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We present a canonical derivation of an influence superoperator which generates the reduced
dynamics of a Fermionic quantum system linearly coupled to a Fermionic environment initially at
thermal equilibrium. We use this formalism to derive a generalized-Lindblad master equation (in the
Markovian limit) and a generalized version of the hierarchical equations of motion valid in arbitrary
parity-symmetry conditions, important for the correct evaluation of system correlation functions
and spectra.
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The reduced dynamics of a quantum system linearly
coupled to Bosonic and Fermionic baths at thermal equi-
librium can be fully specified by correlation functions
characterizing the environments. Using path integral
techniques, Feynman and Vernon [1] used these corre-
lations to define influence functionals able to generate
the effective dynamics of the system after tracing out
the degrees of freedom of a Bosonic environment [2, 3].
The capability of the path integral formalism to intrin-
sically encode the Fermionic anticommutation relations
using Grassman variables enabled the extension of the
the original derivation to the Fermionic case [4–8]. As
an alternative to these path-integral approaches, the in-
fluence of the environment on the system can also be
derived through stochastic [9–13] and algebraic [14–17]
techniques or by mapping the bath into physical [18–27]
or unphysical [28–33] degrees of freedom. In particular,
for Bosonic environments, it is also possible to derive
“influence superoperators” using a canonical, i.e., purely
operator-based, formalism [34–37].

In order to generalize these canonical methods to the
Fermionic case, it is necessary to model anticommutation
rules throughout the time evolution, akin to the strate-
gies involving Grassman variables in path integrals. To
achieve this, we use a parity-based formalism to present
a purely canonical derivation of an influence superopera-
tor which describes the effects of Fermionic environments
initially at thermal equilibrium linearly coupled to a quan-
tum system. The resulting expression allows the com-
putation of the system’s dynamics even when the ini-
tial state is in a superposition of an even-odd number
of Fermions. This is, in principle, generally prevented
by parity and charge superselection rules [38, 39]. How-
ever, by refraining from making this (usually) physical
assumption, we allow the formalism to be used in more
general contexts, such as the computation of correlation

functions [40] (where fictitious states evolve in time).
To demonstrate the utility of this formal re-

sult, we use it to: (i) derive a generalized
Gorini–Kossakowski–Sudarshan–Lindblad master equa-
tion [41, 42] (valid in the Markovian regime) and to (ii)
derive a generalized version (without parity-symmetry
restrictions) of another formally exact method: Hierar-
chical Equations of Motion (HEOM) [7, 8, 43–49]. As
mentioned earlier, relaxing parity-symmetry restrictions
is important for the correct evaluation of system cor-
relation functions and spectra, as demonstrated in the
application of the HEOM method to single-impurity
Anderson models and Kondo physics [40].

This article is organized as follows. The main article
focuses on the logic of the derivation, highlighting the
key conceptual steps. At the same time, each section is
associated to a supplementary one presenting technical
details which are necessary to justify the proof but not
essential to its overall understanding.

The results are described in two main sections. Section
I presents the canonical derivation of the influence su-
peroperator which we split into four parts: In subsection
IA, we introduce a parity-based formalism and analyze
Fermionic partial traces. In subsection IB, we use this
setup to trace out the Fermionic bath and to further ex-
pand the reduced dynamics in terms of a Dyson series. In
subsection IC, we explicitly highlight the dependence of
each n-point correlation function appearing in the Dyson
series with respect to the 2-point correlations, i.e., we
invoke a version of the Wick’s theorem for Fermionic su-
peroperators. Finally, in subsection ID, the resulting ex-
pression is formally re-summed into a compact expression
written in terms of an influence superoperator, which is
the main result of this article.

In section II, we use this result to derive a Lindblad
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Figure 1: Diagram highlighting the milestones for the
derivation and the most important equations in this work.

master equation in the Markovian regime (subsection
IIA) and to derive the HEOM (subsection II B). In sec-
tion IIC, we discuss the importance of arbitrary parity-
symmetry for computing correlation functions.

