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The thermoelectric transport properties of a three-dimensional multi-Weyl semimetal in the quan-
tum limit are studied. In the calculation, we consider the different effects of the Gaussian and
screened Coulomb electron-impurity scatterings. When the magnetic field is parallel to the electric
field or the temperature gradient, the magnetoresistivity is always negative, but the thermopower
strongly depends on the scattering potentials and the monopole charge. In the perpendicular field
configuration, the situation becomes complicated. For the low electron density case, the increasing
magnetic field makes the longitudinal conductivity comparable to the Hall one, which breaks the
continuous growth of the Seebeck and Nernst responses, especially for the large monopole charge
one. The thermoelectric Hall conductivity still indicates a plateau feature, but its value is multi-
plied by the monopole charge. Whether the longitudinal thermoelectric conductivity increases with
the field depends on the potential type. This may be used to unveil the scattering mechanism in
multi-Weyl semimetals.

I. INTRODUCTION

Three-dimensional Weyl semimetals are a newly-
discovered member of the topological materials family
[1–7]. Its low energy excitation is depicted by the Weyl
equation corresponding to a pair of particles with oppo-
site chirality [8]. Each Weyl node carries a monopole
charge n in the momentum space. For a single-Weyl
semimetal (n = 1), the dispersion near the Weyl nodes
is linear in all three dimensions. However, there is no
restriction on the charge of this monopole in condensed
matter physics [9]. The so-called multi-Weyl semimetals
possessing topological charge n > 1 have been recently
proposed in HgCr2Se4 [2, 10], SrSi2 [11, 12], Cu2Se and
RhAs3 [13]. The dispersion is still linear along a certain
direction, but is nonlinear along the other two directions
near the intersection points of the conduction and valence
bands. This leads to strong anisotropy in the unique col-
lective mode [14], optical [15–17] and quantum transport
properties [18, 19].

The magnetic field is believed to be an effective means
to tune the electrons in materials. There are many exotic
magnetotransport phenomena in single-Weyl semimetals
[20], including but not limited to negative magnetoresis-
tivity arising from the chiral anomaly [21–24], the anoma-
lous phase shift in the quantum oscillation [25], and
the quantum oscillation or three-dimensional quantum
Hall effect due to the Fermi arcs [26–29]. Researchers
found that the monopole charge in multi-Weyl semimet-
als can alter these magnetotransport properties dramat-
ically. The weak-field magnetoconductivity via quantum
interference is normal to +

√
B in double-Weyl semimet-

als [30], not −
√
B in single-Weyl ones. The longitudi-

nal magnetoconductivity and planar Hall conductivity
scale cubically with the charge [31, 32]. The situation
may become more sensitive when the magnetic field is so
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strong that the system is in the quantum limit, where
all the electrons occupy the lowest Landau band. Re-
cently, novel phenomena of topological semimetals in the
quantum limit have been discovered [33, 34]. Hence, the
investigation of the quantum-limit magnetotransport in
multi-Weyl semimetals is desirable.

The thermoelectric quantities may be influenced by the
external field dramatically in contrast to the electric ones
since they usually relate to the derivative of the chemical
potential [35]. Therefore, the thermoelectric transport
properties in multi-Weyl semimetals have attracted great
attention [18, 31, 32, 36–39]. Especially, in the quantum
limit there are some fascinating thermoelectric transport
properties for single-Weyl or Dirac semimetals. When
the magnetic field is perpendicular to the temperature
gradient, the thermopower or the Nernst coefficient is
non-saturating at this extreme field strength in this sys-
tem in contrast to the usual Schrödinger particles [40–42].
Further, it is demonstrated that the thermoelectric Hall
coefficient acquires a quantized value [43] in the quan-
tum limit for this field configuration. Experimentally,
these two relevant effects are observed in TaP [44] and
ZrTe5 [45, 46]. We find that in these studies the magnetic
field is perpendicular to the electric field or the tempera-
ture gradient. The situation may be completely different
when the magnetic field is parallel to the temperature
gradient. Moreover, the effects of the scattering mech-
anism and the monopole charge on these thermoelectric
quantities have not been investigated so far.

The outline of this paper is as follows. We start by
giving the Landau bands of the three-dimensional multi-
Weyl semimetal in Sec. II. In Sec. III, by considering the
Gaussian and screened Coulomb potentials, the resistiv-
ity, thermoelectric conductivity and the Seebeck coeffi-
cient are calculated when the magnetic field is parallel
to the electric field or the temperature gradient. Then
we switch to the field configuration when the magnetic
field is perpendicular to the electric field or the temper-
ature gradient in Sec. IV. We compute the resistivities
ρxx, ρxy, the thermoelectric conductivities αxx, αxy, the
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Seebeck and Nernst coefficients. Finally, we present our
conclusions in Sec. V.

