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Auxiliary field Quantum Monte Carlo simulations of interacting fermions require sampling over
a Hubbard-Stratonovich field h introduced to decouple the interactions. The weight for a given
configuration involves the products of the determinant of matrices Mσ(h), where σ labels the species,
and hence is typically not positive definite. Indeed, the average sign 〈S〉 of the determinants goes to
zero exponentially with increasing spatial size and decreasing temperature for most Hamiltonians of
interest. This statement, however, does not explicitly separate two possible origins for the vanishing
of 〈S〉. Does 〈S〉 → 0 because randomly chosen field configurations have det

(
M(h)

)
< 0, or does the

‘sign problem’ arise because the specific subset of configurations chosen by the weighting function
have a greater preponderance of negative values? In the latter case, the process of weighting the
configurations with |det

(
M(h)

)
| might steer the simulation to a region of configuration space of h

where positive and negative determinants are equally likely, even though randomly chosen h would
preferentially have determinants with a single dominant sign. In this paper we address the relative
importance of these two mechanisms for the vanishing of 〈S〉 in quantum simulations.

I. INTRODUCTION

Auxiliary Field Quantum Monte Carlo (AFQMC) [1–
8], relies on the observation that traces over products
of exponentials of quadratic forms of fermionic operators
can be done analytically. Thus in QMC for a Hamiltonian
like the Holstein model, where only such quadratic forms
are present, the resulting simulation samples over the
remaining space and imaginary time-dependent bosonic
(phonon) degrees of freedom x(r, τ), using a weight which
combines a boson action SBose and the fermion determi-
nants (one for each fermionic species). If, as in the Hub-
bard model, quartic (interaction) terms in the fermions
are present, they are decoupled via an auxiliary field
h(r, τ). In either case, after the fermionic trace is per-
formed, the sampling is now over these ‘classical’ fields,
and may be implemented by utilizing a variety of stan-
dard numerical techniques.

With the proliferation of computing resources over
the last few decades, such QMC simulations have be-
come indispensable tools for investigating difficult prob-
lems involving strong correlations in a variety of topics
in condensed matter [9, 10], high energy [11] and nu-
clear physics [12], as well as in chemistry [13, 14], pro-
viding many breakthroughs in these fields. These suc-
cesses notwithstanding, a pervasive problem afflicting
such methods, limiting their scope of application consid-
erably, is the sign problem (SP), which occurs when the
fermion determinants become negative for certain quan-
tum configurations, leading to a negative “probability”.
This has given rise to a considerable body of research
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aimed at solving, or alleviating, the SP[8, 15–30]. Nev-
ertheless, it remains unsolved, and one of the central is-
sues in this regard is to understand how the underlying
physics of the problem in consideration affects the SP. In
the case of AFQMC, this is intimately related to the in-
dividual configurations of the bosonic or auxiliary fields
and how they affect the sign of the fermion determinant.

The fermion determinant itself sums over all the possi-
ble quantum mechanical world lines of fermions moving
in the instantaneous value of the physical bosonic field or
the artificially introduced auxiliary field. For a particu-
lar world line configuration, if the fermions wind around
each other an odd number of times, the contribution to
the determinant is negative. This picture provides one
view of the origin of the sign problem: To the extent
that different regions of the space-imaginary time lattice
are uncorrelated, there is a constant ‘density’ of winding,
and one expects that as the spatial lattice size N and in-
verse temperature β grow, the likelihood of positive and
negative world line configurations becomes equal, and the
average sign vanishes exponentially with both β and N .

The assumption that different regions are uncorrelated
is non-trivial. One motivation is the absence of any in-
trinsic dynamics in the auxiliary field: h(r, τ) couples to
the fermionic degrees of freedom, but different compo-
nents of h(r, τ) are not coupled to each other. Indeed,
it is known that if h(r, τ) do interact the sign problem
can be mitigated [1, 31, 32]. As an extreme example, if h
has no τ dependence, the sign of the determinant is posi-
tive. Similarly, in electron-phonon models the phonon ki-
netic energy energy p̂2/2m induces correlations in x(r, τ)
on adjacent τ by penalizing imaginary time fluctuations,
especially at low phonon frequencies ω. Although the
details are complex, typically one expects the SP to be
reduced.

Symmetries might allow simulations to avoid the sign
problem in special situations [15, 33, 34]. The most
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simple scenario is one in which there are two fermionic
species (e.g. spin up and spin down) which couple to the
auxiliary or bosonic field in the same way. Then, as long
as they also share common structure in the other pieces of
the Hamiltonian (the same hopping and chemical poten-
tial terms, for example) the two matrices arising when
the species are traced out are identical. Although the
individual determinants can (and do) change sign, their
product is always a square, and hence positive. Such sit-
uations are, however, not generic, and in most QMC, the
sign problem is significant.

This traditional argument [15] makes no explicit ref-
erence to how the fields are selected, and hence suggests
that the average sign of the determinants of randomly
chosen h(r, τ) should vanish. The intent of this paper is
to investigate this issue further, and quantitatively. Be-
fore doing so, it is useful to make some analogies with
Monte Carlo for classical degrees of freedom.

In classical statistical mechanics the expectation value
of an observable A takes the form

〈A〉 = Z−1 Tr{h}A({h}) e−βE({h})

Z = Tr{h} e
−βE({h}) (1)

where E({h}) is the energy of the system described by
some collection of degrees of freedom {h} and β is the
inverse temperature. Implicit in the structure of Eq. 1
is that A does not depend on β. However, certain A
do have (trivial) β dependence. For example, in the
paramagnetic phase of the classical Ising model the mag-
netic susceptibility χ = β

∑
ij〈SiSj〉, where Si = ±1

are the Ising spins. Similarly, energy-fluctuation-based
measurements of the specific heat measure the observ-
able C = β2

(
〈E2〉 − 〈E〉2

)
. In such cases β comes out of

the trace over the degrees of freedom. Its presence does
not affect the critical properties. In the case of the sus-
ceptibility, as one approaches Tc, the β factor merely mul-
tiplies the sum of the spin-spin correlations, 〈∑ij SiSj〉
by βc, but does not alter the power law describing its
divergence.

