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Recent Raman scattering experiments have revealed a “quasi-elastic peak” in FeSe1−xSx near an
Ising-nematic quantum critical point (QCP) [Zhang et al, PNAS 118 (20), 2021]. Notably, the peak
occurs at sub-temperature frequencies, and softens as Tα when temperature is decreased toward
the QCP, with α > 1. This temperature dependence is inconsistent with an impurity scattering
scenario, and suggests that quantum critical fluctuations play an important role. In this work,we
incorporate these effects in the framework of a memory matrix approach. The quasi-elastic peak is
associated with the relaxation of an Ising-nematic deformation of the Fermi surface. We identify the
dynamical scattering rate τ−1 of this deformation as the product of the quasi-elastic peak frequency
Γ and the Ising-nematic thermodynamic susceptibility χ. Over a broad temperature regime, we
find that τ−1(T ) exhibits a quasi-linear dependence on temperature, in qualitative agreement with
experiments. This behavior reflects a crossover from quantum critical scaling to a regime where the
lifetime is governed by scattering from quasi-elastic thermal fluctuations. At frequencies larger than
the temperature, we find that the Raman response is proportional to ω1/3, consistently with earlier
theoretical predictions.

I. INTRODUCTION

Many unconventional superconductors, such as the
iron-based superconductors and hole-doped cuprates,
host an Ising-nematic phase where the discrete crystalline
rotational symmetry (C4) is spontaneously broken3–8.
Upon doping or pressure, the nematic transition tem-
perature is suppressed to zero, pointing to a putative
Ising-nematic quantum critical point (QCP), where the
nematic susceptibility diverges9–11. Interestingly, close to
the QCP, novel non-Fermi liquid behaviors have been ob-
served, while the critical temperatures for superconduc-
tivity are also often enhanced. These observations point
to the crucial role played by the critical Ising-nematic
fluctuations in such systems12–24.

Due to the presence of gapless quasi-particles near the
Fermi surface, the dynamical properties of the critical
fluctuations are strongly modified compared to those of
an insulator. In the quasi-static and long wavelength
limit (ω � |vFq|) the dynamics is governed by “Lan-
dau damping”, i.e., the decay of critical fluctuations into
collective electron-hole excitations near the Fermi sur-
face. The purely dynamical limit (ω � |vFq|) is much
less studied. Raman scattering experiments in FeSe1-xSx,
which probe the dynamics in the latter regime, reveal1 a
pronounced quasi-elastic peak (QEP, see Fig. 1) near the
Ising-nematic phase transition. The peak height grows
proportionally to the thermodynamic nematic suscepti-
bility, and displays a Curie-Weiss behavior as a function
of temperature. More interestingly, the peak occurs at a
frequency smaller than temperature, and softens as Tα

where α > 1.

Theoretically, Raman response in the vicinity of an
Ising-nematic phase has been studied previously. For
example, Ref.25 showed that a QEP can occur in the
presence of impurity scattering. Ref.26 expanded the
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FIG. 1. Schematic plot of the imaginary part of the dynamical
nematic susceptibility in the vicinity of an Ising-nematic QCP,
featuring a low-frequency quasi-elastic peak, and ω1/3 depen-
dence at frequencies higher than temperature. The Fermi
energy EF is taken to be much larger than temperature.

work by generalizing to a two-orbital model, and no-
tably showed that a depletion of low-frequency Raman
spectral weight inside the Ising-nematic phase can be
attributed to orbital polarization. However, both have
concluded that the QEP frequency scales as the inverse
Ising-nematic thermodynamic susceptibility on the dis-
ordered side, inconsistent with the experimental findings
alluded to earlier. On the other hand, two recent theoret-
ical works2,27 studied the nematic dynamical response at
zero temperature in the presence electron-electron scat-
tering from critical fluctuations, and predicted an ω1/3

behavior in the low frequency range, as illustrated by
the black dashed line in Figure 1. However, these stud-
ies inevitably missed the QEP feature, which is a finite-
temperature phenomenon occurring at ω < T .

In this work, we present a detailed study of the dy-
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namical nematic suscetibility Dnem(q ≈ 0, ω) at finite
temperatures when a two-dimensional electronic system
is driven toward an Ising-nematic QCP. Following earlier
works24,28, in a broad finite-temperature regime of ex-
perimental interest, the thermally excited electrons are
predominantly coherent (“coherent electron regime”) and
the self-energy effects can be neglected. This is the ki-
netic regime where the electron-electron interaction ef-
fects are incorporated into the Landau Fermi liquid pa-
rameters and the collision integral. We use a memory
matrix approach developed recently28 to formulate such
a kinetic theory. It is an alternative method to the Kubo
linear response theory, and is excellent at dealing with
systems which exhibit a clear separation of timescales29.

The main result is sketched in Fig. 1. We argue that
the QEP reflects the slow relaxation of an Ising-nematic
deformation of the Fermi surface, analogous to the Drude
peak in the optical conductivity (which is associated with
the slow decay of the current). The frequency of QEP,
Γ(T ), depends on both dynamical and thermodynamic
properties. The frequency Γ(T ) vanishes at the onset of
the Ising-nematic order, where an Ising-nematic defor-
mation of the Fermi surface becomes energetically favor-
able. This is reflected as Γ(T ) ∝ χ−1

Q̂,Q̂
, the inverse Ising-

nematic susceptibility. The Ising-nematic deformation of
the Fermi surface is relaxed by a combination of impu-
rity scattering and the long wavelength quantum critical
fluctuations (with ω � |vFq|). As we shall see, it is
natural to define the Ising-nematic dynamical scattering
rate as τ−1(T ) ≡ Γ(T )χQ̂,Q̂(T ). Whereas in the impu-

rity scattering dominated regime, τ−1(T ) is temperature
independent25,26, in the regime governed by critical fluc-
tuations, it reflects a “momentum diffusion” process due
to small-angle scattering. Finally, at frequencies higher
than the temperature, we find that the dynamical sus-
ceptibility scales as ω1/3, consistently with earlier work2.