II. HAMILTONIAN AND THE LANDAU
BANDS

We consider a three-dimensional multi-Weyl semimetal
with the monopole charge n. The minimal Hamiltonian
can be expressed with the form

H =

[
H+ 0
0 H−

]
, (1)

where Hχ is the single-particle Hamiltonian with the chi-
rality χ = ±1. Generally, it is given by [38, 39]

Hχ =χvnNk · σ + tχ(kz − χkW ), (2)

with

Nk =
[
kn‖ cos(nξ), kn‖ sin(nξ), (v/vn)(kz − χkW )

]
. (3)

Here vn is regarded as the general Fermi velocity in the
x-y plane, v is the Fermi velocity along the z-direction,
tχ describes the tilt of the χ branch, σ = (σx, σy, σz) are
three 2 × 2 Pauli matrices, k = (kx, ky, kz) is the wave

vector, k‖ =
√
k2
x + k2

y, and ξ = tan−1(ky/kx). The

dispersion of the system can be obtained as

εχλ = λ
√
v2
nk

2n
‖ + v2(kz − χkW )2 + tχ(kz − χkW ), (4)

which bears two tilted cones with two Weyl nodes located
at (0, 0, χkW ), respectively. The quantum number λ =
±1 denotes the conduction (valence) bands. The 2kW
is the distance between the Weyl points in momentum
space along the z-direction. We find that the tilts break
the axial symmetry around the kz axis.

Now we assume the magnetic field applied along the
z-direction B = Bẑ, the Landau gauge is taken as A =
−Byx̂. Under the Peierls substitution k→ k+eA/~ with
−e being the charge of an electron, the Hamiltonian of
the χ chirality is shown as the following form:

Hχ =

[
(χv + tχ)(kz − χkW ) χvn(k̂x − ik̂y)n

χvn(k̂x + ik̂y)n (−χv + tχ)(kz − χkW )

]
,

(5)

with k̂x = kx − y/`2B , k̂y = −i∂y and `B =
√

~/eB
being the magnetic length. The Hamiltonian depends
on the magnetic field through B. We can introduce two
ladder operators a† = (`B/

√
2)(kx − y/`2B + ∂y) and a =

(`B/
√

2)(kx− y/`2B−∂y), which satisfy [a, a†] = 1. Then
the above single Hamiltonian is rewritten as

Hχ =

[
(χv + tχ)(kz − χkW ) χωna

n

χωn(a†)n (−χv + tχ)(kz − χkW )

]
,

(6)

FIG. 1. The schematic diagram of the Landau bands for this
multi-Weyl semimetals. EF is the Fermi energy, which only
cuts the brown lowest bands in the quantum limit. τ tr+ν is the
transport time described by Eq. (22). τa−λν and τe−λν are the
intra-band and inter-band contributions of the lifetime due to
the virtual processes going back and forth between the lowest
bands χ′ν′ and the nearest ones −λν.

with ωn = vn(
√

2/`B)n. Then, the Landau energies and
wavefunctions of total Hamiltonian H for the Landau
index ν ≥ n are

Eχλν = λ

√
ν!

(ν − n)!
ω2
n + v2(kz − χkW )2 + tχ(kz − χkW ),

(7)

Ψ+λν =

[
ψ+λν

0

]
,Ψ−λν =

[
0

ψ−λν

]
, (8)

while for 0 ≤ ν < n, they are

Eχν = −χv(kz − χkW ) + tχ(kz − χkW ), (9)

Ψ+ν =

[
ψ+ν

0

]
,Ψ−ν =

[
0
ψ−ν

]
. (10)

Here

ψχλν =
ei(kxx+kzz)

√
LxLz

[
sin γ

2φν−n
cos γ2φν

]
, (11)

ψχν =
ei(kxx+kzz)

√
LxLz

[
0
φν

]
, (12)

with LxLz being the area of the sample. γ is determined
by

tan
γ

2
=

χωn
√

ν!
(ν−n)!

λ
√

ν!
(ν−n)!ω

2
n + v2(kz − χkW )2 − χv(kz − χkW )

.

And φν is the usual harmonic oscillator eigenstates at
the center y0 = kx`

2
B relating to the Hermite polynomials
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Hν

φν(kx, y) =
1√√
π2νν!`B

e−[(y−y0)2/2`2B]Hν
(
y − y0

`B

)
.

(13)

For monopole charge n = 1, the above Landau bands
reduce to the one in literature, such as [25, 47]. Similar
to the n = 1 case, the lowest band Eχν also linearly de-
pends on kz. Further, it is irrespective of the monopole
charge showing n-fold degeneracy in contrast to the single
Weyl case. The wavefunction of the lowest bands relies
on the monopole charge through the index of the har-
monic oscillator eigenstate. Fig. 1 indicates the Landau
bands of this system. Clearly, the parameter χ indicates
the chirality. We consider the quantum limit, where the
magnetic field is extremely large that the Fermi energy
only cuts the linear bands of opposite chiralities.

