction. The energy

Ep is therefore equal to the position of the classical mobility

edge for the conduction band, and the activation energy for

this process Ea = Ep. That percolation occurs when half the

area of the system is encompassed by contours can be argued

simply on the basis of symmetry: in two dimensions it is not

possible for a continuous percolation cluster and its compli-

ment to percolate simultaneously. Thus the critical area frac-

tion for a continuous and symmetric random potential is equal

to 1/2 [2].

Thus, the energy of activation to the conduction band is

equal to the energy at which half of the system’s area of ac-

cessible via conduction band states. For a symmetric poten-

tial this energy corresponds exactly to the mean energy of the

conduction band, and therefore Ea = ∆, as announced above.

This same argument can easily be extended to the case

where the chemical potential is not at zero, but is instead at

some finite energy µ relative to the mean position of the mid-

gap. The percolation level Ep remains unchanged relative to

the mid-gap, and thus the energy of activation to the conduc-

tion band is ∆ − µ. The energy of activation to the valence

band is ∆+ µ.

Thus, the activation energy for activation to the nearest

mobility edge is identical to what it would have been in the

non-disordered case. Its origin, however, is nontrivial, and in-

volves a symmetry of percolation in a two dimensional contin-

uous potential. In three dimensions, for example, there is no

such symmetry, since a given space and its complement may

percolate simultaneously. Consequently the activation energy

for percolation is significantly smaller than the difference in

energy between the chemical potential and the mean position

of the closest band edge, Ea ≈ 0.3|Ebe − µ| [3, 4].

2. Computer modeling

In order to confirm Eq. (A1), we consider a simple

computer model of a 2D electron system of dimensions

surrounded by a three-dimensional environment containing

charged impurities. We simulate the electron system as a

square grid of L0 × L0 discrete points, embedded as the mid-

plane of a cube containing L3
0 charged impurities. We define

our coordinates such that the 2D electron system comprises

the x− y plane, while impurities are uniformly and randomly

distributed within the region −L0/2 < x, y, z < L0/2 (impu-

rities are not constrained to reside at integer values of x, y, z).

A given discrete point i in the x-y plane may have charge

qi = −1, 0, 1, with the values corresponding to the location

of the chemical potential relative to the conduction band and

valence band edges at site i. Specifically, qi = −1 corre-

sponds to the chemical potential being above the conduction

band edge, qi = +1 indicates that the chemical potential is be-

low the valence band edge, and qi = 0 if the chemical poten-

tial is within the band gap. The corresponding semiclassical
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Figure 4. An example of the energy ECB of the conduction band

edge as a function of position, as given by our numerical simulation.

Light (yellow) colours indicate high energy, and dark (blue) colors

correspond to low energy. The black contour indicates the energy

of the percolation level, ECB = ∆. This example corresponds to

∆ = 5, L0 = 50.

Hamiltonian for this system is

H =
∑

i

φimp
i qi −∆

∑

i

qi +
∑

i,j 6=i

qiqj
rij

(A3)

where rij is the distance between the sites i and j in the x-y

plane. The quantity φimp
i represents the potential created by

bulk impurities at site i, and is given by

φimp
i =

∑

k

qimp

k

rik
. (A4)

Here, rik represents the distance between the bulk impurity k

and the site i; the impurity charge is qimp

k = ±1. The corre-

sponding energies of the conduction band and valence band

edges at site i are

ECB
i = −φi +∆ (A5)

EVB
i = −φi −∆, (A6)

where

φi = φimp
i +

∑

j 6=i

qj
rij

(A7)

is the total electric potential at site i. The intent of this model

is to describe the spatial meandering of the band edge for a

2D system surrounded by bulk impurities. Once the corre-

sponding energies ECB, VB
i are known, we can calculate the

energy Ea that corresponds to the classical mobility edge for

the nearest band. Specifically, Ea corresponds to the minimal

energy such that there exists a percolating path across opposite

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6
0

2

4

6

(b)

(a)

Figure 5. Numerical results for the activation energy as a function

of (a) the chemical potential µ and (b) the band gap ∆. The dashed

lines in (a) and (b) correspond to Eqs. (A1) and (A2), respectively.