The content is organized as follows: In Sec. II we
briefly introduce the memory matrix approach. In Sec.
III we discuss a simple model describing the metallic
Ising-nematic quantum critical phenomena, and justify
the coherent electron regime at a broad finite tempera-
ture window above the quantum critical point. In Sec.
IV we perform a calculation of the Raman susceptibility
using the memory matrix approach, and make compar-
isons with recent experimental findings.

II. MEMORY MATRIX APPROACH

We begin with a brief introduction to the memory
matrix approach, following the discussions laid out in
Refs.29,30. It is an exact reformulation of the Kubo lin-
ear response theory, and is extremely powerful for study-
ing the low-frequency dynamics for quantum many body
systems where there is a separation of timescales.

We define a dynamical response function for any two

Hermitian operators A and B:

CAB(t) = T

ˆ β

0

dτ〈(A(t)− 〈A〉)(B(iτ)− 〈B〉)〉. (1)

Here β = 1/T is inverse temperature, and 〈. . . 〉 denotes
thermal averaging. The time evolution of the Hermitian
operators in the Heisenberg picture is given by:

A(t− iτ) = eiH(t−iτ)A(0)e−iH(t−iτ)

≡ eiL(t−iτ)A(0),
(2)

where L ≡ [H, ·] is the quantum Liouvillian operator.
The dynamical response function is related to the usual
definitions of thermodynamic susceptibilties χAB and re-
tarded response functions GRAB(t) as follows:

χAB =
1

T
CAB(t = 0), (3)

GRAB(t) = − 1

T
Θ(t)∂tCAB(t). (4)

It is convenient to rewrite Eq. 1 as the inner product
of two vectors:

CAB(t) ≡ (A(t)|B) = (A|e−iLt|B), (5)

where we have introduced an “operator Hilbert space”:
H = {|Ai), i = 1, . . . }. It is straightforward to check
that:

P ≡ 1

T

∑
ij

|Ai)χ−1
AiAj

(Aj |, Q = I − P (6)

satisfy the definitions of projection operators. P|Ai) =
|Ai) projects onto the subset of operator manifold H,
whereas Q|Ai) = 0 projects to the exterior.

The dynamical response function CAB(t) can be in-
terpreted as a matrix element of the super-operator
Ĉ(t) ≡ e−iLt. Below we present a reformulation of the
super-operator with respect to H. We define a Laplace
transform:

Ĉ(z) =

ˆ ∞
0

dteiztĈ(t) =
i

z − L. (7)

Here z is defined in the upper half of the complex plane.
The expression can be equivalently written as follows:(
z − PLP −PLQ
−QLP z −QLQ

)
·
(
PĈP PĈQ
QĈP QĈQ

)
=

(
iP 0
0 iQ

)
.

(8)

As a result, the matrix elements of Ĉ projected on to the
operator subspace P is given by:

(Ai|Ĉ(z)|Aj) = T

[
χ̂

1

N̂ + M̂(z)− izχ̂
χ̂

]
ij

(9)
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where we have defined :

χ̂ij ≡
1

T
(Ai|Aj), (10)

N̂ij ≡
i

T
(Ai|L|Aj), (11)

M̂ij(z) ≡
i

T
(Ai|LQ

1

z −QLQQL|Aj). (12)

Eq. (9) is the memory matrix formalism for dynamical
response functions. So far the expressions are exact, and
we have not made assumptions about slow and fast op-
erators. If we treat L|Ai) ∼ O(h) as a small parameter
(i.e., P projects onto the “slow” operator Hiblert space),
we have:

M̂ij(z) ≈
1

T
(Ȧi|Ĉ(z)|Ȧj) +O(h3), (13)

where Ȧi ≡ iL|Ai). By invoking an assumption about the
Hilbert space of slow operators, the dynamical response
functions can be calculated with a knowledge of {N̂ , χ̂}
as well as a perturbative treatment of the memory matrix
M̂(z).

III. METALLIC ISING-NEMATIC QUANTUM
CRITICAL PHENOMENA

To set the stage we consider a simple boson-fermion
model in two dimensions that realizes an Ising-nematic
QCP, given by the action:

S =

ˆ 1/T

0

dτ

[∑
kσ

c†kσ(∂τ + εk)ckσ +
λ√
N

∑
q

φqQ̂−q

]

+

ˆ 1/T

0

dτ
∑
q

1

2

[
1 + (qξ0)2

]
|φq|2.

(14)

Here ckσ annihilates an electron with momentum k and
spin σ. N = 2 is the number of spin components
(below, we shall generalize the problem to an arbi-
trary N). For simplicity we consider a parabolic dis-
persion εk = |k|2/2m − µ. The bosonic field φq rep-
resents the Ising-nematic fluctuations. The bare ne-
matic propagator is parametrized by the bare correlation
length ξ0. φ couples linearly to the fermionic bilinear

Q̂−q =
∑

kσ ϕk,k+qc
†
kσck+qσ, with a coupling strength λ.

ϕk,k+q is the Ising-nematic form factor that changes sign
under 90-degree in-plane rotation. For simplicity we have
used the definition ϕk,k′ ≡ (cos 2θk + cos 2θk′)/2, where
θ is the angle with respect to the kx-axis. Note that λ2

has unit of energy. We consider an electronically driven
nematic QCP due to the coupling term, and set the
bare correlation length ξ0 = k−1

F , the Fermi wavenumber.
This is a strong coupling instability λ2

c ∝ EF analogous
to the Stoner instability for ferromagnetism.

