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Starting from a low-energy effective Hamiltonian model, we theoretically calculate the dynamical optical
conductivity and permittivity tensor of a magnetized graphene layer with Rashba spin orbit coupling (SOC).
Our results reveal a transverse Hall conductivity correlated with the usual nonreciprocal longitudinal conduc-
tivity. Further analysis illustrates that for intermediate magnetization strengths, the relative magnitudes of the
magnetization and SOC can be identified experimentally by two well-separated peaks in the dynamical optical
response (both the longitudinal and transverse components) as a function of photon frequency. Moreover, the
frequency dependent permittivity tensor is obtained for a wide range of chemical potentials and magnetization
strengths. Employing experimentally realistic parameter values, we calculate the circular dichroism of a repre-
sentative device consisting of magnetized spin orbit coupled graphene and a dielectric insulator layer, backed
by a metallic plate. The results reveal that this device has different relative absorptivities for right-handed
and left-handed circularly polarized electromagnetic waves. It is found that the magnetized spin orbit coupled
graphene supports strong handedness-switchings, effectively controlled by varying the chemical potential and
magnetization strength with respect to the SOC strength.

I. INTRODUCTION

Graphene is a two-dimensional (2D) planar honeycomb ar-
rangement of carbon atoms with one-atom thickness. The
isolation of a graphene sheet was first officially reported in
2004.[1] This groundbreaking feat has inspired the isolation
and creation of several novel single-layer materials that are
one-atom thick, such as silicene and phosphorene, and has fu-
eled the growth of a larger family of 2D materials.[2, 3] The
most interesting electronics characteristics of graphene are ac-
cessible within a narrow energy window close to the Fermi
level.[4] The dispersion of quasiparticles near the Fermi level
follows a linear relation as a function of momentum. This
property facilitates the study of relativistic Dirac fermions
within a practical platform. [5] Additionally, graphene can
withstand relatively high strains without rupturing, and sup-
ports a tunable chemical potential. These intriguing discover-
ies and advancements have made graphene attractive for both
fundamental science and next-generation devices and tech-
nologies. [4, 6, 7]

On its own, graphene has a negligible band gap and limited
spin-related features such as magnetization and spin orbit cou-
pling (SOC) [8]. Due to this, the use of free-standing graphene
in practical devices is still limited. To make graphene more
suitable for technology-oriented applications and explore in-
teresting fundamental phenomena, it is important to capitalize
on additional effects such as the interplay of Dirac fermions
with superconductivity, magnetization, and SOC. Along these
lines, experimentally feasible approaches [9–11] involve the
exploitation of proximity effects, whereby the magnetism and
SOC can be extrinsically[12] induced into graphene by close
contact with other materials [13–17]. The proximity-induced
magnetism and SOC in graphene is more appropriate than
chemical doping as the former approach preserves the chem-
ical properties of graphene and the quality of the graphene
lattice remains nearly intact. [13–17] This idea has driven nu-

merous efforts both theoretically and experimentally to shed
light on various aspects of superconducting [18, 19] magne-
tized [20–22], or spin orbit coupled graphene [20, 23–26].

On both the experimental and theoretical fronts, transport
measurements have found excellent agreement with the low-
energy effective models [4–6]. Indeed, there have been sev-
eral experiments carried out in this direction so far, report-
ing successful proximity-induced phenomena in graphene [9–
11]. Nonetheless, there is no clear-cut evidence and estima-
tion of the type and strength of the induced SOC in graphene.
For example, in Refs. 9–11, ferromagnetism was induced in
graphene by placing it in close contact with yttrium iron gar-
net (YIG), which is a magnetic insulator with SOC. The cor-
responding signatures of the induced SOC and magnetization
into graphene were observed through transverse Hall current
measurements, however, a clear-cut picture of the type and
strength of the SOC remains elusive.

When a plane circularly polarized electromagnetic (EM)
wave interacts with some materials, there can be differences
in the absorption of left-handed (LH) and right-handed (RH)
circularly polarized light. When the absorptance of the in-
cident circularly polarized beam depends on the handed-
ness, the material possesses optical circular dichroism (CD)
[27]. Moreover, when tailor-made material platforms support
“handedness-switching” under external controls, the system
can change whether it predominately absorbs RH or LH po-
larized waves. The corresponding absorptance signatures can
reveal valuable spin information, and possibly, intrinsic quan-
tum details of the system [28–30]. Such material platforms
with nonzero intrinsic CD can be used in nanodevices as a
circular polarization filter with atomic-scale control, and pro-
grammable optoelectronic devices with high-speed switching.

Having a low-power atomistic-scale mechanism to control
electric-field rotation and absorption of EM waves is a de-
sirable capability for modern integrated and compact optical
nanodevices, sensors and detectors [31, 32]. Control of the
polarization, phase, and magnitude of reflected and transmit-
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FIG. 1. (Color online). The representative setup for revealing
handedness-switching predicted in this paper. The graphene layer is
deposited on top of an insulator layer with strong SOC and a thick-
ness of d. A perfectly conducting back plate accompanies the system
to generate strong reflection of the electromagnetic wave, which is
incident upon the graphene side of the structure. The reflected wave
is then collected by a detector. We assume that the graphene sheet
is located in the xy plane. The small arrows show the orientation of
magnetization on the carbon sites. The blue and red regions indicate
the A and B sublattices of graphene, respectively. The carrier density
and chemical potential can be controlled by a gate voltage, V .

ted EM waves has been explored using metamaterials [33–43]
and patterned metasurfaces [44–53]. Nevertheless, fabrication
challenges in creating metasurfaces, in addition to the low-
efficiency and limited compactness of the final structure, limit
the effectiveness of this approach. Moreover, precise control
over the dynamical and widely modulating system parameters
is needed [44–53], thus making atomic-scale optoelectronic
elements with controllable material properties a more favor-
able alternative [54].