III. LONGITUDINAL CONFIGURATION

We first consider that both the magnetic field and the
electric field or the temperature gradient are along the
z-direction, B ‖ E ‖ ∇T ‖ ẑ, which is called the lon-
gitudinal configuration. The temperature is assumed to
be very close to zero. We concentrate on the resistivity
ρzz, thermoelectric conductivity αzz, and the Seebeck
coefficient Szz. The Mott relation is proved to be valid
for the diagonal transport quantities [48]. Hence, these
three transport quantities all relate to the conductivity
σzz. From the Mott relation, we have [48–51]

αzz = −π
2k2
BT

3e

∂σzz
∂EF

, (14)

ρzz = 1/σzz and Szz = αzz/σzz. Here kB is the Boltz-
mann constant, T is the temperature, and EF is the
Fermi energy.

When both fields are along the z-direction, by using
the Greens function the electric conductivity σzz can be
derived from the standard Kubo formula [52, 53]. In the
quantum limit, the Fermi energy is close to the charge
neutrality point. However, we assume the scattering is
so weak that EF τ � 1 is satisfied with τ being a certain
relaxation time. The products of two retarded or ad-
vanced Green’s functions could be neglected since they
are smaller than the product of the retarded and ad-
vanced ones. Then the conductivity is

σzz =
~e2

2πV

∫
dε

[
−∂nF(ε)

∂ε

]
Tr
[
v̂zĜ

A(ε)v̂zĜ
R(ε)

]
.

(15)

Here V is the volume, nF(ε) is the Fermi-Dirac dis-

tribution function, ĜR/A(ε) is the retarded (advanced)
Green’s function and v̂z is the z-component of the veloc-

ity operator with

v̂z =
1

~
∂H

∂kz
=

1

~

[
∂H+

∂kz
0

0 ∂H−
∂kz

]
. (16)

In the quantum limit, the magnetic field is so strong
that the Fermi energy only cuts the lowest Landau band
Eχν . Hence, bearing in mind the Landau degeneracy
1/(2π`2B), the σzz is given by

σzz =
~e2

4π2`2BLz

∫
dε

[
−∂nF(ε)

∂ε

] ∑
χ,ν,kz

(
vzχG

A
χνv

z
χG

R
χν

)
,

(17)

with

vzχ =〈Ψχν |v̂z|Ψχν〉 =
1

~
(−χv + tχ), (18)

GR/Aχν =〈Ψχν |ĜR/A|Ψχν〉 =
1

ε− Eχν ± i ~
2τχν

. (19)

Here τχν is the relaxation time. Using the identity

GRχνG
A
χν '

2πτχν
~

δ(ε− Eχν), (20)

and at low temperature −∂nF(ε)/∂ε ' δ(ε − EF ), the
σzz can be simplified. Further, it is proved that the re-
laxation time should be changed into the transport time
τ tr
χν at the Fermi energy when we consider the vertex cor-

rection of the velocity [52, 54]. Finally, the longitudinal
conductivity is

σzz =
e2

h

1

2π`2B

∑
χ,ν

|χv − tχ|
τ tr
χν

~
. (21)

There is an additional factor
(
1− vzχ′/vzχ

)
in the trans-

port time compared to the relaxation time given by the
Fermi golden rule

~
τ tr
χν

=2π
∑

χ′,ν′,k′x,k
′
z

〈∣∣∣Uχν,χ′ν′kx,k
χ
F ;k′x,k

′
z

∣∣∣2〉
imp

(
1−

vzχ′

vzχ

)
× δ [EF − Eχ′ν′(k′z)] , (22)

with

〈∣∣∣Uχν,χ′ν′kx,kz ;k′x,k
′
z

∣∣∣2〉
imp

being the scattering matrix el-

ement after the impurity average [48] and kχF being the
Fermi wave vector of the χ branch determined by

kχF = − EF
χv − tχ

+ χkW . (23)

The factor
(
1− vzχ′/vzχ

)
makes the χ′ = χ contribution

of the transport time vanish. This means τ tr
χν relates to

the inter-chirality electron-impurity scattering displayed
clearly in Fig. 1. For a constant transport time, the
conductivity σzz is proportional, and then the resistivity
ρxx is inversely proportional to the magnetic field. The
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thermoelectric coefficients αzz and Szz equal zero exactly
since the conductivity is irrelevant to the Fermi energy.
Note that the transport time is calculated in the first
Born approximation. The contributions of the higher
order Born approximation and the crossed impurity lines
could be neglected safely since they are small in the weak
scattering limit [55].