The properties of low-energy excitations near the QCP
have been studied extensively in the literature, and here

we merely quote the results. The long wavelength φ fluc-
tuations gain dynamics via Landau damping. In the limit
ω < |vFq| � EF , it is described by the following propa-
gator:

D−1(q, ω) ≈ r(T ) + (qξ0)2 − iγqω, (15)

where γq ∝ γ kFq cos 2θq is the Landau-damping coeffi-

cient. A one-loop approximation gives γ = 1
2π

λ2

(mvF )2

(the approximation is formally justified over a finite range
of energies in the large N limit). Within the same ap-
proximation, the renormalized mass satisfies r(T ) ∝ T 2.
However, it has been shown from both field theoretical
methods31 and numerical simulations32 that r(T ) ∝ T in-
stead (up to a log T correction). Throughout this paper,
we will assume r(T ) = T without a fully self-consistent
calculation, while keeping the one-loop form for the Lan-
dau damping coefficient.

The feedback of the critical fluctuations on single-
electron properties is captured by a self-energy term:
Σ(k, ω) ∝ iEF

N |γω|2/3 cos2 2θk. The self-energy term be-
comes dominant in the hot regions below an energy scale
ΩNFL ∝ λ4E−1

F N−3, defined as Σ(ΩNFL) = ΩNFL. Be-
low this energy scale, the naive large N approximation
breaks down15. The strong dependence on the fermion
flavor number suggests that the non-Fermi liquid scale
can be parametrically suppressed by going to the large-
N limit28,33. This will be assumed to be true throughout
this paper, and the physics below the non-Fermi liquid
scale is left to future studies.

Although our results are obtained within a simple one-
band electronic model described in Eq. (14), the qualita-
tive results on the Raman response due to quantum crit-
ical Ising nematic fluctuations — in particular its tem-
perature dependence, remain unchanged for more realis-
tic models. A two pocket model analysis is carried out
in Appendix A for comparison.

IV. DYNAMICAL RAMAN RESPONSE IN
COHERENT ELECTRON REGIME

In the coherent electron regime (ΩNFL � T � EF )
the dynamical properties can be described using a kinetic
equation approach, where the effects of critical fluctua-
tions are incorporated into Fermi liquid parameters and
the collision integral. In an earlier work28, we have shown
that the kinetic equation can be derived microscopically
using the memory matrix formalism discussed in the pre-
vious section29,34, where we treat the electron occupation

numbers in the momentum space {n̂kσ ≡ c†kσckσ} as the
Hilbert space of slow operators.

The dynamical nematic susceptibility is defined via:

Dnem(ω) = i

ˆ ∞
0

dt eiωt〈
[
Q̂(t), Q̂(0)

]
〉, (16)

where Q̂ ≡ Q̂q=0. Following Eq. (4), it is related to the
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dynamical response function Eq. (1) via:

Dnem(ω) = χQ̂,Q̂ +
iω

T
CQ̂,Q̂(ω). (17)

where

CQ̂,Q̂(ω)

T
=

∑
kσ;k′σ′

χ̂Q̂,n̂kσ

[
1

M̂(ω)− iωχ̂

]
n̂kσ,n̂k′σ′

χ̂n̂k′σ′ ,Q̂
.

(18)

The non-frequency dependent part N̂ = (nkσ|ṅk′σ′) = 0
due to time reversal and inversion symmetry. The mem-
ory matrix M̂ is calculated as:

M̂n̂kσ,n̂k′σ′ (ω) ≈ 1

iω

[
GR˙̂nkσ, ˙̂nk′σ′

(ω)−GR˙̂nkσ, ˙̂nk′σ′
(0)
]
,

(19)

where we have defined ˙̂nkσ = i[H, n̂kσ], and H is the
Hamiltonian that corresponds to the action in Eq. (14).

In our system, ˙̂nkσ is given by:

˙̂nkσ =
iλ√
N

∑
q

φq

(
ϕk,k−qc

†
kσck−qσ − ϕk,k+qc

†
k+qσckσ

)
.

(20)
The connection of Eq. (17) to a kinetic equation is

made by identifying the memory matrix as the linearized
collision integral, and the thermodynamic susceptibilities
as the Fermi liquid parameters28.

A. Quasi-elastic Peak

To see that Dnem(ω) contains a QEP, we treat for sim-

plicity Q̂ as the only slow operator (a more rigorous treat-
ment will follow). We arrive at a memory function ex-
pression:

Dnem(ω) ≈
MQ̂,Q̂(ω)χQ̂,Q̂

MQ̂,Q̂(ω)− iωχQ̂,Q̂
. (21)

We write the memory function as MQ̂,Q̂(ω) = M ′(ω) +

iM ′′(ω). At low frequencies and finite temperatures, the
real part can be approximated by its ω → 0 value, which
vanishes as a power law of temperature28. The imagi-
nary part is approximately linear in frequency, and renor-
malizes the strength of the two-particle response. This
renormalization is non-singular and subleading in 1/N ,
and hence we neglect it. As a result, ImDnem(ω) contains
a low-frequency peak at ω ≈M ′

Q̂,Q̂
(ω = 0)/χQ̂,Q̂, with a

peak height of χQ̂,Q̂/2.

B. Diagrammatic calculation of χ̂ and M̂

We perform a diagrammatic calculation of both the
memory matrix and the thermodynamic susceptibility to
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FIG. 2. Feynman diagrams for the thermodynamic suscepti-
bility χn̂k,n̂k′ . The double-wiggly line represents the dressed
propagator for nematic fluctuations.