In this paper, we have considered a graphene layer with
extrinsically-induced Rashba SOC and magnetization. Start-
ing from a microscopic Hamiltonian and employing a Green’s
function approach, we derive expressions for the components
of the dynamical optical conductivity tensor, and thereby ob-
tain the associated frequency-dependent permittivity tensor.
Our results illustrate that the optical conductivity acquires a
strong peak associated with SOC at frequencies close to the
corresponding SOC energy. A nonzero magnetization of mod-
erate strength perpendicular to the graphene plane results in
a clear second peak in the frequency-dependent optical con-
ductivity, well-separated from the SOC peak. To confirm our
findings, we analyze their origins through visualizing vari-
ous possible interband and interband optical transitions in the
band structure. Therefore, we find that the optical conduc-
tivity and dielectric response can be practical tools for iden-
tifying the presence of SOC induced in graphene, and esti-
mating its strength unambiguously. Moreover, upon calculat-
ing the CD, we demonstrate that a nanoscale device of the
type schematically shown in Fig. 1 can efficiently control
handedness-switching by tuning the chemical potential and

magnetization strength. Our results and findings may serve as
a possible scenario for the physical origins of a nonzero CD
observed in a recent experiment involving a graphene system
deposited on a SiC substrate [55]. This would suggest that the
interaction of graphene and a substrate can result in SOC and
a nonzero magnetism.

The paper is organized as follows. In Sec. II, the theoret-
ical model is outlined, including the model Hamiltonian. In
Sec. III A, the analytical and numerical evaluations of the dy-
namical optical conductivity are performed. In Sec. III B, the
finite frequency dielectric tensor is discussed and the response
of the magnetized spin orbit coupled graphene to polarized
EM waves is analyzed. Finally, we summarize the results with
concluding remarks in Sec. IV.

II. FORMULATION AND FRAMEWORK

Graphene atoms are bonded through the p-orbital electrons.
The electronics consequences of these interactions for low-
energies close to the Fermi level can be properly described
by a tight-binding model.[4] The tight-binding model can be
further simplified into an effective Hamiltonian model around
the Fermi level without missing any important physics [4].
Unlike the more complicated computational methods, the ef-
fective Hamiltonian model provides more clarity into the fun-
damental physics of systems. Also, it has long been proven
that by contrasting results to experimental observations, the
effective Hamiltonian captures the most interesting physics in
graphene at low energies. [4–6] Both magnetization and SOC
can be extrinsically induced into graphene by virtue of the
proximity effect involving the appropriate materials. [9–11]
The effective Hamiltonian of graphene with SOC and magne-
tization can be expressed as [56, 57],

H=

∫
dkΨ†(k)H(k)Ψ(k), (1a)

H(k)=~vFk · τ + α(σ × τ )z + h · σ − µ. (1b)

The particles moving within the plane of graphene have mo-
mentum k = (kx, ky). The particles’ velocity at the Fermi
level is approximately given by vF ∼ 106 m/s. In this nota-
tion, σ and τ are vectors comprised of 2×2 Pauli matrices
and refer to spin space and sublattice space, respectively. The
honeycomb lattice of graphene is comprised of ‘A’ and ‘B’
sublattices, as illustrated in Fig. 1. The strength of Rashba
SOC, magnetization, and chemical potential are labeled by
α, h, and µ, respectively. In our calculations that follow, we
have considered an arbitrary direction for the magnetization
orientation so that h = (hx, hy, hz). The magnetization might
be induced into the graphene layer by a magnetized substrate
such as YIG or the application of an external magnetic field
[9–11]. The intrinsic staggered SOC is negligibly small in
a typical graphene layer, where the ratio of extrinsic to in-
trinsic SOC is on the order of 100 [58, 59]. However, since
the magnetization hz can play the same role as this type of
SOC [4, 6], its presence can be revealed by subtle features
in the response of graphene to RH and LH polarized waves.
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Thus, the overall effect on the results is similar to having hz
present, even in situations where the intrinsic SOC is consid-
erably large. The key features due the presence of magnetiza-
tion are described below in detail. Hence, the associated field
operators have four-components, carrying the spin and sublat-
tice degrees of freedom, i.e., Ψ†(r) = (ψ†A↑, ψ

†
B↑, ψ

†
A↓, ψ

†
B↓)

and Ψ(r) = (ψA↑, ψB↑, ψA↓, ψB↓)
T .

The components of frequency-dependent permittivity ten-
sor εab(ω) are related to the components of the conductivity
tensor σab(ω) through the standard relations,

εab(ω) = δab + i
σab(ω)

ε0ω
, (2a)

σab(ω) =
i

ω
lim
q→0

{
Πab(ω,q)−Πab(0,q)

}
. (2b)

Here δab is the Kronecker delta, the indices a, b run over x, y,
and ε0 is the permittivity of free space. The current-current
correlation function is given by

Πab(ω,q) =
e2

~

∫
dk

(2π)2

∑
n

∑
τ=A,B

∑
s=↑↓

×F(εn, ω, µ)

Tr

{
Ja,τ,sGτ,s

(
εn + iω,k + q

)
Jb,τ,sGτ,s

(
εn,k

)}
. (3)

Here τ, s are sublattice and spin degrees of freedom, respec-
tively and the components of current operator are Ja,ρ,s. The
Fermi-Dirac function f(X) determines the temperature de-
pendency (T ) of optical conductivity and permittivity

F(εn, ω, µ) = f(εn − µ)− f(εn + ω − µ), (4a)

f(x) =
1

eβx + 1
, β =

1

kBT
, (4b)

in which kB is the Boltzmann constant.