It is well-known that the transport time is very sen-
sitive to the scattering potential of materials [54]. Gen-
erally, it should include both intra-chirality and inter-
chirality processes though only the inter-chirality one af-
fects the transport time for the longitudinal configura-
tion. The scattering potential is assumed to be

U(r) =

[
Ua(r)σ0 Ue(r)σ0

Ue(r)σ0 Ua(r)σ0

]
. (24)

Here σ0 is the 2 × 2 identity matrix, Ua(r) and Ue(r)
represent the intra-chirality and inter-chirality electron-
impurity scatterings, respectively. We assume real scalar
scattering potentials U∗a (r) = Ua(r) and U∗e (r) = Ue(r)
having the form

Ua/e(r) =
∑
i

V
a/e
imp (r −Ri), (25)

with the impurities randomly distributed atRi. Here the
superscripts a and e mean the intra- and inter-chirality
ones. We consider two different nonmagnetic scatter-
ing potentials in this work: the Gaussian potential and
the screened Coulomb potential, which are two common
choices used in literatures [54, 56]. The random Gaussian
potential is [54]

V cimp(r −Ri) =
u0

(d
√

2π)3
e−|r−Ri|2/2d2 , (26)

where c = a/e, u0 measures the scattering strength, and
d is a parameter that determines the range of the scat-
tering potential. For the screened Coulomb potential,

V cimp(r −Ri) =
e2

4πε0εr |r −Ri|
e−κ|r−Ri|, (27)

with εr denoting the dielectric constant, and κ being
the inverse of the screening length, which is obtained
from the standard random phase approximation [48].
Though both scattering potentials decay with the dis-
tance, the different r-dependence will lead to different
Fourier transforms [48] and field-dependence of the trans-
port quantities.

For the Gaussian potential, if we define V eG = neiu
2
0

with nei being the impurity density of the inter-chirality
Gaussian scatterers, then the transport time is

~
τ tr
χν

=
V eG

2π`2B
e−4p2χd

2 2χv + tχ̄ − tχ
(χv − tχ) |χ̄v − tχ̄|

×
∑
ν′<n

(n1 + n2)!

n1!n2!

(b− 1)2n2

bn1+n2+1

× F
[
−n2,−n2;−n1 − n2;

b(b− 2)

(b− 1)2

]
. (28)

Here F (α, β; γ; z) is the (Gauss) hypergeometric func-
tion, χ̄ = −χ, n1 = max(ν, ν′), n2 = min(ν, ν′), the
parameter b = 1 + 2d2/`2B , and

pχ = −1

2

(
EF

χv − tχ
+

EF
χv + tχ̄

)
+ χkW . (29)

Then the conductivity could be obtained with the help of
Eq. (21). As d→ 0, V cimp(r−Ri)→ u0δ(r−Ri) turning
into the δ-form short-range scattering. The transport
time reduces to

~
τ tr
χν

=
nV eG
2π`2B

2χv + tχ̄ − tχ
(χv − tχ) |χ̄v − tχ̄|

. (30)

Therefore, the conductivity has the form

σzz =
e2

h

1

V eG

∑
χ

|χv − tχ|
(χv − tχ) |χ̄v − tχ̄|

2χv + tχ̄ − tχ
, (31)

which is independent of the magnetic field and the Fermi
energy. Surprisingly, this result is irrespective of the
monopole charge. Without tilting tχ = 0, it reduces to

σzz =
e2

h

v2

V eG
. (32)

We get back to the same result in earlier work [53].
As long as d 6= 0, the conductivity σzz, the resistivity

ρzz, and the thermoelectric conductivity αzz depend on
the monopole charge and the magnetic field. It is noted
that since the ν′-summation of the transport time Eq.
(28) is independent of the chirality and only pχ relies on
the Fermi energy, the Seebeck coefficient Szz under the
Gaussian potential is irrespective of the magnetic field B
for fixed Fermi energy. Without tilts, Szz is given by

Szz =
π2k2

BT

3e

8d2

v2
(vkW − EF ). (33)

Usually, the total electron density Ne is fixed in a neutral
solid. Then the Fermi energy changes with the field. In
the quantum limit, the Fermi energy reduces as the field
rises

EF =
(2π)2`2BNe

n
∑
χ

1
v−χtχ

+ Λ, (34)

which is inversely proportional to the monopole charge
with Λ being the minimum energy. Hence, for the fixed
electron density case, Seebeck response will depend on
the magnetic field through the magnetic-field-dependent
Fermi energy.

Now we move to the analysis of the screened Coulomb
potential. In this case, the transport time is

~
τ tr
χν

=
V eC`

2
B

8π

2χv + tχ̄ − tχ
(χv − tχ) |χ̄v − tχ̄|

∑
ν′

n2!

n1!