In such a situation, a rescaling of the weight W =
e−βE → (e−βE)g merely amounts to a shift in inverse
temperature β → gβ (or, equivalently, in the energy
scales E → gE) in the calculation of 〈A〉. This analogy
also makes clear that g 6= 1 will alter the expectation
values measured, since it changes the temperature of the
simulation. As we shall see in detail below, in Quan-
tum Monte Carlo (QMC) the situation is more complex.

There, the observable Â can depend in a complicated
way on the inverse temperature. As a consequence, the
change in 〈Â〉 upon a weight rescaling W → Wg can be
highly non-trivial.

The rescaling parameter g has the effect of tuning the
configurations sampled in a simulation. g = 1 gives the
appropriate expectation values for the energy (Hamilto-
nian) in question. The limit g = 0 makes all configura-
tions of {h} equally likely. In this paper we investigate
the effect of tuning g in determinant Quantum Monte

Carlo (DQMC) [1]. Focusing on the average sign 〈S〉,
our purpose here is to understand whether the fermion
SP in which 〈S〉 → 0, occurs because the value of the
sign itself for ‘random’ configurations is becoming in-
creasingly badly behaved as β increases, as suggested by
the winding argument above, or whether the sampling
is preferentially guiding the system to a region in phase
space where the weighted configurations yield vanishing
average sign. To this end, we analyse three different real-
izations of the Hubbard model, viz, on the square lattice,
on the honeycomb lattice and the ionic Hubbard model
with a staggered potential, investigating the average sign
as well as several physical variables, over a large range
of parameter values such as the chemical potential µ and
the interaction U , as we vary g systematically.

Our results show that the SP depends on the weight
and temperature in a non-trivial manner. In the square
lattice model, we find that the SP originates mainly from
the the fact that weight guides the simulation to regions
of phase space with a low average sign. In this situation,
random HS fields result in a larger value of the overall
sign at all temperatures and densities. In the honey-
comb lattice, on the other hand, the SP becomes pro-
gressively worse for random sampling as the system ap-
proaches the interaction induced antiferromagnetic Mott
insulator (AFMI), underscoring the complex relationship
between the origin of the sign problem and the underly-
ing physical states in DQMC. The ionic Hubbard model
shows qualitatively similar results; here, the sign becomes
worse again for random sampling as we navigate across
the correlated metal (CM) phase and approach the AFMI
state. In addition, analysis of various physical quantities
as well as the detailed nature of the sign curves reveals
that, in many respects, a reduced g pushes the system to
weaker coupling. Nevertheless, the system retains non-
trivial signatures of the interaction in certain character-
istics even in the fully random g = 0 case.

Next, we briefly consider the complementary ‘oversam-
pling’ case where g > 1, for the square lattice model. In
this case, signatures of a stronger effective coupling as g is
increased are even more prominent, as the Mott plateau
around half-filling becomes progressively stronger, lead-
ing to a swift reduction in the SP accompanied by a shift
in the sign minimum as g is increased. We end with
a quantitative analysis of the effective interaction with
changing g, confirming the qualitative observations made
earlier.
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II. DETERMINANT QMC AND THE
HUBBARD MODEL

We investigate the sign problem within the context of
the Hubbard Hamiltonian [35, 36],

Ĥ = K̂ + V̂

K̂ = −t
∑
〈ij〉

(
c†jσciσ + c†iσcjσ

)
−
∑
i

µi
(
ni↑ + ni↓

)
V̂ = U

∑
j

(
nj↑ −

1

2

)(
nj↓ −

1

2

)
(2)

Here c†jσ(cjσ) are fermion creation(destruction) operators

at spatial site j and with spin σ. njσ = c†jσcjσ is the
number operator. t is hopping matrix element between
nearest neighbor sites, µ is the chemical potential and U
is an on-site repulsion. We set t = 1 as our unit of energy.

As remarked earlier, we will explore several different
contexts, beginning with the 2D square lattice at con-
stant µi = µ, which is the most famous geometry owing
to its relevance to cuprate physics [37]. We will then
simulate the honeycomb lattice in order to understand if
the effect of g is linked in any way to the quantum crit-
ical point Uc/t ' 3.8 which separates antiferromagnetic
from semimetallic behavior [38–43]. Finally, we will turn
to the ionic Hubbard model, [µi = (−1)i µ], on a square
lattice to further test our conjectures.

We use a commonly employed DQMC formulation [1,
2]. In computing the partition function the inverse tem-
perature is discretized, β = Lτ∆τ , and the Trotter ap-
proximation is used to separate out the exponentials of
the kinetic and potential energies. Thus, the partition
function may be written as

Z = Tr (e−βĤ)

= Tr
(
e−∆τĤ

)Lτ
≈ Tr

(
e−∆τK̂(1) e−∆τV̂ (1) e−∆τK̂(2) e−∆τV̂ (2) · · ·

· · · e−∆τK̂(Lτ ) e−∆τV̂ (Lτ )
)

(3)

The quartic on-site interaction term V̂ is now decou-
pled by a discrete Hubbard Stratonovich (HS) transfor-
mation [44]:

e−∆τU(ni↑− 1
2 )(ni↓− 1

2 ) = C
∑
hi=±1

eαhi(ni↑−ni↓), (4)

where cosh(α) = e∆τU/2, C = 1
2e
−∆τU/4 and hi are dis-

crete classical variables that only take values ±1. This
converts a quartic fermionic term into a quadratic one,
while adding a sum over the new variables hi. Introduc-
ing this transformation for each lattice site i at each time
slice l, the partition function may be rewritten as

Z = CNLτ Tr{h} Tr
(
e∆τK̂eV̂(1) e∆τK̂eV̂(2)

· · · e∆τK̂eV̂(Lτ )
)
, (5)

where N denotes the number of lattice sites, the operator

V̂ijσ(l) = c†iσ v
ij
σ (l) cjσ, with vijσ (l) = ασhi(l) δij , where

σ = ±1, and K̂ijσ(l) = c†iσ k
ij
σ (l) cjσ, kijσ (l) = (t)δ〈ij〉 +

µiδij . For a given configuration {h}, the terms in the
exponentials are all quadratic, allowing us to perform
the fermionic trace analytically, yielding [1, 2]

Z = CNLτ Tr{h} [detM↑(h)] [detM↓(h)], (6)

where the matrix Mσ(h) = (I +
∏
l e

∆τkevσ(l)).
All physical observables can be expressed in terms of

the fermion Green’s function Gσ,ij = 〈ciσc†jσ〉 = M−1
σij .