III. RESULTS AND DISCUSSIONS

We first present results for the optical conductivity and ana-
lyze the physical origins of its various features in Sec. III A. In
Sec. III B, the components of the dispersive permittivity tensor
are studied as a function of chemical potential. Next, the ef-
fects of frequency, chemical potential, and magnetization on
the circular dichroism of the device shown in Fig. 1 will be
presented.

A. Finite-frequency optical conductivity and physical analysis

To obtain the permittivity tensor with frequency dispersion,
the components of the Green’s function used in Eq. (3) needs
to be derived. For concreteness, and to simplify the expres-
sions, we set h = (0, 0, hz) in what follows. Nonetheless, we
have obtained expressions for generic cases with h 6= 0. Using
the low-energy Hamiltonian (1), the components of Green’s

function in the presence of an exchange field hz , and SOC are
expressed by,

ΩG11 =− 4(hz + iω)α2

− (hz − iω)(hz − k + iω)(hz + k + iω), (5a)

ΩG12 = +2i(kx − iky)(hz + iω)α, (5b)

ΩG13 = +(kx − iky)(hz − k + iω)(hz + k + iω), (5c)

ΩG14 = +2i(kx − iky)2α, (5d)

ΩG22 = +(hz − k− iω)(hz + k− iω)(hz + iω), (5e)

ΩG23 = −2i(hz − iω)(hz + iω)α, (5f)

ΩG24 = +(kx − iky)(hz + k− iω)(hz − k− iω), (5g)

ΩG33 = +(hz − k + iω)(hz + k + iω)(hz − iω), (5h)

ΩG34 = 2i(kx − iky)(hz − iω)α, (5i)

ΩG44 = + 4(hz − iω)α2

+ (hz + iω)(hz − k− iω)(hz + k− iω), (5j)

Ω =
(
iω +

[
C − D

] 1
2

)(
iω −

[
C − D

] 1
2

)
×(

iω +
[
C +D

] 1
2

)(
iω −

[
C +D

] 1
2

)
, (5k)

C = h2z + k2 + 2α2, (5l)

D = 2

√
h2zk2 + k2α2 + α4. (5m)

The other components of the Green’s function can be inferred
from symmetry arguments. Substituting the Green’s function
components into Eq. (2b), we find the following expression
for the σxx(ω) and σxy(ω) components of dynamical optical
conductivity:

σxx(xy)(ω, µ) =
2π2e2

~

∫
dk

(2π)2

∫
dεn
2π
F(εn, ω, µ)×{

±A11(ε+n )A33(εn)±A22(ε+n )A44(εn)

+A33(ε+n )A11(εn) +A44(ε+n )A22(εn)

+A34(ε+n )A21(εn) +A43(ε+n )A12(εn)

±A12(ε+n )A43(εn)±A21(ε+n )A34(εn)
}
, (6)

where ε+n = εn + ω, and the definitions of Aij are given in
Appendix A. Here the symbol ± refers to the xx(xy) indices
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FIG. 2. (Color online). The components of the optical conductivity
as a function of frequency. (a) and (b) are the real part of σxx(ω)
and imaginary part of σyx(ω), respectively. The magnetization is
oriented along the z axis, i.e., h = (0, 0, hz). The chemical potential
is set to zero, µ = 0, and various values of magnetization strength
are considered: hz = 0, 8, 40, 80 meV. The strength of the SOC is
set to α = 20 meV.

(+(−)), respectively. It is evident that owing to the complex-
ities of these expressions, solutions can only be obtained nu-
merically.

In Fig. 2, the real part of the longitudinal optical conductiv-
ity σxx(ω) and imaginary part of the transverse optical con-
ductivity σyx(ω) are plotted as a function of the incident pho-
ton frequency ω. To this end, we have evaluated Eqs. (6), con-
sidering a situation where magnetization is oriented along the
z axis, perpendicular to the plane of graphene sheet, shown
in Fig. 1. For this particular system, the following relations
hold: σyy(ω) = σxx(ω) and σxy(ω) = −σyx(ω). The imagi-
nary and real parts of σxx(ω) and σyx(ω) can be obtained by
the Kramers-Kronig relationship. The components of the con-
ductivity are normalized by the conductance unit e2/2~. To
facilitate the analysis of the optical conductivity, the chem-
ical potential is set to zero, µ = 0. Nevertheless, later the
chemical potential shall be nonzero for illustrating its influ-
ence on the relevant material parameters. The strength of the
SOC is set to α = 20 meV, consistent with inferred values
from experiments [14], although our conclusions depend on
the chemical potential and magnetization strength relative to

α. To perform numerically stable calculations, we have used
the Lorentz model for the Dirac delta-functions with narrow
width, η = 0.01 meV. We have also set the temperature to
T = 0.01 K in all subsequent calculations.

When hz = 0 meV in Fig. 2, the transverse conductiv-
ity σyx(ω) vanishes. The longitudinal conductivity σxx(ω)
shows a weak Drude response at very low frequencies, ω → 0.
It is evident that σxx(ω) peaks at ω ≈ 40 meV and reaches the
universal background conductivity, σ0 ≡ e2/2~, at higher fre-
quencies. When the magnetization is increased to a nonzero
value, hz = 8 meV, two peaks in σyx(ω) emerge at ω ≈
20 meV and ω ≈ 50 meV, then decay at higher frequencies.
The peaks observed in σyx(ω) appear at the same frequencies
for the longitudinal σxx(ω), and the conductivity approaches
its background value for ω & 80 meV. Also, as seen, both the
longitudinal and transverse conductivities are zero for small
frequencies, 0 . ω . 8 meV. Increasing the magnetization to
larger values, e.g., hz = 40 meV and hz = 80 meV, both the
transverse and longitudinal components show that the mag-
nitude of the first peak increases considerably whereas the
second peak dampens out. The σxx(ω) component shows a
steep decline from ω ≈ 40 meV for both hz = 40 meV and
hz = 80 meV, before increasing again at ω ≈ 90 meV and
ω ≈ 170 meV , respectively. Increasing the frequency higher
results again in the longitudinal conductance leveling off at
e2/2~. Another important effect of the magnetization that can
play a role in practical device applications is that within the
low-frequency regime, the width of the zero conductance re-
gion can increase by increasing the magnetization strength to
a threshold value.