×
∫ ∞

0

dζ
ζn1−n2e−ζ

[ζ + (4p2
χ + κ2)`2B/2]2

[
Ln1−n2
n2

(ζ)
]2
,

(35)
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where V eC = neie
4/(ε20ε

2
r) and Lnm(x) is the associated

Laguerre polynomial. Here the summation of the τ tr
χν is

in connection with the chirality, hence the B-dependence
of the Seebeck response cannot be canceled through the
division αzz/σzz even for the fixed Fermi energy case.

The lowest magnetic field of the quantum limit BQ of
the electron conduction corresponds to the case where
the Fermi energy cuts the band bottom of Eχ+n,

Eχ+n|min =

√
n!ωn
v

√
v2 − t2χ = EF . (36)

Specifically, the critical field without tilts is decided from

√
n!αn(

√
2/`BQ)n =

(2π)2v`2BQNe

2n
+ Λ, (37)

with `BQ =
√
~/eBQ. With the development of the

technology for the material synthesis, the quantum limit
could be realized at relatively low field. At Ne = 1022

m−3 (other needed parameters are listed in the caption
of Fig. 2), BQ is about 5 T, which is achievable in ex-
periments [47]. The corresponding maximum magnetic
length is `BQ ' 11.5nm.

The numerically calculated electrical resistivity, the
thermoelectric conductivity, and the Seebeck coefficient
for various monopole charges as functions of the magnetic
field are shown in Fig. 2, where (ai) and (bi) are for the
Gaussian and the Coulomb potentials, respectively. In
the following calculations, the minimum magnetic field
is set to be 5 Tesla, above which the system is well in
the quantum limit. As we can see from the figure, all
the resistivities with different charges decrease with the
magnetic field displaying the negative magnetoresistivity
behavior for both scatterings. It is believed that the neg-
ative magnetoresistivity is regarded as the fingerprint of
the Weyl semimetal. Here we demonstrated it is robust
to the kind of the scattering and the monopole charge. In
the Gaussian one, the remoter distance d makes the scat-
tering weaker, and then the resistivity decreases. How-
ever, the αzz always increases with the field, which can
be boosted by the disorder distance. More strikingly,
the monopole charge influences the transport, which re-
duces the resistivity and enhances the thermoelectric con-
ductivity for both two scattering cases. In the presence
of Gaussian scattering, the Seebeck coefficient increases
with field and nearly saturates at large field. The satu-
rated values are proportional to d2, which is consistent
with the approximate equation (33). This is also valid
for large distances [48]. The monopole charge somewhat
enhances the Szz. In contrast, the Seebeck response de-
scends with the field and the monopole charge for the
Coulomb impurity scattering. We then can deduce that
the Seebeck Szz is very sensitive to the scattering poten-
tial and it can not realize the continuous growth in this
longitudinal configuration. The ratios of these thermo-
electric quantities could be seen in [48].
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FIG. 2. The resistivity ρzz, the thermoelectric conductivity
αzz, and the Seebeck coefficient of the multi-Weyl semimetals
for the B ‖ E ‖ ∇T ‖ ẑ case as functions of magnetic field B
under the Gaussian (ai) and screened Coulomb (bi) potentials
for different monopole charges n = 1 (red), 2 (blue), 3 (green).
Here i = 1, 2, 3. d is a parameter that determines the range of
the Gaussian scattering. d = 2, 4, 6 are displayed with solid,
dash, and dash-dot lines. The values of the parameters are:
v = 0.1 eVnm, t− = 0.01 eVnm, t+ = 0.02 eVnm, kW = 0.1
nm−1, V eG = 10−4 eV2nm3, V eC = 0.1 eV2/nm, εr = 10, Λ = 0
and Ne = 1022 m−3.

IV. TRANSVERSE CONFIGURATION

 

FIG. 3. The self-energy of the advanced Green’s function
GAχλν . The Green’s functions with the superscript (0) mean
the bare ones.

The other field configuration frequently used experi-
mentally is that the electric field (or the temperature
gradient) and magnetic fields are normal to each other,
which is called transverse configuration. We assume that
the magnetic field is still along the z-direction. Since the
ẑ-direction magnetic field quantizes the motion of elec-
trons in the x-y plane, the Landau bands only disperse
with kz. Hence, the diagonal element of v̂x vanishes, com-
pletely. If the electric field is along the x direction, there
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will be a nonzero longitudinal conductivity σxx along this
direction, which relates to the higher-order off-diagonal
velocity element. In single Weyl semimetals, it couples
the zeroth Landau band with the first Landau band in
the quantum limit. However, for the multi-Weyl case,
the contributing velocity element couples the Eχν bands
with the higher bands Eχλ′ν′ , originating from the intra-
chirality process,

vχxν,λ′ν′ =〈Ψχν(kz)|v̂x|Ψχλ′ν′(kz)〉

=χ
nωn`B√

2~

√
(ν′ − 1)!