For example, the fermion density on site i with spin σ,
niσ = 1 − Gσ,ii, the kinetic energy (excluding the chem-
ical potential) = 〈K〉 = (8t)Gi i+x̂,σ where the factor of
eight arises from the two spin species, the two directions
x, y to hop, and the Hermitian conjugate pair associated
with hopping i ↔ j. Finally, the pair correlator P dij =

〈∆d
i∆

d†
j 〉, where ∆d †

j = c†j↑
(
c†j+x̂↓−c

†
j+ŷ↓+c

†
j−x̂↓−c

†
j−ŷ↓

)
for d-wave symmetry.

It is important for us to re-emphasize the goal of this
paper in introducing the parameter g. We are not seeking
to find an improved importance sampling scheme which
would reduce the sign problem and associated error bars
while leaving physical observables with the same expecta-
tion values. Such work has been productively undertaken
by several groups in the community, especially within the
context of ‘constrained path’ auxiliary field QMC [45–
50]. Instead, our objective is solely focussed on gaining
insight into the origin of sign problem itself, and isolating
whether it is better or worse for randomly selected field
configurations compared to those chosen preferentially
according to the weight (fermion determinants).

III. WEAK AND STRONG COUPLING LIMITS

In the U = 0 limit, the matrices Mσ and their inverses,
the Green’s functions Gσ, are independent of the HS field
configuration. As a consequence, expectation values of
any observable Â are exact and also independent of g.
The proof is straightforward:

〈Â〉 = Z−1

∫
Dh Â(h)

(
detM↑(h)detM↓(h)

)g
Z =

∫
Dh
(
detM↑(h)detM↓(h)

)g
⇒ 〈Â〉 =

∫
Dh Â(h)∫
Dh (7)

Here, the notation
∫
Dh is used as a general symbol

for summation or integration over the degrees of freedom



4

h, including both the cases where they represent contin-
uous variables (for a continuous HS transformation) and
discrete ones (as in our calculations below).

The strong coupling (single site) limit t = 0 is more
interesting. In this case, the sites are completely decou-
pled and the solution reduces to a product of single site
calculations. The partition function for a general value
of g is given by

Z = CNLτ
∏
i

∑
{hi}

{∏
σ

(
1 + eβµi+ασ

∑
l hi(l)

)}g
(8)

This can be evaluated analytically at g = 1 (and triv-
ially at g = 0). The general case with g 6= 1 can be easily
evaluated numerically. In Appendix E, we show detailed
results for the number density 〈n〉 and the double occu-
pancy 〈n↑n↓〉 for several values of g, U and β. These
results show that this simple case already demonstrates
aspects of the non trivial effects of varying the nature of
the high probability configurations in such problems.

IV. HUBBARD MODEL ON A SQUARE
LATTICE

In this section, we consider the Hubbard model on a
square lattice of size L with a constant µi = µ. As is well
known, at half filling, the on-site interaction U results
in an AFMI. Away from half filling, the possibility of su-
perconducting correlations mediated by spin fluctuations
makes this iconic Hamiltonian relevant as a prospective
model for high temperature superconductors [37]. Thus,
it provides a rich background for investigating the effect
of the rescaling parameter g on the evolution of the sys-
tem in various parameter regimes.

Figure 1 shows the average of the total sign 〈S〉 vs.
the total density 〈n〉 for different values of the rescaling
parameter g at four different values of β. For β ≤ 3
(top panels), it is seen that as g → 0, 〈S〉 → 1, with
only a small dip around 〈n〉 ∼ 0.8. These plots suggest
that at temperatures that are not too low, simulations
which sample with randomly chosen HS field configura-
tions tend to have a considerably reduced SP. On the
other hand, at lower temperatures, β & 3 (lower panels),
we find that while the sign continues improving system-
atically as g is reduced from 1 towards 0, the value of 〈S〉
around its minimum is decreased considerably compared
to larger temperatures even near g = 0. In addition, we
find an emerging valley-peak-valley structure as g → 0,
reminiscent of the shell effect in non-interacting finite
size lattices. In Appendix D, we explore this connection
more carefully by considering even lower temperatures,
and demonstrate that the values of 〈n〉 at the maxima of
the sign correspond to the locations of the density steps
on a non-interacting lattice of the same size due to the
shell effect [51]. An additional feature of the data, seen
at all temperature values presented here, is that there is
an initial worsening of the SP for 0.8 . g < 1.

0.00

0.25

0.50

0.75

1.00

〈S
〉

β = 2.00

g = 0.00

g = 0.10

g = 0.20

g = 0.30

g = 0.40

g = 0.50

g = 0.60

g = 0.70

g = 0.80

g = 0.90

g = 1.00

β = 3.00

0.0 0.5 1.0
〈n〉

0.00

0.25

0.50

0.75

1.00

〈S
〉

β = 3.50

0.0 0.5 1.0
〈n〉

β = 4.00

L = 8 U = 8.00

Figure 1. The average sign 〈S〉 vs. 〈n〉 at U = 8 as a func-
tion of g on an 8 × 8 lattice for four values of β. As β in-
creases, the minimum in 〈S〉 becomes wider and deeper, as
expected, displaying a minimum around 〈n〉c ∼ 0.85. While
the sign remains close to 1 for g → 0 at β . 3, it starts reduc-
ing noticeably as β is increased further, eventually forming
a ‘valley-peak-valley’ structure as seen in the bottom pan-
els. This suggests that while the bulk of the sign problem
at low temperature originates from the restricted configura-
tion space available to the system, random configurations of
the HS fields also result in a perceptible reduction in 〈S〉 at
low enough temperatures. The bottom panels, where the sign
is the worst, show a sharp upturn near half-filling, since the
total sign is constrained to be equal to 1 at µ = 0 due to
particle-hole symmetry.