In order to gain further insight into the physical origins of
the optical conductivity results above, we plot the associated
band structures as a function of momentum k in Fig. 3. For
consistency, the values for the chemical potential and SOC
strength are the same as those in Fig. 2. In Figs. 3(a)-3(d),
the magnetization increases as hz = 0, 8, 40, 80 meV, re-
spectively. As seen in Fig. 3(a), in the presence of SOC, the
bands associated with different spins are split by the amount
2α = 40 meV at k = 0. Also, the valence band and con-
duction band just touch at k = 0 and E = 0. The latter
results in weak intraband transitions and a Drude response at
ω = 0 meV, as observed in Fig. 2(a). The interband tran-
sitions occur at energies ω & 40 meV (shown by the arrow
in Fig. 3(a)) and shows up in the conductivity (Fig. 2(a)) as
a peak at around ω ≈ 40 meV. At high enough energies,
the transition rate slows until finally reaching a constant rate
equivalent to the universal conductivity e2/2~. When the
magnetization is increased to hz = 8 meV [Fig. 3(b)], a small
energy gap (≈ 8 meV) opens up in the band structure at the
Fermi level, E = 0. There is also a slight shift upwards of the
second valence band. The interband transitions shown by the
small and large arrows are the origins of the two peaks in the
optical conductivity at approximately 16 meV and 50 meV, as
seen in Fig. 2. The small gap (≈ 16 meV) between the bottom
of the conduction band and the top of valence band prevents
any transitions, and hence results in zero conductivity for fre-
quencies less than ω . 16 meV [see Fig. 2].

Upon increasing the magnetization further to hz = 40 meV
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FIG. 3. (Color online). The band structure of graphene in the presence of SOC and magnetization plotted as a function of the normalized
momentum kÅ/π. The chemical potential is set to zero; µ = 0, and the strength of the SOC is fixed at α = 20 meV. The magnetization
is oriented along the z-axis and its magnitude increases (from left to right) with the following values (in meV): (a) hz = 0, (b) hz = 8, (c)
hz = 40, and (d) hz = 80.

[Fig. 3(c)], the band gap widens to approximately 35 meV,
and the conduction band around k = 0 acquires a dome-
like segment with its top at 40 meV from E = 0 meV. The
same feature occurs, but inverted, in the valence band. As
shown by the small and large arrows, two types of interband
transitions can be expected at ω ≈ 35 meV and ω ≈ 100
meV, respectively. These band structure transitions correlate
with discernible features in the optical conductivity shown in
Fig. 2. Finally, increasing the magnetization to hz = 80 meV
[Fig. 3(d)], results in a band structure with similar features to
those of hz = 40 meV shown in Fig. 3(c). Therefore, the as-
sociated optical conductivities are also similar. Another main
feature found in both components of the optical conductivity
is that when increasing hz , there is a considerable enhance-
ment of the first peak. This can be understood by considering
the corresponding band structures in Figs. 3(c) and 3(d), and
comparing to Figs. 3(a) and 3(b), respectively. The bottoms
of the valence and conduction bands become flattened and ex-
tended in Figs. 3(c) and 3(d), thus providing many more avail-
able states for interband transitions (as indicated by the small
arrows).

B. Handedness switching and dielectric response

As seen in Fig. 2, the interplay of Rashba SOC and a
magnetization perpendicular to the graphene film results in a
strongly modified longitudinal optical conductivity, and gen-
eration of a finite transverse conductivity. The corresponding
components of the permittivity tensor for graphene, ε1(ω), can

thus be expressed as:

ε1(ω) =

 εxx(ω) εxy(ω) 0
εyx(ω) εyy(ω) 0

0 0 1

 . (7)

In Fig. 3, the behavior of the diagonal and off-diagonal com-
ponents of ε1(ω), are shown as a function of frequency. A
representative set of parameter values are considered with the
magnetization strength set at 20 meV, and µ varies from 0-
24 meV. The chemical potential is controllable via a gate volt-
age, as shown in Fig. 1. As discussed earlier and illustrated
in, e.g., Fig. 4(c), for cases with µ = 0 and µ = 8 meV, the
Fermi energy resides inside the gap of the band structure, and
therefore only the interband transitions are allowed. For larger
values of the chemical potential, i.e., µ = 16, 20, 24 meV,
the intraband transitions are additionally allowed. The inter-
band transitions are responsible for the Drude-like response
at low frequencies in the longitudinal components of the di-
electric response, i.e., εxx,yy(ω). The Drude-like response to
an electromagnetic wave can be clearly seen in Fig. 4(a) and
Fig. 4(b) as ω → 0. Considering the previous analysis of
the components of the optical conductivity, which showed a
strong frequency dependence for finite values of hz , it is ev-
ident that the large variations in the permittivity components
are also strongly influenced by the presence of magnetization.
Moreover, the frequency of the first peaks in Fig. 2 is directly
related to the magnitude of the magnetization induced into
graphene. As shown below, the strong transverse dielectric
response seen in Figs. 4(c)-4(d), which reveals the presence
of an extrinsically-induced SOC in the graphene sheet (with
no extrinsic SOC, the components εxy(yx) vanish), is crucial
for circular dichroism and polarization control.