(ν′ − n)!
sin

γχλ′ν′

2
δνν′−1. (38)

Here δνν′−1 is the Kronecker delta function. In the quan-
tum limit, the conductivity σxx is given by

σxx =
~e2

2πLz

1

2π`2B

∫ ∞
−∞

dε

[
−∂nF(ε)

∂ε

]
×

∑
χ,ν<n,λ′,ν′≥n,kz

Re
[
(vχxν,λ′ν′)

2GAχλ′ν′G
R
χν

]
, (39)

where

GAχλν =
1

ε− Eχλν − ΣAχλν
.

Since the Fermi energy only cuts the lowest bands Eχν ,
the self-energy is shown in Fig. 3 given by [53, 54, 57]

ΣAχλν = i
∑

χ′,ν′<n,k′x,k
′
z

〈∣∣∣Uχλν,χ′ν′kx,k
χ
F ;k′x,k

′
z

∣∣∣2〉
imp

ImG
(0)A
χ′ν′ ,

with the bare Green’s function G
(0)A
χ′ν′ =

1/(ε− Eχ′ν′ − i0+). The self-energy can be calcu-
lated as

ΣAχλν = iπ
∑

χ′,ν′<n,k′x,k
′
z

〈∣∣∣Uχλν,χ′ν′kx,k
χ
F ;k′x,k

′
z

∣∣∣2〉
imp

× δ [EF − Eχ′ν′(k′z)] .

Hence, the advanced Green’s function GAχλ′ν′

GAχλ′ν′ =
1

ε− Eχλ′ν′ − i ~
2τχλ′ν′

. (40)

The τχλν is the lifetime due to the virtual process going
back and forth between bands Eχ′ν′ and Eχλν with

~
τχλν

≡ ~
τχλν↔χ′ν′

,

=2π
∑

χ′,ν′<n,k′x,k
′
z

〈∣∣∣Uχλν,χ′ν′kx,k
χ
F ;k′x,k

′
z

∣∣∣2〉
imp

× δ [EF − Eχ′ν′(k′z)] . (41)

In contrast to the longitudinal configuration where the
transport time only relates to the inter-chirality process,

both the intra- and inter-chirality processes contribute to
the lifetime

~
τχλν

=
~

τaχλν(0)
+

~
τeχλν(2pχ)

. (42)

The lifetime due to the different process can be written
in a unified form

~
τ cχλν(p)

=nci cos2 γχλν(kχF )

2

1

|v − χ̃tχ̃|

×
∑

ν′<n,qx,qy

|uc(qx, qy, p)|2Cνν′(q2
‖`

2
B/2),

(43)

with

Cνν′(ζ) =
n2!

n1!
ζn1−n2e−ζ

[
Ln1−n2
n2

(ζ)
]2
. (44)

Here χ̃ = χ when c = a, but χ̃ = −χ when c = e. uc(q) is
the Fourier transform of the scattering potential V cimp(r),
and nci is the impurity density of the corresponding scat-
terers. These two virtual processes are displayed in Fig.
1 indicated by the black lines with arrows. At zero tem-
perature, the conductivity σxx can be simplified as

σxx =
~e2

(2π)2

1

2`2B

∑
χ,λ

(vχxn−1,λn)2

|χv − tχ|

×
~

2τχλn

(EF − Eχλn)
2

+
(

~
2τχλn

)2

∣∣∣∣∣∣∣
kz=kχF

. (45)

The element vχxn−1,λn implies that the coupling between
the lowest band Eχn−1 and the nearest high band Eχλn
gives rise to the conductivity σxx different from the single
Weyl semimetal in the quantum limit [47, 53]. In the
single Weyl semimetal, the velocity element couples the
zeroth band to the first one. Hence, the conductivity of
the multi-Weyl semimetals will strongly depends on the
monopole charge.

Similarly, the conductivity σxx for this B ‖ ẑ and
E ‖ x̂ case also strongly depends on the scattering po-
tential. The relaxation time for the Gaussian potential
is calculated as [48]

~
τ cχλν(p)

=
V cG

2π`2B
e−p

2d2 cos2 γχλν(kχF )

2

1

|v − χ̃tχ̃|

×
∑
ν′<n

(n1 + n2)!

n1!n2!

(b− 1)2n2

bn1+n2+1

× F
[
−n2,−n2;−n1 − n2;

b(b− 2)

(b− 1)2

]
. (46)
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And for the screened Coulomb scattering, it is given by

~
τ cχλν(p)

=
V cC`

2
B

8π
cos2 γχλν(kχF )

2

1

|v − χ̃tχ̃|

×
∑
ν′<n

n2!

n1!