Both plots use a system size L0 = 50.

faces of the system using only lattice sites with ECB
i < Ea.

The model discretizes the electron system on a length scale

given by the mean distance between bulk impurities. The cor-

responding correlation length of the random potential is given

by

Λ =
∆2κ2

2πe4N
, (A8)

and so such discretization is unimportant when

∆/(e2N1/3/κ) is large. We use nearest-neighbor per-

colation on the square lattice, but since the potential is

correlated over length scales much larger than the lattice

constant, this choice is unimportant in the limit of large ∆.

In order to find the energies ECB, VB
i , we first need a so-

lution for the charges qi of each site i in the ground state.

Finding such a solution is a difficult numerical problem. We

use the numerical algorithm described in Refs. [2–4] to find a

pseudo-ground state that is minimized with respect to chang-

ing any one or two values of qi simultaneously. This algorithm

is known to give a good approximation for the properties of

the ground state. The resulting solution for the charge qi of

each site allows us to define the energies ECB, VB
i , and thus

to find the percolation level for both the CB and VB. We iter-

ate this procedure over many random choices of the impurity

positions, and average over all such iterations.

We also examine the dependence of the activation energy

on the chemical potential µ. The chemical potential can be

tuned by adjusting the net concentration of charged impurities,

which mimics the effect of a gate voltage. µ = 0 corresponds

(on average) to equal numbers L
3/2
0 of + and − impurities.

Since we are defining µ relative to the average energy of the

mid-gap, which at site i has an energy −φi. We can thus de-
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fine µ for the system as

µ = − 1

L2
0

∑

i

φi. (A9)

This chemical potential is calculated after the pseudo-ground

state is determined. We then report Ea relative to this chemi-

cal potential.

Figure 4 shows an example plot of the energy of the CB

bottom, ECB, as a function of position. Figure 5 gives the cal-

culated activation energy as a function of chemical potential

and band gap. It closely matches Eq. A1.
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[29] Y. Xie, B. Lian, B. Jäck, X. Liu, C.-L. Chiu, K. Watanabe,

T. Taniguchi, B. A. Bernevig, and A. Yazdani, Nature 572, 101

(2019).

[30] Y. Choi, H. Kim, C. Lewandowski, Y. Peng, A. Thom-

son, R. Polski, Y. Zhang, K. Watanabe, T. Taniguchi, J. Al-

icea, and S. Nadj-Perge, “Interaction-driven band flattening

and correlated phases in twisted bilayer graphene,” (2021),

arXiv:2102.02209.

[31] R. Yu, W. Zhang, H.-J. Zhang, S.-C. Zhang, X. Dai, and

Z. Fang, Science 329, 61 (2010).

[32] J. Zhang, C.-Z. Chang, P. Tang, Z. Zhang, X. Feng, K. Li,

L. li Wang, X. Chen, C. Liu, W. Duan, K. He, Q.-K.

Xue, X. Ma, and Y. Wang, Science 339, 1582 (2013),

https://www.science.org/doi/pdf/10.1126/science.1230905.

[33] C.-X. Liu, H. J. Zhang, B. Yan, X.-L. Qi, T. Frauenheim, X. Dai,

Z. Fang, and S.-C. Zhang, Phys. Rev. B 81, 041307(R) (2010).

[34] H.-Z. Lu, W.-Y. Shan, W. Yao, Q. Niu, and S.-Q. Shen, Phys.

Rev. B 81, 115407 (2010).

[35] J. Linder, T. Yokoyama, and A. Sudbø, Phys. Rev. B 80, 205401

(2009).