Employing the computed frequency-dependent permittivity
and conductivity tensors for various parameter sets, one now
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FIG. 4. Permittivity tensor components for the graphene sheet with
finite SOC and magnetization. Both the real and imaginary com-
ponents are shown for several different chemical potentials µ. The
Zeeman field is set to hz = 20 meV. From symmetry considerations:
εxy(ω) = −εyx(ω), the other off-diagonal permittivity components
can be deduced.

can easily study the absorption of EM waves from a hybrid
device containing magnetized spin orbit coupled graphene,
such as the layered configuration shown in Fig. 1. This sim-
ple device consists of graphene sheet adjacent to a dielectric
spacer layer with SOC (and possibly magnetization). The
substrate consists of a reflective ground plate, which can be
served by a metal, which will eventually be assumed to have
perfect conductivity. The electric field component of the nor-
mally incident EM wave in the vacuum region is polarized
in the xy plane, and we consider a circular polarization, so
that the incident EM field components E0i are out of phase,
i.e., E0i = (1,±i), for right-handed (−), or left-handed (+)
circular polarization. When determining how much of the in-
cident EM energy is absorbed by the structure in Fig. 1, we
invoke Maxwell’s equations. The equations, specific fields,
and boundary conditions used for the results presented in the
following can be found in Appendix B.

The fraction of energy that is absorbed by the system is de-
termined by the absorptanceA(ω): A(ω) = 1−T (ω)−R(ω),
where T (ω) is the transmittance, and R(ω) is the reflectance,
consistent with energy conservation. In determining the ab-
sorptance of the graphene system, we consider the time-
averaged Poynting vector in the direction perpendicular to the
interfaces (the z direction), S(ω)=<{E(ω)×H∗(ω)}/2.
We now take the limit of a metallic substrate, so there is no
transmission of EM fields, and T = 0, and the tangential elec-
tric field at the spacer/metal boundary vanishes. Upon insert-
ing the electric and magnetic fields for the vacuum region, we

find,

A(ω) = 1− |E0r(ω)|2

|E0i(ω)|2
. (8)

Here we have normalized energy relative to the incident plane
wave energy S0, where S0 = (1/η0)|E0i|2. The reflection
coefficients E0r are found upon using conditions (B9)-(B11).
To quantify the effect that graphene has on the handedness of
circularly polarized light, the quantity Ψ(ω) is introduced:

Ψ(ω) =
A−(ω)−A+(ω)

A+(ω) +A−(ω)
, (9)

which describes the amount of circular dichroism through the
difference in absorption of LH (+) and RH (−) circularly po-
larized EM waves. Therefore, Ψ(ω) > 0, indicates dominant
right-handed absorption, while Ψ(ω) < 0, indicates that left-
handed polarization tends to be absorbed more.

To evaluate the circular dichroism and handedness charac-
teristics of the device shown in Fig. 1, the thickness of the
spin orbit coupled insulator layer (the yellow layer in Fig. 1)
is set to a representative value of 5 µm, and the medium is
assumed non-dispersive. The latter assumption can be easily
achieved with a large band gap semiconductor alloy, involv-
ing heavy elements to support SOC as well. The CD factor,
Ψ(ω), is shown in Fig. 5 as a function of the frequency of
the incident EM wave. The legend shows the chemical poten-
tials that are considered, with µ ranging from 0 to 32 meV,
ensuring the most pertinent cases are shown. Additionally,
each figure in 5(a)-5(c) considers a different finite value of
the longitudinal magnetization hz , with hz = 8, 20, 40 meV,
respectively. Beginning with Fig. 5(a), the results illustrate
that at the charge neutrality point, µ = 0 and moderate mag-
netization strength, there is strong circular dichroism, with the
relative absorption favoring left-handed EM waves for a broad
range of frequencies (Ψ(ω) < 0). Increasing the chemical po-
tential to µ = 8 meV yields larger variations in Ψ(ω) and
a narrower frequency window for strong left-handed absorp-
tion. When the chemical potential is set to µ = 16 meV, Ψ(ω)
gets shifted upwards and oscillates about zero for frequencies
lower than ω(ω) . 50 meV, resulting in left and right hand-
edness switching as a function of frequency. Further increas-
ing µ & 20 meV, results in Ψ(ω) > 0 for ω . 45 meV. At
higher frequencies, Ψ(ω) < 0, and levels off towards unity
as εxy(ω) vanishes [see Fig. 4], with both left-handed and
right-handed polarizations absorbed equally. In Figs. 5(b) and
5(c), increasing the magnetization is shown to have a profound
effect on the gate-controlled handedness switching. This is
seen in Fig. 5(b), where hz = 20 meV, and the optical re-
sponse demonstrates an effectively larger circular dichroism
over a wider frequency range. The results show that the rel-
ative absorption of left handed and right handed circularly
polarized waves with these parameters can be manipulated
through variations in frequency and chemical potential. Dou-
bling the magnetization to hz = 40 meV [Fig. 5(c)], has a se-
vere impact on the effectiveness of the device for handedness-
switching of EM waves. Although at this larger magnetization
the structure now exhibits circular dichrosim over a broader
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range of frequencies, Ψ(ω) is always negative or zero, except
for the largest chemical potential, µ = 32 meV, where Ψ(ω)
is positive (RH dominant) for 0 ≤ ω . 60 meV. For all other
values of µ shown, the LH polarization state always dominates
(Ψ(ω) < 0).