<latexit sha1_base64="7jYDddG4ST6MLtRbUdLJmuyIMN8="></latexit>

<latexit sha1_base64="8ajpYqP6pOcMeVKy/SqIAQ+dt8s=">AAACBXicbZDLSgMxFIYz9VbrbdSlLoJFEJQyI0W7LLhxWcFeoB1KJs20oUlmTDJCGWbjxldx40IRt76DO9/GTDuCtv4Q+PjPOeSc348YVdpxvqzC0vLK6lpxvbSxubW9Y+/utVQYS0yaOGSh7PhIEUYFaWqqGelEkiDuM9L2x1dZvX1PpKKhuNWTiHgcDQUNKEbaWH37sMeRHvlBMk5Pf/AuPespOuSob5edijMVXAQ3hzLI1ejbn71BiGNOhMYMKdV1nUh7CZKaYkbSUi9WJEJ4jIaka1AgTpSXTK9I4bFxBjAIpXlCw6n7eyJBXKkJ901ntqiar2Xmf7VurIOal1ARxZoIPPsoiBnUIcwigQMqCdZsYgBhSc2uEI+QRFib4EomBHf+5EVonVfci0r1plqu1/I4iuAAHIET4IJLUAfXoAGaAIMH8ARewKv1aD1bb9b7rLVg5TP74I+sj28Xh5ju</latexit>

k + q,�

<latexit sha1_base64="UttXTk4jmnnu4+Eepgg+EguQK4E=">AAAB+nicbVDLSsNAFL3xWesr1aWbwSK4kJJI0S4LblxWsA9oQplMJ+3QySTMTJQS+yluXCji1i9x5984abPQ1gMDh3Pu5Z45QcKZ0o7zba2tb2xubZd2yrt7+weHduWoo+JUEtomMY9lL8CKciZoWzPNaS+RFEcBp91gcpP73QcqFYvFvZ4m1I/wSLCQEayNNLArXoT1OAizyezCU2wU4YFddWrOHGiVuAWpQoHWwP7yhjFJIyo04Vipvusk2s+w1IxwOit7qaIJJhM8on1DBY6o8rN59Bk6M8oQhbE0T2g0V39vZDhSahoFZjIPqpa9XPzP66c6bPgZE0mqqSCLQ2HKkY5R3gMaMkmJ5lNDMJHMZEVkjCUm2rRVNiW4y19eJZ3LmntVq9/Vq81GUUcJTuAUzsGFa2jCLbSgDQQe4Rle4c16sl6sd+tjMbpmFTvH8AfW5w945pQe</latexit>

k,�

<latexit sha1_base64="KlBpVh+ZjfojjUhe61QnjCb71B0="></latexit>

�p
N

'k,k+q

<latexit sha1_base64="gCvjE4vHNpiijz7kvVipXGwVgyg=">AAAB8XicbVDLSgMxFL1TX7W+qi7dBIvgqsyIaJcFNy4r2Ae2pWTSO21oJjMmGaEM/Qs3LhRx69+482/MtLPQ1gOBwzn3knOPHwuujet+O4W19Y3NreJ2aWd3b/+gfHjU0lGiGDZZJCLV8alGwSU2DTcCO7FCGvoC2/7kJvPbT6g0j+S9mcbYD+lI8oAzaqz00AupGftB+jgblCtu1Z2DrBIvJxXI0RiUv3rDiCUhSsME1brrubHpp1QZzgTOSr1EY0zZhI6wa6mkIep+Ok88I2dWGZIgUvZJQ+bq742UhlpPQ99OZgn1speJ/3ndxAS1fsplnBiUbPFRkAhiIpKdT4ZcITNiagllitushI2poszYkkq2BG/55FXSuqh6V9XLu8tKvZbXUYQTOIVz8OAa6nALDWgCAwnP8ApvjnZenHfnYzFacPKdY/gD5/MH8oKRFA==</latexit>q

<latexit sha1_base64="uh+EF+d5KBHnUB9jJNME7Pls2cw="></latexit>

<latexit sha1_base64="7o30/mMCspBV0D9+VFlMIN3DCRw=">AAAB8XicdVDLSsNAFL2pr1pfVZduBovgKiQ1tHVXcOOygn1gG8pkOmmHTiZhZiKU0L9w40IRt/6NO//GSVtBRQ8MHM65lzn3BAlnSjvOh1VYW9/Y3Cpul3Z29/YPyodHHRWnktA2iXksewFWlDNB25ppTnuJpDgKOO0G06vc795TqVgsbvUsoX6Ex4KFjGBtpLtBhPUkCLPpfFiuOPZlo1b1asixHafuVt2cVOvehYdco+SowAqtYfl9MIpJGlGhCcdK9V0n0X6GpWaE03lpkCqaYDLFY9o3VOCIKj9bJJ6jM6OMUBhL84RGC/X7RoYjpWZRYCbzhOq3l4t/ef1Uhw0/YyJJNRVk+VGYcqRjlJ+PRkxSovnMEEwkM1kRmWCJiTYllUwJX5ei/0mnars127vxKs3Gqo4inMApnIMLdWjCNbSgDQQEPMATPFvKerRerNflaMFa7RzDD1hvn0mCkVA=</latexit>