[36] Y. Zhang, K. He, C.-Z. Chang, C.-L. Song, L.-L. Wang,

X. Chen, J.-F. Jia, Z. Fang, X. Dai, W.-Y. Shan, S.-Q. Shen,

Q. Niu, X.-L. Qi, S.-C. Zhang, X.-C. Ma, and Q.-K. Xue, Na-

ture Physics 6, 584 (2010).

[37] Y. Sakamoto, T. Hirahara, H. Miyazaki, S.-i. Kimura, and

S. Hasegawa, Phys. Rev. B 81, 165432 (2010).

[38] T. Zhang, J. Ha, N. Levy, Y. Kuk, and J. Stroscio, Phys. Rev.

Lett. 111, 056803 (2013).

[39] D. Kim, P. Syers, N. P. Butch, J. Paglione, and M. S. Fuhrer,

Nature Communications 4, 2040 (2013).

[40] Y. L. Chen, J.-H. Chu, J. G. Analytis, Z. K. Liu, K. Igarashi,

http://dx.doi.org/10.1103/PhysRevLett.109.176801
http://dx.doi.org/10.1103/PhysRevB.94.085146
http://dx.doi.org/ 10.1103/PhysRevLett.114.126802
http://dx.doi.org/ 10.3367/ufne.2019.10.038669
http://dx.doi.org/10.1126/sciadv.aaz3595
http://arxiv.org/abs/https://www.science.org/doi/pdf/10.1126/sciadv.aaz3595
http://dx.doi.org/ 10.1103/PhysRevB.98.214203
http://dx.doi.org/10.21203/rs.3.rs-519444/v1
http://dx.doi.org/ 10.1038/nphys2388
http://dx.doi.org/ 10.1126/science.1234414
http://dx.doi.org/ 10.1088/1674-1056/22/6/067305
http://dx.doi.org/10.1063/1.4935075
http://arxiv.org/abs/https://doi.org/10.1063/1.4935075
http://dx.doi.org/10.1063/1.4990548
http://arxiv.org/abs/https://doi.org/10.1063/1.4990548
http://dx.doi.org/10.1038/s41567-018-0149-1
http://dx.doi.org/ 10.1103/PhysRevB.98.075145
http://dx.doi.org/10.1021/acs.nanolett.8b03745
http://arxiv.org/abs/https://doi.org/10.1021/acs.nanolett.8b03745
http://dx.doi.org/ 10.1103/PhysRevB.99.201101
http://dx.doi.org/ 10.1063/5.0056796
http://arxiv.org/abs/https://doi.org/10.1063/5.0056796
https://doi.org/10.1038/s41467-021-25912-w
http://dx.doi.org/10.1103/PhysRevB.82.081407
http://dx.doi.org/10.1103/PhysRevLett.105.166601
http://dx.doi.org/ 10.1126/science.aay5533
http://dx.doi.org/ 10.1038/s41586-020-2459-6
http://dx.doi.org/ 10.1038/s41586-021-03366-w
http://dx.doi.org/10.1038/nature26154
http://dx.doi.org/ 10.1038/nature26160
http://dx.doi.org/10.1088/0022-3719/8/4/003
http://dx.doi.org/10.1038/s41586-019-1422-x
http://arxiv.org/abs/2102.02209
http://dx.doi.org/ 10.1126/science.1187485
http://dx.doi.org/ 10.1126/science.1230905
http://arxiv.org/abs/https://www.science.org/doi/pdf/10.1126/science.1230905
http://dx.doi.org/10.1103/PhysRevB.81.041307
http://dx.doi.org/ 10.1103/PhysRevB.81.115407
http://dx.doi.org/10.1103/PhysRevB.80.205401
http://dx.doi.org/10.1038/nphys1689
http://dx.doi.org/ 10.1103/PhysRevB.81.165432
http://dx.doi.org/ 10.1103/PhysRevLett.111.056803
http://dx.doi.org/ 10.1038/ncomms3040


10

H.-H. Kuo, X. L. Qi, S. K. Mo, R. G. Moore, D. H. Lu,

M. Hashimoto, T. Sasagawa, S. C. Zhang, I. R. Fisher, Z. Hus-

sain, and Z. X. Shen, Science 329, 659 (2010).