To explicitly show the influence of magnetization on CD,
the Ψ(ω) factor against frequency for various values of hz is
plotted in Fig. 6. Two values of the chemical potential are
considered: (a) µ = 0, and (b) µ = 20 meV. As is clearly
seen in Fig. 6(a), increasing the magnetization does not induce
a sign change in Ψ(ω), and hence there is no handedness-
switching at the charge neutrality point, µ = 0. Nonethe-
less, there are strong variations in Ψ(ω) and a dominant LH
response over a frequency window that widens with increas-
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FIG. 5. The circular dichroism Ψ(ω) as a function of frequency.
Several out-of-plane Zeeman fields hz are considered (as shown).
Through variations in the gate voltage, the reflected EM energy can
exhibit dominant right-handed (positive curves) or left-handed (neg-
ative curves) behavior.
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FIG. 6. (Color online). The circular dichroism factor Ψ(ω) against
the frequency of the incident circularly polarized EM wave. A broad
range of magnetizations hz at two different values of chemical po-
tential are considered: µ = 0, 20 meV.

ing hz . Once the chemical potential is shifted away from
the neutrality point, e.g., µ = 20 meV, Fig. 6(b) illustrates
that now hz can induce handedness-switching. This switch-
ing is accessible for frequencies where ω . 50 meV and
magnetizations hz = 8, 16 meV. This trend has been found to
continue for larger chemical potentials, whereby manipulating
hz can increase the impact in calibrating and controlling the
handedness-switching (not shown). Another feature that can
be seen in Figs. 5 and 6 is the vanishing Ψ(ω) factor at specific
frequencies. This follows from Eq. (C1) and Eq. (C3), where
the reflectivity coefficients, |E±0rx|2 = |E±0ry|2 = 1 when
k2d = nπ (for n = 1, 2, . . .). This is equivalent to having
the spacer layer at the resonance width nλ/2, where destruc-
tive interference occurs from reflected waves at both edges of
the insulator layer (λ is the wavelength of light in the insula-
tor). This perfect reflectivity is most pronounced in Figs. 5(b)-
5(c), and Fig. 6. From the resonance condition above, Ψ(ω)
vanishes at ω (meV) ≈ 1240n/(2d

√
ε2) ≈ 60, 120, . . . (d is

given in microns). Therefore, these specific frequencies de-
pend solely on the material and geometrical characteristics of
the spacer layer, and independent of the dielectric response
of the magnetized spin-orbit coupled graphene. Controlling
the handedness of circularly polarized light with an external
field offers several interesting possibilities for device appli-
cations. Through extensive parameter sweeps, general rela-
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tionships between the magnetization, chemical potential and
frequency can be found at the crossover point, which can be
beneficial for device fabrication. Although, such an effort is
outside the scope of this paper, we defer this interesting topic
as a project for future works.

Note that there is no circular dichrosim when the trans-
verse components of the dielectric response are absent, i.e.,
εxy,yx(ω) = 0. Therefore, a nonzero CD factor reveals
important signatures involving the interplay of SOC and
magnetization. Since the chemical potential of graphene is
easily tunable by a gate voltage, the explored handedness-
switching also demonstrates the extrinsically-induced SOC
and magnetization in graphene. On the technological side, this
handedness-switching can be exploited for devising optoelec-
tronic applications including chemical and biological sensors,
where the corresponding polarization and frequency depen-
dent absorption signatures can be controlled externally, e.g.,
by application of a gate voltage or magnetic field. The well
defined peaks in the absorption signatures were shown to pro-
vide a way to characterize the extrinsic SOC without ambi-
guity, as evidenced in the handedness-switching phenomenon
and anomalous conductivity. Indeed, the magnitude of the
extrinsic SOC can be estimated by the peaks in Fig. 2, as
discussed above. If there is no magnetization, hz = 0, the
externally-induced anomalous conductivity and handedness-
switching disappears. Since the intrinsic SOC plays the same
role as hz , its magnitude can be revealed using the same char-
acterization techniques used above when the magnetization
was present.

IV. CONCLUSIONS

In summary, we have studied the frequency-dispersive op-
tical conductivity and associated dielectric response of mag-
netized graphene with Rashba spin orbit coupling (SOC). Our
results revealed that the strength and type of SOC can be un-
ambiguously concluded and estimated through measurements
of the frequency-dependence of the optical conductivity. The
band structure analysis illustrated that SOC and magnetiza-
tion can generate two well-separated peaks in the conductiv-
ity, thus determining the strength of the SOC and magneti-
zation. The transverse Hall conductivity, due to the inter-
play of magnetization and SOC, results in a nonzero circular
dichroism. Exploring the permittivity tensor and conductivity,
we studied the absorptance of a simple device, consisting of
magnetized spin-orbit coupled graphene on top of an insulator
layer and perfectly conducting metal substrate. Our findings
showed that both the magnetization and chemical potential
offer practical control mechanisms for handedness-switching
and circular dichroism effects, where there is tunable absorp-
tion of left-handed and right-handed circularly polarized light.
In addition, these findings offer a possible physical mecha-
nism for recent experiments [55]. Accordingly, the interaction
of graphene and a SiC substrate can be the source of SOC and
magnetism in these platforms.
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Appendix A: Green’s functions and definition of parameters

In this appendix, we present the variables defined in the
main text. Specifically, the variables Aij , i, j ≡ 1, 2, 3, 4 in
Eq. (6) are given by

A11(ω) =
1

4

[
δ(ω +K) + δ(ω −K) + δ(ω + L) + δ(ω − L)

]
− α2

4
√
h2zk2 + k2α2 + α4

[
δ(ω +K) + δ(ω −K)− δ(ω + L)