k

<latexit sha1_base64="Mb88mwCm5PIUjqGtPg5fNKL7uis=">AAAB8nicdVDLSgMxFM3UV62vqks3wSK6GmbGoa27ghuXFewDpkPJpJk2NJMMSUYoQz/DjQtF3Po17vwbM20FFT0QOJxzLzn3RCmjSjvOh1VaW9/Y3CpvV3Z29/YPqodHXSUyiUkHCyZkP0KKMMpJR1PNSD+VBCURI71oel34vXsiFRX8Ts9SEiZozGlMMdJGCgYJ0pMozqfz82G15thXzbrn16FjO07D9dyCeA3/0oeuUQrUwArtYfV9MBI4SwjXmCGlAtdJdZgjqSlmZF4ZZIqkCE/RmASGcpQQFeaLyHN4ZpQRjIU0j2u4UL9v5ChRapZEZrKIqH57hfiXF2Q6boY55WmmCcfLj+KMQS1gcT8cUUmwZjNDEJbUZIV4giTC2rRUMSV8XQr/J13Pduu2f+vXWs1VHWVwAk7BBXBBA7TADWiDDsBAgAfwBJ4tbT1aL9brcrRkrXaOwQ9Yb5+txZGB</latexit>

k0

<latexit sha1_base64="AhZCEUntxXrfMh7wZNFH8PZ29Xs="></latexit>

<latexit sha1_base64="7o30/mMCspBV0D9+VFlMIN3DCRw=">AAAB8XicdVDLSsNAFL2pr1pfVZduBovgKiQ1tHVXcOOygn1gG8pkOmmHTiZhZiKU0L9w40IRt/6NO//GSVtBRQ8MHM65lzn3BAlnSjvOh1VYW9/Y3Cpul3Z29/YPyodHHRWnktA2iXksewFWlDNB25ppTnuJpDgKOO0G06vc795TqVgsbvUsoX6Ex4KFjGBtpLtBhPUkCLPpfFiuOPZlo1b1asixHafuVt2cVOvehYdco+SowAqtYfl9MIpJGlGhCcdK9V0n0X6GpWaE03lpkCqaYDLFY9o3VOCIKj9bJJ6jM6OMUBhL84RGC/X7RoYjpWZRYCbzhOq3l4t/ef1Uhw0/YyJJNRVk+VGYcqRjlJ+PRkxSovnMEEwkM1kRmWCJiTYllUwJX5ei/0mnars127vxKs3Gqo4inMApnIMLdWjCNbSgDQQEPMATPFvKerRerNflaMFa7RzDD1hvn0mCkVA=</latexit>

k

<latexit sha1_base64="Mb88mwCm5PIUjqGtPg5fNKL7uis=">AAAB8nicdVDLSgMxFM3UV62vqks3wSK6GmbGoa27ghuXFewDpkPJpJk2NJMMSUYoQz/DjQtF3Po17vwbM20FFT0QOJxzLzn3RCmjSjvOh1VaW9/Y3CpvV3Z29/YPqodHXSUyiUkHCyZkP0KKMMpJR1PNSD+VBCURI71oel34vXsiFRX8Ts9SEiZozGlMMdJGCgYJ0pMozqfz82G15thXzbrn16FjO07D9dyCeA3/0oeuUQrUwArtYfV9MBI4SwjXmCGlAtdJdZgjqSlmZF4ZZIqkCE/RmASGcpQQFeaLyHN4ZpQRjIU0j2u4UL9v5ChRapZEZrKIqH57hfiXF2Q6boY55WmmCcfLj+KMQS1gcT8cUUmwZjNDEJbUZIV4giTC2rRUMSV8XQr/J13Pduu2f+vXWs1VHWVwAk7BBXBBA7TADWiDDsBAgAfwBJ4tbT1aL9brcrRkrXaOwQ9Yb5+txZGB</latexit>

k0

<latexit sha1_base64="OfVkJNHIss5rXIRw98fxyHKkAw4="></latexit>

<latexit sha1_base64="WOYsQbmXuEipkDVGOdbTQit1bNI=">AAACBHicbVDNS8MwHE39nPOr6nGX4BDnZbQydMeBF48T3AesZaRpuoWlaUlSYZQevPivePGgiFf/CG/+N6ZdD7r5IPB47/eV58WMSmVZ38ba+sbm1nZlp7q7t39waB4d92WUCEx6OGKRGHpIEkY56SmqGBnGgqDQY2TgzW5yf/BAhKQRv1fzmLghmnAaUIyUlsZmLXWKIakgfgYbTojU1AvSWXZ+kY3NutW0CsBVYpekDkp0x+aX40c4CQlXmCEpR7YVKzdFQlHMSFZ1EklihGdoQkaachQS6abF/gyeacWHQST04woW6u+OFIVSzkNPV+ZHymUvF//zRokK2m5KeZwowvFiUZAwqCKYJwJ9KghWbK4JwoLqWyGeIoGw0rlVdQj28pdXSf+yaV81W3eteqddxlEBNXAKGsAG16ADbkEX9AAGj+AZvII348l4Md6Nj0XpmlH2nIA/MD5/AMjzmCc=</latexit>

(k0)

<latexit sha1_base64="bNKNkOgrvrj7315TOi8yFSEEEZk=">AAACAnicdVDLSsNAFJ3UV62vqCtxM1jEClKSGNq6K7hxWcE+oA1lMp3UoZNJmJkIJRQ3/oobF4q49Svc+TdO2ooP9MDAmXPu5d57/JhRqSzr3cgtLC4tr+RXC2vrG5tb5vZOS0aJwKSJIxaJjo8kYZSTpqKKkU4sCAp9Rtr+6Dzz2zdESBrxKzWOiReiIacBxUhpqW/u9UKkrv0gHU1g6eTrc3TcN4tW+axWcdwKtMqWVbUdOyNO1T11oa2VDEUwR6NvvvUGEU5CwhVmSMqubcXKS5FQFDMyKfQSSWKER2hIuppyFBLppdMTJvBQKwMYREI/ruBU/d6RolDKcejrymxH+dvLxL+8bqKCmpdSHieKcDwbFCQMqghmecABFQQrNtYEYUH1rhBfI4Gw0qkVdAifl8L/Scsp25Wye+kW67V5HHmwDw5ACdigCurgAjRAE2BwC+7BI3gy7owH49l4mZXmjHnPLvgB4/UD0PmXDA==</latexit>

k(,k0)