As explained earlier, the traditional argument about
the connection of the sign with the fermionic world lines
suggests that with lowering temperature (i.e., increasing
β) and increasing system size, the fermion world lines
are more likely to wind around each other and provide
determinants of both sign more frequently, resulting in a
progressively worse SP on the average. In order to see
how the choice of g affects the scaling properties of the
sign, we show, in Fig. 2, the scaling properties of 〈S〉 as
well as the spin resolved sign, 〈Sσ〉 = (〈S↑〉 + 〈S↓〉)/2,
with increasing lattice size N = L2, and inverse temper-
ature β. We find that, for g . 1, where the HS fields
are sampled according to the correct thermal weights,
both show a faster than exponential drop with increas-
ing β, as found in earlier work [27]. As g is reduced, the
overall sign gradually improves at all β values, but the
reduction with increasing β remains faster than exponen-
tial. The plots near g = 0 seem to show little change in
this temperature range, but, as the inset demonstrates,
at smaller temperatures, they show the same faster than
exponential reduction. The scaling with system size at
fixed temperature, as seen in the right column, is expo-
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nential. Again, we find that while 〈S〉 is less severe at
lower g values, it continues to reduce exponentially with
increasing lattice size.

These results indicate that while the SP (both the to-
tal value as well as the spin resolved ones) itself is domi-
nated by the reduced phase space at lower temperatures
and larger lattice sizes, the scaling dependence on both
parameters remains very similar throughout the whole
range of the sampling parameter g.

Near g = 1, the thermodynamic sampling restricts the
HS field configurations to a suitably confined region of
the total phase space, reflecting the underlying physics,
especially at low temperatures. As g is reduced from
1, the increasingly random sampling occupies progres-
sively larger regions of phase space, affecting the physi-
cal properties of the system. In order to study this more
carefully, we show a number of physical variables includ-
ing the number density 〈n〉 ≡ 1

N

∑
i,σ〈niσ〉, the kinetic

energy 〈K〉 and the nearest neighbour spin-spin correla-
tions, Czz ≡ 1

4 〈(ni↑ − ni↓)(nj,↑ − nj,↓)〉 (i, j are nearest
neighbors), as a function of the chemical potential µ in
Fig. 3, for three temperature values.

The second row demonstrates some of this physics for
g = 1 by plotting 〈n〉 vs. µ. As the temperature de-
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Figure 2. Scaling of the total and spin resolved sign with
temperature and system size at µ = −3.0, U = 8 on an 8 ×
8 lattice. Left column shows ln(〈S〉) and ln(〈Sσ〉) vs. the
inverse temperature β for a range of values of g. We find a
faster than exponential reduction in the sign with decreasing
temperature, both for the total and spin resolved quantities.
The inset in the top panel extends this to temperatures β ∼ 9
for g = 0.0 and 0.05, demonstrating that even the randomly
sampled case shows a faster than exponential scaling over a
large temperature range. The right column plots the same
quantities as a function of the lattice size, L2. The scaling in
this case is exponential for all g values.
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Figure 3. Plots of the average sign 〈S〉 (first row) and observ-
ables including the density 〈n〉 (second row), kinetic energy
〈K〉 (third row) and nearest neighbor spin-spin correlator Czz
(fourth row), vs µ as a function of g for three different values of
β. These physical observables clearly demonstrate signatures
of a reduced effective interaction (see text for more details).

creases, the number density saturates close to half filling
as the AFMI sets in and the compressibility goes to zero,
triggering a Mott plateau. As g is reduced and the HS
fields are sampled more and more randomly, we find that
this physics disappears slowly; the plots near g = 0 do
not show any signs of saturating. Instead, we find gentle
oscillations in 〈n〉, reminiscent of the oscillations we saw
in the sign for similar parameter values in Fig. 1. As
mentioned above, we demonstrate in Appendix D that
this is due to the re-emergence of finite size effects from
the non-interacting problem.

In the third row, we show the kinetic energy, 〈K〉, for
the same parameter values. Again, we see that while the
g = 1 results demonstrate the expected reduction in the
kinetic energy as the density increases and the electrons
start to avoid each other due to the on-site coupling U ,
lower values of the sampling parameter nullify this effect.
We emphasize, however, that even at g = 0, the system
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is very different from a non-interacting one in many re-
spects, as seen, for instance, in the enlarged bandwidths
in these results.

The fourth row, which plots Czz, also demonstrates
the same suppression of the physics with lowering g. At
g = 1, as the system approaches half filling and the Mott
state begins to appear, the nearest neighbour spin corre-
lations become negative, their magnitude increasing with
lowering temperature as the antiferromagnetic order be-
comes stronger. The weakening Mott insulator that re-
sults as g is lowered leads to a corresponding reduction in
the spin correlations, as is clearly evident from the plots.

Hence, we see that as g is reduced, the physical vari-
ables clearly demonstrate signatures of a reduced effec-
tive interaction in some aspects, while retaining non-
trivial signatures of the full interaction in others. This
is not unreasonable, as the HS fields act as proxies for
the electron-electron interactions [44], and randomizing
them progressively is expected to dilute the effect of U .
On the other hand, the matrix elements in the simula-
tions still contain exponential factors that include the full
interaction strength, and, hence, certain features, such
as the bandwidth, essentially retain their g = 1 values
throughout. In Section VIII, we will quantify this rela-
tionship between the effective interaction Ueff(g) and U
by analysing physical observables such as the double oc-
cupancy 〈n↑n↓〉 and the kinetic energy 〈K〉 in an attempt
to put these observations on a firmer footing.
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Figure 4. The average sign 〈S〉 vs. 〈n〉 at U = 8 on an 8× 8
lattice as a function of β for four different g values. Upper
panels for g < 0.4 demonstrate finite size oscillations at lower
temperatures.

Now, we return to the behaviour of the sign again, fo-
cusing on the temperature dependence at fixed g as well
as the g dependence at fixed µ. In Fig. 4, we concen-
trate on the temperature dependence of the sign at fixed

representative values of g. As expected, we find that the
sign worsens with decreasing temperature for all g val-
ues. In the lower panels, for larger values of g, the plots
are smooth and rather similar. However, the top panels,
with g < 0.4 show clear evidence of finite size based os-
cillations at lower temperatures, as remarked earlier in
this paper.
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Figure 5. The average sign 〈S〉 vs. g at L = 8, U = 8 as a
function of β for four different µ values.