− δ(ω − L)
]

+
hz

2(K2 − L2)

[
K{δ(ω +K)− δ(ω −K)}

− L{δ(ω + L)− δ(ω − L)}
]
− h3z − hk2 + 4hα2

2KL(K2 − L2)

[
L{δ(ω +K)− δ(ω −K)} − K{δ(ω + L)− δ(ω − L)}

]
,

(A1)

A22(ω) =
1

4

[
δ(ω +K) + δ(ω −K) + δ(ω + L) + δ(ω − L)

]
+

α2

4
√
h2zk2 + k2α2 + α4

[
δ(ω +K) + δ(ω −K)− δ(ω + L)

− δ(ω − L)
]
− hz

2(K2 − L2)

[
K{δ(ω +K)− δ(ω −K)}

− L{δ(ω + L)− δ(ω − L)}
]

+
h3z − hk2

2KL(K2 − L2)

[
L{δ(ω +K)− δ(ω −K)} − K{δ(ω + L)− δ(ω − L)}

]
,

(A2)

A33(ω) =
1

4

[
δ(ω +K) + δ(ω −K) + δ(ω + L) + δ(ω − L)

]
+

α2

4
√
h2zk2 + k2α2 + α4

[
δ(ω +K) + δ(ω −K)− δ(ω + L)

− δ(ω − L)
]

+
hz

2(K2 − L2)

[
K{δ(ω +K)− δ(ω −K)}

− L{δ(ω + L)− δ(ω − L)}
]
− h3z − hk2

2KL(K2 − L2)

[
L{δ(ω +K)− δ(ω −K)} − K{δ(ω + L)− δ(ω − L)}

]
,

(A3)
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A44(ω) =
1

4

[
δ(ω +K) + δ(ω −K) + δ(ω + L) + δ(ω − L)

]
− α2

4
√
h2zk2 + k2α2 + α4

[
δ(ω +K) + δ(ω −K)− δ(ω + L)

− δ(ω − L)
]
− hz

2(K2 − L2)

[
K{δ(ω +K)− δ(ω −K)}

− L{δ(ω + L)− δ(ω − L)}
]

+
h3z − hk2 + 4hα2

2KL(K2 − L2)

[
L{δ(ω +K)− δ(ω −K)} − K{δ(ω + L)− δ(ω − L)}

]
,

(A4)

A21(ω) =
ihz(kx + iky)

KL(K2 − L2)

[
L{δ(ω +K)− δ(ω −K)}

− K{δ(ω + L)− δ(ω − L)}
]

+
i(kx + iky)

4
√
h2zk2 + k2α2 + α4

[
δ(ω +K) + δ(ω −K)− δ(ω + L)− δ(ω − L)

]
, (A5)

A34(ω) =
ihzα(kx − iky)

KL(K2 − L2)

[
L{δ(ω +K)− δ(ω −K)}

− K{δ(ω + L)− δ(ω − L)}
]
− iα(kx − iky)

4
√
h2zk2 + k2α2 + α4

[
δ(ω +K) + δ(ω −K)− δ(ω + L)− δ(ω − L)

]
, (A6)

A12(ω) = A∗21(ω), (A7)

A43(ω) = A∗34(ω), (A8)

K =
[
h2z + k2 + 2α2 + 2

√
h2zk2 + k2α2 + α4

] 1
2

, (A9)

L =
[
h2z + k2 + 2α2 − 2

√
h2zk2 + k2α2 + α4

] 1
2

. (A10)

The Dirac delta function is denoted by δ(X). Here we
have considered h = (0, 0, hz) to simplify the expressions.
When all three components of the magnetization are nonzero
and SOC is present, the resultant expressions become very
lengthy, and thus they are not presented here.

If we set spin orbit coupling to zero, i.e., α = 0, and all
three components of the Zeeman field can be nonzero, i.e.,
h = (hx, hy, hz), the Green’s functions reduce to

G11(ω,k,h) =
1

2

{ 1

iω − h + k
+

1

iω − h− k

}
, (A11a)

G22(ω,k,h) =
1

2

{ 1

iω + h− k
+

1

iω + h + k

}
, (A11b)

G33 = G11, (A11c)

G44 = G22. (A11d)

Substituting these Green’s functions (A11a)-(A11d) into
Eq. (3), we find,

σxx(ω, µ) =
2π2e2

~

∫
dk

(2π)2

∫
dεn
2π
F(εn, ω, µ)×{[

δ(ε+n + k−) + δ(ε+n − k+)
][
δ(εn + k−) + δ(εn − k+)

]
+[

δ(ε+n − k−) + δ(ε+n + k+)
][
δ(εn − k−) + δ(εn + k+)

]}
.

(A12)

in which k± = k ± h. Note that in the absence of SOC,
the off-diagonal Green’s functions play no role in the optical
conductivity and the transverse Hall components σxy,yx(ω)
vanish altogether.