(a) (b)

(c) (d)
Class I

Class II

FIG. 3. Feynman diagrams for the memory matrix
M̂n̂kσ,n̂k′σ′ , adapted from Figure 1 of Ref.28. (a) The vertex
function for ṅkσ(ω). The empty (solid) circle at the vertex
denotes an incoming (outgoing) frequency ω. (b-d) Class I
and II Feynman diagrams under random phase approxima-
tion. The external momentum indices (k,k′) are colored red.

leading order in 1/N , equivalent to the random phase
approximation (RPA). The leading order Feynman dia-
grams for the thermodynamic susceptibilities are shown
in Fig. 2, where the double-curly line represent the
dressed bosonic propagator in Eq. (15), and we have in-
troduced a short-hand notation: ϕk ≡ ϕk,k. We con-
sider the limit when temperature is much smaller than
the Fermi energy, and hereby work with the following
approximation:

χn̂kσ,n̂k′σ′ ≈ δkσ,k′σ′δ(εk) +
λ2

N

1

r(T )
ϕkϕk′δ(εk)δ(εk′).

(22)
The presence of the δ-functions indicates that the main
contribution comes from the vicinity of the Fermi surface.

The RPA diagrams for the memory matrix (Eq. (19))
are shown in Fig. 3(a-d). A distinction compared to tra-
ditional RPA diagrams for e.g., compressibility, is that
here the memory matrix M̂n̂kσ,n̂k′σ′ depends explicitly
on the fermionic momenta. This leads to two classes of
RPA diagrams shown in Fig. 3(c-d), where the external
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momentum indices (k,k′) are colored in red. In Matsub-
ara frequencies, the memory matrix is given by:

M̂
(1)
n̂kσ,n̂k′σ′

(iΩn) = δσσ′
λ2T

NΩn

∑
q,νn

Dq,νn+Ωn

×
∑
ζ=±1

(δk−k′,ζq − δk,k′)ϕ2
k,k′Rk,k′,ζνn ,

(23)

M̂
(2)
n̂kσ,n̂k′σ′

(iΩn) = − λ4T

N2Ωn

∑
q,νn

Dq,νnDq,νn+Ωn

×
∑

ζζ′=±1

ζζ ′ϕ2
k,k+ζqϕ

2
k′,k′+ζ′qRk,k+ζq,ζνn

×
[
Rk′,k′+ζ′q,ζ′νn −Rk′,k′+ζ′q,ζ′(νn+Ωn)

]
.

(24)

Here Rk,k′,νn is the polarization bubble summed over the
fermionic Matsubara frequencies:

Rk,k′,νn =
nF (εk′)− nF (εk)

εk − εk′ + iνn
, (25)

where nF (ε) is the Fermi-Dirac distribution.

A high frequency expansion (i.e., ωχ � M̂(ω)) of
Eq. (17) shows that the two classes of diagrams cor-
respond to the Maki-Thompson and Density of State
(Fig. 3(b)), and Aslamazov-Larkin (Fig. 3(c-d)) dia-
grams. In the low-frequency limit, Eq. (17) is equiva-
lent to the quantum Boltzmann equation described in
the Kadanoff-Baym-Keldysh framework.

Below we consider two limiting cases where either
ω � T � EF (quasi-elastic limit) or T � ω � EF
(intermediate frequencies).

C. Quasi-elastic Limit

The memory matrix in the quasi-elastic limit (ω → 0)
describes the scattering processes in the vicinity of the
Fermi surface. It has been worked out in Ref.28, and
here we merely quote the results:

M̂
(1)
n̂kσ,n̂k′σ′

≈ δσσ′
2πλ2

N

∑
q

Vq(T )ϕ2
k,k+q

× (δk,k′ − δk′−k,q)δ(εk)δ(εk+q), (26)

M̂
(2)
n̂kσ,n̂k′σ′

≈ −2π2λ4

N2

∑
q

Vq(T )

γq
ϕ2
k,k+qδ(εk)δ(εk+q)

×
∑
ζ′=±1

ζ ′ϕ2
k′,k′+ζ′qδ(εk′)δ(εk′+ζ′q), (27)

where

Vq(T ) =

ˆ ∞
−∞

dω

π
ωD′′(q, ω)

(
−∂nB(ω)

∂ω

)
. (28)

It is convenient to work in the angular momentum ba-
sis M̂nσ,mσ′ =

∑
kk′ e−i(mθk−nθk′ )M̂n̂kσ,n̂k′σ′ , where the

memory matrix has a simple form:

M̂nσ,mσ′ ≈ πλ2

N

∑
kk′

f∗n,kk′fm,kk′Vk−k′(T )ϕ2
k,k′δ(εk)δ(εk′)

×
[
δσσ′ − 1

N

1− (−1)n

2

1− (−1)m

2

]
,

(29)

where fm,kk′ = eimθk − eimθk′ .

Since ϕk,k′ has even parity, M̂nσ,mσ′ hybridizes angu-
lar harmonics (n,m) of the same parity. For a given pair

of (n,m), M̂nσ,mσ′ has a simple matrix structure in the

spin (flavor) basis. For even-parity modes such as Q̂,

M̂nσ,mσ′ ∝ δσ,σ′ is diagonal in the spin (flavor) space,
and non-zero corresponding to a finite decay lifetime.
However, for odd-parity modes, the diagonal matrix el-
ements are 1 − 1

N , and the other entries are − 1
N . This

leads to one zero mode with eigenvector 1√
N

(1, 1, . . . ).