In Fig. 5, we replot the data with the sign 〈S〉 as a
function of the parameter g with temperature at dif-
ferent values of µ. As the top right and lower panels,
with µ . −2.0 show, increasing g leads to a worsening
of the sign at all temperatures. In contrast, the top left
panel, with µ = −0.5, close to half filling, shows a non-
monotonic behaviour where the sign first reduces, reaches
a minimum at a moderate value, and then increases con-
tinuously to unity as g → 1, as the approaching Mott
insulating state pins the density 〈n〉 ∼ 1, establishing
particle-hole symmetry and mitigating the sign problem.

Thus, we find that on the whole, the SP in the stan-
dard square lattice Hubbard model is mainly due to the
fermion determinants steering the simulation to regions
of low average sign. Random sampling typically mit-
igates the problem substantially over a large parameter
window, even though it reappears at sufficiently low tem-
peratures. The random fields tend to reduce the effect of
the interaction, pushing the system to weaker coupling,
resulting in a re-emergence of certain non-interacting fea-
tures such as the shell effect, as well as reducing the sig-
natures of the AFMI in observables such as the density,
the kinetic energy and the spin-spin correlations. Even
so, this comparison only holds for certain characteristics,
and such systems retain several non-trivial signatures of
interactions even at g = 0.
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Figure 6. The average sign 〈S〉 vs. U at µ = 0.2, for the
Hubbard model on a honeycomb lattice with L = 9, with
varying U as a function of g, for four values of β. At g = 1,
〈S〉 shows a minimum around Uc. Reducing g lowers the sign,
shifting the minimum to the right (see text for details).

V. HUBBARD MODEL ON A HONEYCOMB
LATTICE

In the previous section, we analysed how the rescaling
parameter g affected the sign problem and physical vari-
ables of the square lattice Hubbard Hamiltonian. While
this model has a very rich phenomenology, the Hubbard
model on the honeycomb lattice provides added insight
into the sampling problem by presenting a sharply de-
fined quantum phase transition.

At U = 0, the Hubbard model on a honeycomb lattice
is a semi-metal whose energy ε(k) disperses linearly with
the momentum k close to special points on the k-space
called Dirac points. This leads to a semi-metallic density
of states which also varies linearly with energy ω near
ω = 0. As U is turned on, the semi-metal state persists
up to a critical coupling value U = Uc ∼ 3.8 [38–43],
where it undergoes a quantum phase transition into an
AFMI, unlike the square lattice version, which shows AF
order at any non-zero value of U .

In Fig. 6, we plot the average sign 〈S〉 on a lattice
with L = 9 at a small non-zero µ = 0.2 (the model is
sign problem free at half filling) vs. the coupling U as a
function of g for four different values of the temperature.
The g = 1 plots deviate from their limiting values of
〈S〉 → 1 in a broad region around Uc, tracking the tran-
sition, as we have shown in detail elsewhere [52]. As g is
reduced, we find that the dip in the sign becomes more
pronounced, in stark contrast to the results of the square
lattice Hubbard model where this led to a reduction in
the sign problem, and the minimum shifts to higher val-

ues of U . An intuitive explanation of the latter result
follows from the observation we have already made ear-
lier: as the sampling becomes more random, the effect of
U is reduced. As a result, the semi-metal to AFMI tran-
sition here is pushed to higher values of U . This does not
lead to a reduction in the sign, however, as full inclusion
of the fermion determinants (g = 1) in this case evidently
leads the system to a phase space region (corresponding
to the AFMI phase) where the sign problem is less severe,
compared to g = 0, where the determinants are ignored.
Since the AFMI phase is characterized by a finite regime
where 〈n〉 ∼ 1 is saturated at 1, reinstating particle hole
symmetry (originally broken by the small but non-zero
µ), the sign may be expected to be robust in this phase.

Overall, these results again demonstrate the complex
effect the underlying physics of the system can have on
the SP in DQMC.

VI. IONIC HUBBARD MODEL

In this section, we shift our attention to the ionic Hub-
bard model at half filling. On a square lattice, this model
essentially consists of an added local staggered potential
µi = (−1)i∆/2 to the square lattice Hubbard model. In
the non interacting limit U/∆→ 0, the system is a band
insulator (BI) where the sites with a negative value of the
potential, −∆/2, have a higher occupancy than the sites
with a positive value, resulting in a charge density wave
order due to the breaking of the sub-lattice symmetry by
the staggered potential. In the opposite limit U/∆� 1,
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Figure 7. The average sign 〈S〉 vs. U at half filling µ = 0,
as a function of g on an 8 × 8 lattice for four values of β in
the ionic Hubbard model. The staggered potential ∆ = 1.0.
Results are qualitatively similar to the honeycomb model (see
text).
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Figure 8. The ratio 〈S〉(g = 1)/〈S〉(g = 0) for the square
lattice Hubbard model (left), the Hubbard model on the hon-
eycomb lattice (middle) and the ionic Hubbard model (right).
The horizontal dashed black lines show 〈S1〉/〈S0〉 = 1, pro-
viding a reference for the other plots.

the system is an AFMI due to the large onsite repulsion
favouring single occupancy everywhere. Interestingly, as
the coupling strength U is increased starting from the
weak coupling limit, the BI does not undergo a direct
transition to the AFMI. Instead, over a range of values
of U and ∆ where the two energy scales are compara-
ble, the model displays an exotic correlated metal (CM)
phase, as past work has demonstrated [53, 54].

Fig. 7 plots the sign 〈S〉 vs. the coupling U at different
g values for four values of β, as before. At g = 1, the
sign shows a broad minimum roughly corresponding to
the CM phase (the correspondence becomes sharper at
lower temperatures). Similar to the results for the honey-
comb Hubbard model, we find that increasingly random
sampling worsens the SP and shifts the minimum value
of the sign to the right, leading to a complete flatten-
ing of the curves (at least in the coupling range shown
here) for g . 0.5 as the AFMI state becomes progres-
sively weaker. The shift in the minimum suggests that
the BI-CM boundary is also pushed to higher values of U ,
consistent with the reduction in the effective interaction.