Appendix B: Maxwell’s equation, EM fields, and boundary
conditions

Assuming a harmonic time dependence exp(−iωt) for the
EM field, we have:

∇×En = iωµ0 ¯̄µn·Hn, (B1a)
∇×Hn = −iωε0 ¯̄εn·En, (B1b)

where the integer n = 0, 1, 2, 3 denotes the region (0 for the
vacuum, 1 for graphene, 2 for the insulator layer, and 3 for the
metallic region). Combining Eqs. (B1), we obtain,

∇×
(
¯̄µ−1n ·∇×En

)
= k20

(
¯̄εn ·En

)
, (B2a)

∇×
(
¯̄ε−1n ·∇×Hn

)
= k20

(
¯̄µn ·Hn

)
, (B2b)

where the free space wavenumber is k0 = ω/c. For the non-
magnetic regions, we have ¯̄µn = ¯̄I . For the relative permit-
tivity tensors, ¯̄ε0 = ¯̄I in the upper vacuum region, while the
spacer layer is an isotropic dielectric with ¯̄ε2 = ε2

¯̄I . The bot-
tom region has ¯̄ε3 = ε3

¯̄I (see Fig. 1).
For a normally incident EM wave, the electric field is writ-

ten, E0 = Ei + Er, where the incident and reflected fields
are expressed as, Ei = E0ie

ik0z , and Er = E0re
−ik0z , re-

spectively. The spin-orbit coupling and static magnetic field
generate off-diagonal components to the permittivity tensor
in the graphene film. The reflected electric field has compo-
nents, E0r = (E0rx, E0ry). Similarly, within the dielectric
layer, the electric field is expressed as a superposition of up-
ward and downward propagating waves: E2 = Eu + Ed,
where Eu = E2ue

−ik2z , Ed = E2de
ik2z , and k2 = k0

√
ε2.

The transmitted field in the region below the spacer layer is
Et = E3te

ik3z , where k3 = k0
√
ε3 (we later take the limit
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of a perfect metal in region 3). From Eq. (B1b), the corre-
sponding magnetic field in the vacuum region can be written
H0 = Hi +Hr, with:

Hi = −(Eiy/η0)x̂, (B3a)
Hr = (1/η0)(+Eryx̂− Erxŷ), (B3b)
Ht = (1/η3)(−Etyx̂+ Etxŷ), (B3c)

where η0 =
√
µ0/ε0 is the impedance of free space. The

magnetic field in the dielectric region can be decomposed as
H2 = Hu +Hd, where,

Hu = (1/η2)(+Euyx̂− Euxŷ), (B4a)
Hd = (1/η2)(−Edyx̂+ Edxŷ). (B4b)

Here η2 = η0/
√
ε2 is the impedance of the dielectric layer,

and η3 = η0/
√
ε3 for the metal region.

The presence of graphene enters in the boundary condition
for the tangential components of the magnetic field by writing,

n̂× (H0(ω)−H2(ω)) = J(ω), (B5)

where n̂ is the normal to the vacuum/graphene interface, and
J is the current density at the interface. Thus, we have

(H0y −H2y)|z=0 = (σxxE0x + σxyE0y)|z=0, (B6)
(H2x −H0x)|z=0 = (σyxE0x + σyyE0y)|z=0, (B7)

where we used Ohm’s Law to connect the surface current
density (Jx(ω), Jy(ω)) to the electric field: J(ω)=¯̄σE(ω).
Note that one can also consider the graphene layer as a finite
sized slab, like the spacer layer, and using the dielectric re-
sponse tensor discussed earlier, solve for the fields within the

graphene layer (for continuity, the calculations are not shown
here). We have found that this approach leads to equivalent
results, but treating the graphene layer as a current sheet with
infinitesimal thickness leads to simpler expressions. Hence,
we follow the latter approach. We also have for the electric
field at the graphene interface:

n̂× (E0(ω)−E2(ω)) = 0. (B8)

Upon matching the tangential E(ω) fields at the vac-
uum/graphene and dielectric/substrate interfaces, we have the
following conditions:

E0i +E0r −E2u −E2d = 0, (B9)

E2ue
−ik2d +E2de

ik2d −E3te
ik3d = 0, (B10)

while matching the tangential H(ω) fields at the dielec-
tric/substrate interface gives:

E3te
ik3d

η3
+
E2ue

−ik2d

η2
− E2de

ik2d

η2
= 0. (B11)

Appendix C: Calculation of electromagnetic field coefficients

In the limit of a perfectly conducting substrate, the elec-
tric field in the spacer region can be written simply as,
E2 = (E2x, E2y) sin(k2(z − d)). The coefficients for the
electromagnetic fields in the spacer and vacuum regions are
found by implementation of the appropriate boundary condi-
tions discussed above. We subsequently find the respective
x-components of the reflection coefficient, and electric field
component in the spacer layer to be,

E±0rx =

[
η0(±2iσxy − η0σxyσyx + η0σ

2
‖)− 1

]
sin2(k2d) + iκ2η0σ‖ sin(2k2d)− κ22 cos2(k2d)

κ22 cos2(k2d) +
[
η0(η0σxyσyx − 2σ‖ − η0σ2

‖)− 1
]

sin2(k2d)− iκ2(1 + η0σ‖) sin(2k2d)
, (C1)

and,

E±2x =
2
[
1 + η0(σ‖ ∓ iσxy) + iκ2 cot(k2d)

]
csc(k2d)

η0(η0σxyσyx − 2σ‖ − η0σ2
‖)− 1 + κ2 cot(k2d)

[
κ2 cot(k2d)− 2i(1 + η0σ‖)

] . (C2)

Here we have defined σ‖ ≡ σxx = σyy. The reflection coef- ficient for the incident electric field in the y-direction is found
through the relationship:
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E±0ry

E±0rx
= ±i− 2η0(σxy + σyx) sin2(k2d)

κ22 cos2(k2d) +
[
1 + η0(η0σxyσyx ∓ 2iσxy − η0σ2

‖)
]

sin2(k2d)− iκ2η0σ‖ sin(2k2d)
. (C3)

Similarly, the electric field coefficients for the spacer region
are related via,

E±2x
E±2y

= ±i− η0(σxy + σyx)

1 + η0(σ‖ ∓ iσxy) + iκ2 cot(k2d)
. (C4)

As the expressions above show, the crucial difference in the
coefficients for the RH and LH polarizations, is the iσxy
term arising from the SOC and Zeeman field induced in the
graphene layer.
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