Hence, odd parity deformations of the Fermi surface are
long lived. This dichotomy of even-odd parity modes is
unique to two-dimensional electronic systems, and has
been discussed previously in Ref.35,36.

In the angular harmonics basis, Eq. (17) has a simpler
expression, given by:

Dnem(ω) ≈ χQ̂,Q̂ + iωχ2
Q̂,Q̂

[
1

M̂(ω)− iωχ̂

]
Q̂,Q̂

. (30)

This simplification is due to the fact that χ̂n,m ∝ δn,m
according to Eq. (22). Note that there is a crucial differ-
ence compared to Eq. (21). Here the matrix in the square
brackets is first inverted before taking the overlap with
the Ising-nematic form factor. Due to the hybridization
of different angular harmonics [see Eq. (29)], two expres-
sions may give qualitatively different results.

We first present a qualitative analysis for the temper-
ature dependence of the QEP frequency. Since critical
fluctuations give rise to small-angle scattering, we ex-
pect that the decay of an Ising-nematic deformation of
the Fermi surface to be governed by momentum diffu-
sion, which leads to a decay rate τ−1 ∝ (q0/kF )2τ−1

0 ,
where τ−1

0 is the single-particle scattering rate, and q0

is the characteristic momentum transfer. q0 ∼ T 1/3 and
τ−1
0 ∼ T 2/3 following quantum critical scaling. As a re-

sult, the QEP frequency should scale as τ−1χ−1

Q̂,Q̂
∝ T 7/3

near the QCP.
In Fig. 4 we present a numerical solution for the low-

frequency Raman response for a clean system, replac-
ing the memory matrix by its ω → 0 limit. We choose
λ2 = 2πNEF (RPA instability) and N = 2. Fig. 4(a)
shows the response for various temperatures. The spec-
tral response clearly shows the development of a low-
frequency peak as temperature is lowered toward the
QCP. The temperature dependence of the peak height
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FIG. 4. (a) Imaginary part of the dynamical nematic suscep-
tibility showing a quasi-elastic peak feature for various tem-
peratures. (b) QEP peak frequency Γ(T ) as a function of
temperature. Inset is the log-derivative plot α ≡ d ln Γ/d lnT
showing the temperature variation of the power law exponent.
The dashed lines correspond to T 2χ−1 (Fermi liquid behav-

ior) and T 4/3χ−1. (c) Inverse of the QEP peak height A(T )
(red circle) compared the thermodynamic susceptibility (blue
solid line).

and peak frequency are presented in Fig. 4(b) and (c)
respectively. As expected, the peak height tracks the
thermodynamic susceptibility, while the peak frequency
softens toward the QCP. However, the temperature de-
pendence of the peak frequency cannot be fitted to a sim-
ple power law governed by momentum diffusion. The log-
derivative plot (Fig. 4(b) inset) shows a smooth variation
of the exponent as temperature is lowered, saturating to
T 3 at low temperatures. Since the QEP is a weighted
superposition of eigenmodes of (M̂(ω) − iωχ̂)−1, there
isn’t the notion of a single scattering time as discussed
in the naive quantum critical scaling previously. It is
nonetheless useful to define τ−1 ≡ Γ(T )χQ̂,Q̂ to separate
the dynamic component of the QEP. Fig. 4 then implies
that τ−1 ∝ T 2 as T → 0 — analogous to that of a Fermi
liquid, despite being at the QCP.

The apparent violation of the naive quantum critical
scaling at all temperatures can be understood as follows.

At high temperatures, Vq(T ) ∝ Tγq
r(T )+q2 from Eq. (28).

The typical momentum transfer q0 ∼ kF � r(T ). As

a result, Vq(T ) ∝ Tγq0
r(T ) ∼ const, leading to a constant

lifetime. At low temperatures, the typical momentum
transfer q0 ∼ kF (γT )1/3 is small. Furthermore, the Fermi
surface is divided into four weakly-connected patches by
the Ising-nematic cold spots, where the form factor van-

T/EF=0.08

T/EF=0.16

T/EF=0.24

T/EF=0.32

0 0.2 0.4 0.6
0

1

2

�/EF

Im
D
ne
m
(�

)

(a) (b)

0 0.1 0.2 0.3 0.4
0

0.1

0.2

0.3

T/EF

� (T)
EF

0.001 0.01 0.1 0.4

1

2

T/EF

�

FIG. 5. (a) Imaginary part of the dynamical nematic suscep-
tibility in the presence of impurity scattering (gimp = 0.1EF ).
(b) QEP peak frequency Γ(T ) as a function of temperature.
Inset is the log-derivative plot showing the temperature vari-
ation of the power law exponent α.

ish by symmetry. Scattering across the cold spots is
the bottleneck for global equilibration. Evaluating the
memory matrix (Eq. (29)) near the cold spots, we get
M ∝

´ q0
0

d2qq4Vq ∼ T 2. Compared to rate of momen-

tum diffusion, there is an additional factor of q2
0 due to

the form factor.

Next, we consider how impurity scattering affects the
properties of the QEP. For simplicity we assume the im-
purity scattering only contributes to the memory ma-
trix M(T ) = Mnem(T ) + Mimp(T ) but does not mod-
ify the thermodynamic properties. Now, the cold spots
are no longer a bottlneck for relaxation, and as a result

Γ(T ) ∝
(
τ−1
imp + τ−1

nem(T )
)
χ−1

Q̂,Q̂
. At low temperatures

impurity scattering is dominant, leading to Γ(T ) ∝ T
coming from the thermodynamic susceptibility. This is
the behavior discussed in Refs.25,26. At higher tempera-
tures, nematic fluctuations are more important, leading
to a stronger temperature dependence. This behavior is
illustrated in Fig. 5.