∫ ∞
0

dζ
ζn1−n2e−ζ

[ζ + (p2 + κ2)`2B/2]2

×
[
Ln1−n2
n2

(ζ)
]2
. (47)

For this transverse configuration (B ‖ ẑ and E ‖ x̂),
there also exist the Hall conductivity σyx. For this three-
dimensional system dispersing with kz, it is known that
each kz contributes a quantized Hall conductance e2/h,
hence the total Hall conductivity is [53]

σyx =
∑
χ,ν

(−χ)

∫ kχF

kχcut

dkz
2π

e2

h
. (48)

Here kχcut = −Λ/(χv − tχ) + χkW is the cut-off of the
kz. We can deduce that

σyx =n
e2

2πh

∑
χ

EF − Λ

v − χtχ
. (49)

With the help of the expression of the electron density at
zero temperature Ne =

∑
χ,ν<n

∑
kx,kz

Θ(EF − Eχν) =

n 1
(2π)2`2B

∑
χ(−χ)(kχF − k

χ
cut), it could be found that the

above Hall conductivity σyx = eNe/B, this is the well-
known classical Hall conductivity. Note that the Hall
conductivity is calculated in the dissipationless limit
since the disorder plays higher order contribution. More-
over, the resistivities ρxx and ρxy can be written as

ρxx =
σxx

σ2
xx + σ2

yx

, (50)

ρxy =− ρyx =
σyx

σ2
xx + σ2

yx

. (51)

In the presence of B ‖ ẑ and −∇T ‖ x̂, the total
current is J = σ · E + α · (−∇T ) with σ and α being
the conductivity and thermoelectric tensors. In the open-
circuit situation (J = 0), the temperature gradient leads
to an electric field E = (Ex, Ey), then the Seebeck and
Nernst coefficients are obtained as [35]

Sxx =− Ex/|∇T | = ρxxαxx + ρyxαxy, (52)

Sxy =Ey/|∇T | = ρxxαxy − ρyxαxx. (53)

The thermoelectric conductivity αij in the quantum limit
can be obtained from [43, 58]

αxy =
2e

h

∑
χ,ν,kz

(−χ)s

(
Eχν − µ
kBT

)
,

with µ being the chemical potential. Here the entropy
per electron state equals to

s(x) = kB

[
ln (1 + ex)− x

1 + e−x

]
.

FIG. 4. The conductivities, electrical resistivities ρxx and
ρxy, thermoelectric conductivity αxx, Seebeck coefficient Sxx,
and Nernst coefficient Sxy of the multi-Weyl semimetals as
functions of magnetic field under Gaussian (ai) and screened
Coulomb (bi) scatterings in the transverse B ‖ ẑ,E ‖ ∇T ‖ x̂
case. The inset of (b4) indicates the ratio of the Hall re-
sistivities due to the Coulomb potential and the Gaussian
one. Here α = 0.05 eVnmn, V aG = V eG = 10−4 eV2nm3, and
V aC = V eC = 0.1 eV2/nm. The other parameters are the same
as Fig. 2.

At low temperature µ � kBT , the thermoelectric Hall
conductivity then is found as

αxy =
πnek2

BT

6h

∑
χ

1

v − χtχ
, (54)
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which is a constant independent of the magnetic field
and the Fermi energy or the electron density. The re-
sult is in accordance with the one of Fu’s group when
n = 1 and without tilts [43]. For multi-Weyl semimetals,
this constant thermoelectric Hall conductivity is propor-
tional to the monopole charge. The coefficient

∑
χ

1
v−χtχ

could be found from the energy band calculation or the
angle-resolved photoemission spectroscopy. Hence, the
measurement of the αxy in the quantum limit can be ap-
plied to determine the value of n.

For the given lifetimes due to different electron-
impurity scatterings, the longitudinal conductivity σxx
could be obtained numerically. Then the resistivities ρxx
and ρxy, thermoelectric conductivity αxx, Seebeck and
Nernst coefficients Sxx and Sxy are got, directly. For
the Gaussian and the screened Coulomb potentials, these
transport coefficients are depicted in Figs. 4 (ai) and (bi).
In previous works [40, 41], σyx � σxx is assumed, which
leads to the nearly linear and non-saturating Seebeck co-
efficient. This assumption is valid in the dissipationless
limit. In the dissipative case, this assumption means a
large density, and then a very large BQ since σyx ∝ Ne.
For instance, the field BQ ' 40 T for a massive Dirac
semimetal having Ne = 1024 m−3 [41]. Nowadays this
quantum limit field is not easily accessible, experimen-
tally. Because of the low electron density used in our
calculation (Ne = 1022 m−3), the value of the Hall con-
ductivity σyx is not always larger than the longitudinal
one σxx. We can see this feature clearly in Fig. 4 (a1) for
the Gaussian potential with d = 2, 4 nm. The competi-
tion between these two conductivities breaks the continu-
ous growth of the Seebeck and Nernst coefficients due to
the denominator in the resistivities σ2

xx + σ2
yx. This low

electron density or small BQ has been achieved, recently
[47, 59].