[41] S.-Y. Xu, M. Neupane, C. Liu, D. Zhang, A. Richardella, L. An-

drew Wray, N. Alidoust, M. Leandersson, T. Balasubrama-

nian, J. Sánchez-Barriga, O. Rader, G. Landolt, B. Slomski,

J. Hugo Dil, J. Osterwalder, T.-R. Chang, H.-T. Jeng, H. Lin,

A. Bansil, N. Samarth, and M. Zahid Hasan, Nature Physics 8,

616 (2012).

[42] M. Ye, W. Li, S. Zhu, Y. Takeda, Y. Saitoh, J. Wang, H. Pan,

M. Nurmamat, K. Sumida, F. Ji, Z. Liu, H. Yang, Z. Liu,

D. Shen, A. Kimura, S. Qiao, and X. Xie, Nature Communi-

cations 6, 8913 (2015).

[43] Y. Tokura, K. Yasuda, and A. Tsukazaki, Nature Reviews

Physics 1, 126 (2019).

[44] Y. Deng, Y. Yu, M. Z. Shi, Z. Guo, Z. Xu, J. Wang, X. H. Chen,

and Y. Zhang, Science 367, 895 (2020).

[45] R. Lu, H. Sun, S. Kumar, Y. Wang, M. Gu, M. Zeng, Y.-J. Hao,

J. Li, J. Shao, X.-M. Ma, Z. Hao, K. Zhang, W. Mansuer, J. Mei,

Y. Zhao, C. Liu, K. Deng, W. Huang, B. Shen, K. Shimada, E. F.

Schwier, C. Liu, Q. Liu, and C. Chen, Phys. Rev. X 11, 011039

(2021).

[46] T. Chen, B. Skinner, and B. I. Shklovskii, Phys. Rev. Lett. 109,

126805 (2012).

[47] J. Zhang and B. I. Shklovskii, Phys. Rev. B 70, 115317 (2004).

[48] F. W. Van Keuls, X. L. Hu, H. W. Jiang, and A. J. Dahm, Phys.

Rev. B 56, 1161 (1997).

[49] K. Bennaceur, P. Jacques, F. Portier, P. Roche, and D. C. Glattli,

Phys. Rev. B 86, 085433 (2012).

[50] M. B. Isichenko, Rev. Mod. Phys. 64, 961 (1992).

[51] B. Skinner and B. I. Shklovskii, Phys. Rev. B 87, 075454

(2013).

[52] B. I. Shklovskii and A. L. Efros, Zh. Eksp. Theor. Fiz. 59, 1343

(1970), [Sov. Phys. - JETP 32, 733 (1971)].

[53] M. E. Raikh and I. M. Ruzin, Sov. Phys. Semicond. 19, 745

(1985).

[54] In the limit of α → 0, the asymptotic expression to first order

reads (Γ/∆)c = α−1/3[ln
(

α−1
)

]−2/3.

[55] Note that this mesoscopic optimization method based on

Eq. (19) is self-consistent if Γ/∆ < (Γ/∆)c (or G < 1), so

that eS > L/λ.

[56] H. Samavati, A. Hajimiri, A. Shahani, G. Nasserbakht, and

T. Lee, IEEE Journal of Solid-State Circuits 33, 2035 (1998).

[57] W. Richter and C. R. Becker, physica status solidi (b) 84, 619

(1977).

[58] N. Borgwardt, J. Lux, I. Vergara, Z. Wang, A. A. Taskin,

K. Segawa, P. H. M. van Loosdrecht, Y. Ando, A. Rosch, and
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