D. Intermediate frequencies

We proceed to study the limit where the external fre-
quency is much larger than temperature. Here, the mem-
ory matrix in Eq. (17) is always smaller than ωχQ̂,Q̂. As
a result, the approximate memory function expression
in Eq. (21) holds. It is straightforward to show that
MQ̂,Q̂(ω) ∝ ω4/3 governed by momentum diffusion. The
imaginary part of the Raman response is then given by:

ImDnem(ω) ≈
MQ̂,Q̂(ω)

ω
∝ ω1/3. (31)

This behavior has also been obtained in earlier works
using perturbative diagrammatic techniques at zero
temperature2,27.
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FIG. 6. (a) Quasi-elastic peak frequency for FeSe1-xSx at
dopings x = 0.15 (orange) and x = 0.2 (magenta), extracted
from Ref.1. The extrapolated Curie-Weiss temperature is zero
at x = 0.15, and negative at x = 0.2. EF is taken to be
30meV. The dashed lines are linear fits using a + 1.2T/EF ,
with a = 0.2 and 0.4 respectively. (b) A re-plot of Fig. 5(b)
with the y-axis being Γ(T )/T .

V. SUMMARY AND OUTLOOK

So far we have neglected the effects of acoustic
phonons. As argued in Ref.22, the nemato-elastic cou-
pling shifts the position of the Ising-nematic phase tran-
sition temperature. Experimentally this is reflected in
the difference between the extrapolated Curie-Weiss tem-
perature TΘ and measured transition temperature Ts

1.
Moreover, the coupling leads to “directional criticality”
at the QCP, where the correlation length is divergent
only along the diagonal directions of the Brillouin zone.
As discussed in Refs.21,22,37,38, this can also lead to a
breakdown of quantum critical scaling, and recover Fermi
liquid behavior at low temperatures.

We proceed to compare our results to Raman scat-
tering experiments performed on FeSe1-xSx

1, where a
putative Ising-nematic QCP occurs at x ≈ 0.15. In
Fig. 6(a) we plot Γ(T )/(T − TΘ) as a function of T/EF
for x = 0.15, 0.2, extracted from the experiments. As
discussed earlier, this quantity represents the dynamical
contributions to the QEP. Above Ts(x), the data can be
fitted using a functional form a + bT , suggesting that
the near-critical Ising-nematic fluctuations give rise to a
linear-in-T scattering rate. This behavior is qualitatively
captured from our calculation shown in Fig. 6(b) — a
replot of Fig. 5(b), without fine-tuning of parameters ex-
cept the strength of impurity scattering.

In summary, using a memory matrix approach, we
studied the dynamical nematic susceptibility for a two-
dimensional electronic system near an Ising-nematic
quantum critical point. Our results are qualitatively con-
sistent with the Raman scattering results for FeSe1-xSx.
Interestingly, we find it useful to separate the dynami-
cal and thermodynamic contributions to the quasi-elastic
peak frequency Γ(T ) ∝ τ−1χ−1

Q̂,Q̂
. As a result, a dynam-

ical scattering rate τ−1 can be extracted directly from

χQQ
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1
2
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0

0.1

0.2

0.3

0.4

0.5

T/EF

0 0.1 0.2 0.3 0.4
0

0.1

0.2

0.3

T/EF

Γ (T)

EF
0.001 0.01 0.1 0.4

2

3

T/EF

α

T/EF=0.08

T/EF=0.16

T/EF=0.24

T/EF=0.32

0 0.1 0.2 0.3
0

1

2

3

4

ω/EF

Im
D
ne
m
(ω

)

(a)

(b) (c)

FIG. A.1. Raman response for a two pocket electronic model
in the clean limit. Compared to Fig. 4, here the quasi-elastic
peak frequency is reduced by a factor of 2 due to fermion
band doubling, but the power-law temperature dependence
remains unchanged, showing a universal behavior indepen-
dent on band structure details.

experimental data via the product of the peak frequency
with the thermodynamic susceptibility.
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Appendix A: Memory matrix calculation of Raman
response in a two-pocket model

We begin by noting that under RPA, the memory ma-
trix: M ∼ O(N0), and the thermodynamic susceptibil-
ity χ ∼ O(N), and as a result, the quasi-elastic peak
frequency: Γ(T ) ∼ O(1/N).

In the regime governed by Ising-nematic quantum crit-
ical fluctuations, the qualitative features of the low-
frequency Raman response are insensitive to the micro-
scopic band parameters except for the presence/absence
of Ising-nematic cold spots on the Fermi surface. To il-
lustrate this, here we present an analysis of a two Fermi-
pocket model, with a circular hole pocket centered at
the Γ point and a circular electron pocket centered at
the M point of the Brillouin zone. The dispersions are

chosen as εh,k = k2

2m − µ and εe,k+Q = −εh,k, where
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Q = (π/a, π/a). We choose m = 1, kF = 1. The Ising-
nematic QCP is achieved at λ2 = 4πNEF at the RPA
level, where N = 4 corresponding to two pockets and
two spin species. The Raman response in the clean limit
is illustrated in Figure. A.1. A comparison with Fig. 4

of the main text shows that while the quasi-elastic peak
frequency Γ(T ) is suppressed, its temperature-dependent
power-law exponent (inset to Fig. 4(b)) remains qualita-
tively unchanged.
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