Since τ cχλν ∝ ep
2d2 for the Gaussian scattering, the life-

time enhances drastically as the distance d increases. It
is due to the weakening of the scattering. Further, at
this extremely large field, the Fermi energy only cuts the
lowest band Eχν . The nearest band Eχλn is well above
the Fermi energy, hence |EF − Eχλn| � ~/τ cχλν . There-

fore, from the expression of σxx Eq. (45), we can deduce

σxx ∼ ~/τ cχλν ∝ e−p
2d2 . The smaller the distance is, the

larger the conductance is. This is in vivid contrast to the
longitudinal configuration E||B, where the conductivity
is normal to the transport time, then the σzz increases
with the distance d. At the large distance d = 6 nm, the
σxx is smaller than the Hall conductivity for the single
Weyl semimetal (n = 1). Hence, the usual linear Hall
resistivity (the thick red line) could be seen in Fig. 4
(a3). In this situation, the longitudinal resistivity, See-
beck and Nernst responses increase monotonously shown
with thick red lines in (a2), (a5), and (a6). If one re-
duces d, σxx increases and becomes comparable to the
σyx leading to the nonlinear Hall resistivity because of
the factor σ2

xx +σ2
yx. Especially, at a very small distance

d = 2 nm, the Hall resistivity shows a peak at near 20 T

shown with the red solid line in Fig. 4 (a3). This peak
feature could also be seen in ρxx, Sxx, and Sxy since they
all depend on σ2

xx+σ2
yx. The Seebeck and the Nernst co-

efficients may nearly decrease to zero in sharp contrast to
Refs. [40, 41]. Moreover, the monopole charge could also
somewhat enhance the longitudinal conductivity σxx at
large field. Hence, the continuous growth of the Seebeck
and Nernst coefficients can be broken even at a large dis-
tance. The monopole charge could enhance the Sxx and
Sxy at a fixed field. This competition could also be seen
from the ratio of the Hall resistivities ρC

xy/ρ
G
xy shown in

the inset of (b4) with ρ
C/G
xy being the Hall resistivity due

to the Coulomb or Gaussian potential. At the small field,
the ratio nearly equals one, which means the Hall con-
ductivity dominates. With increasing the field, it departs
from one since the conductivity σxx becomes more and
more important. This behavior could also be seen from
the ratio of Sxx [48].

For screened Coulomb impurity scattering, the behav-
iors of the ρxx, ρxy, Sxx, and Sxy are qualitatively anal-
ogous to the ones for Gaussian potential at d = 6 nm.
And the monopole charge affects them in a similar man-
ner. This is due to the specific parameters used in this
work for two potentials decaying with distance. However,
the field-dependence of the thermoelectric conductivities
for two potentials is completely different [see (a4) and
(b4)]. This is because that αxx directly relates to the
derivative of the Fermi energy, hence it is more sensitive
to the scattering type. These two distinct behaviors of
αxx may help us to find out the type of the electron-
impurity scattering in Weyl semimetals, which is still a
challenging task in experiments.

Even for a constant lifetime, the competition between
σxx and σyx may exist [48]. Hence, the resistivities,
and the thermoelectric coefficients Sxx and Sxy will show
peaks analogous to the Gaussian and screened Coulomb
scatterings. However, the thermoelectric conductivity
αxx displays completely different behavior and it is also
sensitive to the monopole charge.

V. SUMMARY

In conclusion, we have investigated the thermoelectric
transport of multi-Weyl semimetals in the quantum limit
within the linear response theory. The dispersion be-
comes anisotropic if the topological charge n > 1. In
the presence of the Gaussian potential and the screened
Coulomb potential, we discuss two field configurations.
One is the longitudinal configuration, where the magnetic
field and the electric field or the temperature gradient are
both along the z-direction. The other is the transverse
one: the magnetic field is along the z-direction, but the
electric field or the temperature gradient is along the x
direction.

In the longitudinal configuration, the resistivity shows
the negative magnetoresistivity behavior for both two
kinds of scattering potentials, which is also robust to
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the monopole charge. The thermoelectric conductivity
always increases with the field, which can be boosted by
the disorder distance of the Gaussian potential. How-
ever, the behaviors of the Seebeck coefficient strongly
rely on the scattering types. For the transverse configu-
ration, the lifetime originates from the virtual intra- and
inter-band scattering processes. We find that the non-
saturating Seebeck and Nernst coefficients occur in the
regime σyx � σxx. This condition is valid in the system
with a large electron density resulting in a very large BQ.
For a small density system, the BQ is small, hence two
conductivities σyx and σxx are comparable. This breaks
the continuous growth of Sxx and Sxy. It is obvious for

a system with a large monopole charge or a short-range
scattering distance. Furthermore, the magnitude of αxx
increases with the magnetic field for the Gaussian scatter-
ing, but decreases for the Coulomb one. Our work may
point out the route to search the materials with larger
thermopower response.
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