In order to summarize these detailed results, we show
plots of the ratio 〈S〉(g = 1)/〈S〉(g = 0) side by side for
the three models considered here in Fig. 8. In a sense,
this ratio isolates the part of the sign due to the correct
sampling (at g = 1) from the ‘intrinsic’ sign due to ran-
dom sampling (at g = 0). While this is a somewhat crude
quantity, it provides a good first impression of the above
effects and how they vary from one model to another.
The left plot for the square lattice Hubbard model results
clearly demonstrate how the sign gets progressively worse
with increasing g in the intermediate µ regime, where the
ratio becomes small, and then rises up to unity again as
the system approaches half filling. The slight increase
above 1 near half filling is due to the faster increase of
the g = 1 plots there, as the Mott plateau is the strongest
in this case. The middle plot shows the corresponding re-
sults for the honeycomb Hubbard model. As seen earlier
in Fig. 6, as g is lowered, the sign plots become wider
and deeper systematically. This also shows up in the ra-

tio plot, where it is almost unity for U . 3.0, and then
increases considerably with increasing U . Crudely, the
branching point marks the regime where random sam-
pling starts to make the sign worse, leading up to the
AFMI phase, even though this is somewhat smaller than
the critical value Uc. In the ionic model (right column),
we find that the ratio initially dips below 1, and then
rises, crossing unity approximately around U ∼ 4 for the
temperature values shown here. The initial dip is a con-
sequence of the rightward shift in the g = 0 plot as can be
seen in Fig. 7, where the random sampling sign is larger
than the g = 1 value. However, as the system navigates
through the CM phase and approaches the AFMI, the
g = 1 sign stabilizes again, leading to the crossing at
U < Uc.

VII. OVERSAMPLING

In the preceding sections we have considered 0 < g < 1,
which interpolates from random sampling of the HS fields
(g = 0) and the exact simulation at g = 1. As we have
discussed, this allows us to separate two ‘sources’ of the
SP: the inherent possibility of negative determinants for
any, i.e. randomly selected, fermionic matrices, and the
preferential likelihood of such matrices induced by the
sampling. Here we explore an additional issue, namely
the behavior for g > 1. We are indirectly motivated by
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Figure 9. The average sign 〈S〉 vs. chemical potential µ at
fixed β = 3 as a function of reweight factor g > 1 at U = 8
on different lattice sizes, L = 8, 10 and 12. The SP gets
worse with increasing lattice size. Increasing g makes the
sign shallower (i.e. lessens the SP) and pushes the chemical
potential at which the minimum 〈S〉 occurs to lower values.
With fixed lattice size L = 10, lowering temperature results
in smaller 〈S〉.
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Figure 10. Oversampling case: electron density 〈n〉, double
occupancy 〈n↑n↓〉 and kinetic energy 〈K〉 vs. µ as a function
of g at U = 8 on a 10 × 10 square lattice. Bottom right
panel displays the temperature dependence of 〈K〉 at g =
1.2 (density and double occupancy have negligible lattice and
temperature dependence in this regime).

the ‘successive over-relaxation method’ [55, 56] to solve
linear equations which suggests an iterative move from k
to k+1 beyond the value at k+1 initially computed. The
analogy here is that g > 1 samples the HS field beyond
what the g = 1 determinant suggests, but, admittedly,
we are also motivated by plain old curiosity. We focus
exclusively on the square lattice.

In Fig. 9, we show plots of 〈S〉 vs. µ with 1 < g < 2 for
three different lattice sizes in three panels as marked. We
find that the minimum in the sign becomes shallower and
drifts rapidly to the left (for µ < 0, the plots are symmet-
ric about half filling) as g is increased. The observations
in the previous sections immediately suggest an expla-
nation: increasing g pushes the system towards stronger
coupling, resulting in a larger Mott plateau which im-
proves the sign and pushes the onset of the SP to more
negative µ, beyond the Mott plateau. As expected, the
SP becomes progressively worse with increasing lattice
size, as the panels clearly demonstrate. The bottom right
panel explores the temperature dependence of the sign at
g = 1.2 on a 10 × 10 lattice. We find a broad minimum
in 〈S〉 which grows deeper with reducing temperature, as
expected. As g is increased, the Mott plateau grows pro-
gressively bigger and by g = 2.0 (not shown), the sign
is practically saturated at unity throughout the range
shown, −8 < µ < 0.

In Fig. 10, we show the behaviour of local physical
variables such as the number density 〈n〉, the double oc-
cupancy 〈n↑n↓〉 and the kinetic energy 〈K〉 vs. µ in this
g > 1 regime. As the Mott insulator becomes more ex-
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Figure 11. Double occupancy 〈n↑n↓〉 (top) and kinetic energy
〈K〉 (bottom) vs. on-site interaction strength U using different
reweight factors g. Here L = 10 and β = 5. The dashed
horizontal line intersects the g = 1 curve at U = 4. To get
the same value of 〈n↑n↓〉 for g = 0.7 requires U = 5.1, and for
g = 1.2 requires U = 3. This implies Ueff = 4 for g = 1.2, U =
3.0 and for g = 0.7, U = 5.1. A similar analysis of 〈K〉 implies
that Ueff = 4 for g = 1.2, U = 2.8 and for g = 0.7, U = 9.2.

tensive with increasing g, we find that 〈n〉 saturates at
progressively more negative values of µ. The double oc-
cupancy and the kinetic energy both reduce in magni-
tude as the insulating system increasingly favors single
occupancy. The bottom right panel plots 〈K〉 for varying
temperatures at g = 1.2, demonstrating a rather weak
dependence on temperature. Similarly, we find negligible
dependence on temperature and lattice size for all these
variables in this regime (data not shown here). It is quite
striking that while the sign itself varies considerably with
temperature, the physical variables show little change in
comparison; a peek at Fig. 3 reveals that the same obser-
vation is largely true in the ‘undersampling’ case (g < 1)
as well.

VIII. RENORMALIZED COUPLING

It is useful to quantify these statements concerning the
effect of g on the physics. To do this, we determine an
effective (renormalized) interaction strength Ueff due to
g 6= 1. We proceed as follows: for a given g and U we
find the value of the repulsion, Ueff , which at g = 1 yields
the same value for local observables including the double
occupancy D = 〈n↑n↓〉 or the kinetic energy 〈K〉. In
Fig. 11, we show D and K as functions of U at half-filling
(〈n〉 = 1) on a N = 10× 10 lattice. For a given value of
U at g = 1, a horizontal cut gives the value of Ueff from
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Figure 12. Effective on-site interaction Ueff determined from
double occupancy 〈n↑n↓〉 (solid lines) and kinetic energy K
(dotted lines) vs. reweight factor g. Inverse temperature is
fixed at β = 5 (left panel) and β = 2.5 (right panel), and
data was extracted using an L = 10 lattice. For g > 1 the
inferred values are roughly equal, while for small g there is a
marked disagreement. Ueff seems to be roughly temperature
independent except for small g and large U .

the intersections with the curves at g 6= 1. Comparison
of D and K reveals that the results are not universal-
the inferred Ueff depends on the observable especially for
g < 1.

In Fig. 12, we compare the values of Ueff(g) determined
in the manner described from Fig. 11. In general, the
double occupancy D tends to predict larger Ueff than the
kinetic energy K when g < 1, but the values are similar
for g > 1.

IX. CONCLUSIONS

In this paper, we have argued that a simple view of the
SP as originating in the independent winding of fermionic
world lines across the space-time lattice is incomplete.
Instead, by studying the Hubbard model in three differ-
ent contexts, namely, on a square lattice, on a honeycomb
lattice, and with an external staggered potential, the SP
has been shown to depend non-trivially on the manner
in which the fermion determinants select the Hubbard-
Stratonovich fields. While the square lattice results show
that the SP predominantly originates from determinants
steering the simulation to low sign regions of phase space,
the honeycomb and ionic results demonstrate that ran-
dom sampling makes the sign worse, especially leading
up to the AFMI phase. Given the few models considered
here, it is difficult to infer a general rule that determines
the extent of the different contributions to the SP under a
given set of circumstances. However, as seen above, when
the determinants guide the system towards a protected
particle-hole symmetric point, such as the AFMI state,

the SP is typically reduced. Extensions of this work to
other models should be able to shed more light on this
issue.

As we have seen, shifting g away from g = 1 explic-
itly changes the values of physical observables. Indeed,
it has the effect of pushing the system to weaker cou-
pling in the sense that the effects of correlation such as
the Mott gap and the suppression of double occupancy
and hopping are reduced. Similarly, in the ‘oversampling’
case, with g > 1, the effective coupling is larger. The re-
sulting reinforcement of the Mott plateau in the square
lattice case rapidly mitigates the SP. An explicit calcula-
tion of the effective coupling puts these observations on a
more quantitative footing. However, unlike an analogous
analysis for the renormalization of the electron-phonon
coupling in a model which includes on-site interactions,
where the effective coupling was the same for different
observables [57], here only whether Ueff is reduced or en-
hanced relative to U is universal. The quantitive value of
Ueff can vary markedly depending on which observable is
analyzed.

Our procedure allows us to de-convolve the ways in
which the sign problem arises, and the alteration of the
underlying physics provides us with qualitative insight
into the observed trends. It is, of course, possible to
formulate a protocol in which the alteration of the weight
W by g 6= 1 is compensated by including an appropriate
factorW1−g in the measurement of physical observables.
In this case, expectation values would be unchanged, but
the error bars would be altered. Intuitively, setting g 6=
1 seems likely to lead to less efficient simulations as it
violates the spirit of proper importance sampling.

A final comment concerns connections to what we
have explored here to the ‘rational hybrid Monte Carlo’
(RHMC) algorithm [58] widely used in lattice gauge the-
ory. In RHMC the fermion determinant is split into many
pieces, detM =

(
det(M1/n)

)n
. The purpose there has

nothing to do with sign problem, but rather to make
the computation of a ‘pseudofermion’ approximant to the
determinant more well conditioned, allowing larger step
sizes in the integration of the equations of motion. Nev-
ertheless, it is interesting that the 1/n factor plays a very
similar role to the g considered here. The difference of
course is that our approach no longer simulates the orig-
inal model when g < 1 because we do not introduce an
increased number n = 1/g of copies of the determinant.
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Figure 13. The average sign of the matrices for individual
spins, 〈Sσ〉, vs. 〈n〉 at U = 8 as a function of g on an 8 × 8
lattice for four values of β. As seen for the total sign in the
main text, the minimum in 〈Sσ〉 becomes wider and deeper
with increasing β. The non-monotonic behaviour of the sign
with reducing g, where Sσ becomes worse initially, and then
gets progressively better, is also evident here. In contrast
to the total sign, however, the spin resolved sign is not con-
strained to be equal to 1 at half filling, and thus the sharp
upturn seen in Fig. 1 near µ = 0 is absent here for most g
values.

Computational Science Research Center.

Appendix A: Sign of Individual Spin Species

Fig. 13 shows the behavior of the sign of the individ-
ual weight matrices, 〈Sσ〉 with the rescaling parameter g
at four values of the temperature. We find that the spin
resolved sign shows very similar qualitative behaviour to
the total one except near half filling, where the constraint
of particle-hole symmetry that led to the sign approach-
ing unity near half filling is no longer present for the spin
resolved quantity. Interestingly, the plots with g & 0.8
still show an upturn near half filling, even though they do
not reach the maximum value. The non-monotonicity of
the sign noted in Fig. 1 with reducing g, where it becomes
worse initially before increasing again, is also visible here
for 〈Sσ〉.

Appendix B: Number density at different lattice
sizes

In Fig. 14, we show the number density vs. chemi-
cal potential for different lattice sizes L. Apart from the
usual features of the Mott saturation near half filling at
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Figure 14. Density 〈n〉, vs. µ at U = 8, β = 3.0 on an
8× 8 lattice as a function of g for four different values of the
lattice size L. The oscillatory behaviour at low g in the 4× 4
lattice is due to the re-emergence of the shell effect in small
lattices. As explained in detail in the main text, a completely
random sampling of the Hubbard Stratonovich fields in QMC
is more involved than a standard rescaling of T ; in this case,
pushing the system to weaker coupling by reducing the effect
of U , resulting in a reappearance of finite size effects originally
suppressed by the interaction.

high values of g, and its absence at low values of the
rescaling parameter that we have already noted in the
main text, we find that the finite size effects, evidenced
in the oscillations of 〈n〉 for g ∼ 0, are considerably en-
hanced at lower lattice sizes, as expected.

Appendix C: Sign vs. lattice size

In Fig. 15, we show the sign 〈S〉 plotted against the
density 〈n〉 as a function of the lattice size L for four dif-
ferent values of g. Aside from the usual observations, we
clearly see the finite size oscillations for the L = 4 plots,
with the sign reaching a maximum at the ‘magic density’
〈n〉 ∼ 0.625, corresponding to a closed shell filling for this
system size.

Appendix D: Finite size oscillations in the g = 0 limit

In Fig. 16, we reinforce the statements made in several
parts of the main text that as we approach g = 0, the
effect of U is reduced on certain physical attributes of the
system, and noninteracting features, such as finite size
shell effects, usually washed out by the strong interaction,
are unmasked. The left panel shows the sign at g = 0
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Figure 15. 〈S〉 vs. 〈n〉 at β = 3, U = 8 as a function of
L for different g values. Main observation is the finite size
oscillations for L = 4, with the sign reaching a maximum at
the ‘magic density’ 〈n〉 ∼ 0.625 associated to a closed shell
filling for this system size.

plotted for a large number of temperature values going
down to β = 9. Strong oscillations in 〈S〉 are observed as
lower temperatures are reached. The peak positions in
this limit are connected to the closed-shell densities for
this system size, as confirmed by the right panel, which
plots the positions of the densities corresponding to the
maxima of the sign at low temperatures. This is more
evident when comparing it to the dotted horizontal lines,
which mark the values of the closed shell densities for
8× 8 lattices.
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Figure 16. Left: 〈S〉 vs. µ at g = 0, U = 8, L = 8 for different
β values. As β is increased above 4, 〈S〉 shows strong oscil-
latory behaviour reminiscent of shell effects. Right: values of
〈n〉 at the maxima of the sign. Dotted black lines mark the
‘magic values’ of the density at this lattice size (see text).
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Figure 17. The t = 0 limit. Top left panel shows the number
density 〈n〉 vs. chemical potential µ at different g values,
showing the ‘Mott plateau’ near g = 1 disappearing as g → 0.
Top right panel plots 〈n〉 vs µ for U = 4.0, g = 0 at different β.
Inset fits these curves to a Fermi function with βeff . Bottom
left shows the same for fixed β = 3.0, g = 0 at different
coupling U , with inset plotting the same at g = 1. Final plot
shows the double occupancy, 〈n↑n↓〉, for different g values,
along with the U = 0 plot for comparison.

Appendix E: The t = 0 limit

Here, we discuss the strong coupling (t = 0) limit in
detail. As mentioned briefly in the main text, this limit
can be solved analytically at g = 1 (g = 0 is trivial, of
course), whereas for a general value of g, the solution
cannot be written down in a closed form.

The partition function for a general value of g is given
by

Z = CNLτ
∏
i

∑
{hi}

{∏
σ

(
1 + eβµ+ασ

∑
l hi(l)

)}g
(E1)

For g = 1, this is trivially easy to calculate

Z = CNLτ
∏
i

∑
{hi}

{
eβµ
(
eα

∑
l hi(l) + e−α

∑
l hi(l)

)
+

1 + e2βµ
}

= CNLτ
∏
i

{
2eβµ

(
2cosh(α)

)Lτ
+ 2Lτ

(
1 + e2βµ

)}
=
∏
i

e−βU/4
(

1 + e2βµ + 2eβ(µ+U/2)
)

(E2)

On the other hand, the general case with g 6= 1 can-
not be solved to yield an analytical expression as above,
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and have to be computed numerically. However, the
calculations may be simplified by noting that the sum-
mand is a function of

∑
l hi(l) for any given site i. Since

each site is independent, we will just choose one site and
drop the label i in what follows below. Each of the HS
fields h(l) takes values ±1. Hence, for a general situa-
tion where n of them are −1 and the rest +1, the sum∑
l h(l) = Lτ −2n. The degeneracy of such a situation is

given by LτCn = Lτ !
n! (Lτ−n)! , the number of ways of choos-

ing n variables out of Lτ . Thus, the single site partition
function, Zs, may be rewritten as

Zs = CLτ
Lτ∑
n=0

LτCn

{∏
σ

(
1 + eβµ+ασ(Lτ−2n)

)}g
(E3)

The equal time Green’s function Gσ(τ, τ) is indepen-
dent of the imaginary time co-ordinate τ and is given
by Gσ(τ, τ) = 1/(1 + eβµ+ασ

∑
l h(l)). For any given

configuration {h}, this is simply the equivalent of the
non-interacting expression

(
1− 1/(1 + eβεσ )

)
, with εσ =

−ασ∑l h(l) − µ. Calculations of expectation values of
variables A(G), expressed in terms of the equal time
Green’s function, may be performed in a similar man-
ner to Zs:

〈A〉 = Z−1 CLτ
Lτ∑
n=0

LτCn A(G){∏
σ

(
1 + eβµ+ασ(Lτ−2n)

)}g
(E4)

In Fig. 17, we show the number density 〈n〉 and the
double occupation 〈n↑n↓〉 as a function of µ for various
values of g, U and β. As seen in the general cases with fi-
nite coupling in the main text, we find that the ‘Mott’ in-
sulator at g = 1 gradually disappears as g is dialled down.
Similarly, the double occupancy in the bottom right panel
also shows that the effect of U becomes weaker as g is re-
duced. However, as the U = 0 black line indicates, even
g = 0 is very different from the non interacting case. Top
right and bottom left panels show the g = 0 plots for 〈n〉
for different values of β (fixed U) and different U (fixed
β) respectively. While these can be nominally fitted to
noninteracting Fermi functions, the effective β (top right
inset) is finite (the classical β → gβ scaling implies in-
finite temperature) but is smaller than the actual value.
Already at the single site level, this demonstrates the
non-trivial effect that tuning g has on the physics of the
interacting system.
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