I. FERMIONIC INFLUENCE
SUPEROPERATOR

We start by introducing the physical setting which we
are going to analyze. We consider an open quantum sys-
tem [34, 50–59] described by the Hamiltonian (~ = 1
throughout the article)

H = HS +HE +HI , (I.1)

where HS is the system Hamiltonian (which we assume
to have even Fermionic parity) and HE =

∑
k ωkc

†
kck

is the Hamiltonian of the environment in which the kth
Fermion has energy ωk and it is associated with the de-
struction operator ck. Here, the even/odd parity projec-
tions of the operator OS in the domain S = S/E, are

defined as

O
e/o
S =

ˆ̂
P

e/o
S [OS ] , (I.2)

where ˆ̂
P

e/o
S [·] is the projector onto the even/odd sub-

spaces. Throughout this article, we use the double hat
notation to label superoperators. Explicitly,

ˆ̂
P

e/o
S [·] = P e

S [·]P e/o
S + P

o/e
S [·]P o

S , (I.3)

where

P
e/o
S = (1± PS)/2 , (I.4)

with

PS =
∏
k∈S

exp[iπf†kfk] . (I.5)

Here, fk destroys a Fermion in the domain S (for ex-
ample, when S = E, fk → ck). We further assume the
interaction Hamiltonian to be

HI =
∑
k

gk(sc†k − s†ck) , (I.6)

where s is an (odd-parity) Fermionic operator for the
system and gk quantifies the interaction strength between
the system and the kth Fermionic mode.

We define ρ(t) to be the density matrix of the full sys-
tem+environment, i.e., the solution of the Shrödinger
equation with Hamiltonian in Eq. (I.1) and subject to
the initial condition

ρ(0) = ρeq
E ρS(0) , (I.7)

where ρeq
E characterizes the environment in thermal equi-

librium. While this implies the state of the environment
to have even parity, we are not going to assume any par-
ity symmetry for the system’s state ρS(0).
The main quantity of interest of this article is the re-

duced density matrix ρS(t) which is the one containing
the same information as ρ(t) as far as expectation values
of system operators are concerned, i.e., which fulfills

TrES [ASρ(t)] ≡ TrS [ASρS(t)] , (I.8)

for all operators AS with support on the system.
Before attempting to find a formal solution for ρS , it

is important to observe that the Fermionic anticommu-
tation rules require a careful analysis of the concepts of
partial trace and tensor product [60–62]). For example,
the operators s and ck in Eq. (I.6) cannot be interpreted
as acting independently (as they would in a tensor
product) on the system and the environment Hilbert
spaces due to the fundamental fact that independent
Fermions anticommute rather than commute between
each other. In parallel, when the full density matrix
ρ(t) has both even and odd parity contributions, the
usual definition ρS = TrEρ(t) cannot be deduced from
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Eq. (I.8) because of the properties of the partial trace.

Following [62], these Fermionic properties can be mod-
eled by a formalism which keeps track of the parity of
operators throughout the time-evolution and which we
introduce in the next section.

A. A parity-friendly formalism

As a direct consequence of the Fermionic anticommu-
tation rules, two Fermionic operators are, in general,
not independent even when they have support on dif-
ferent physical spaces (here the environment and the
system). At the same time, Fermionic systems come
equipped with a Z2 graded structure, i.e., a decompo-
sition of the Hilbert space into an even- and odd-parity
sector. Following Schwarz and collaborators [62], it is
possible to take advantage of this structure in order to
define a parity-formalism in which the system’s operators
can be effectively treated as independent from the envi-
ronmental ones, while still accounting for all Fermionic
effects.

To do this, we define (see [62]) “hat” system operators
ÔS as being the same as OS but commuted to the right
of all environmental operators, i.e., ÔSOE = OEÔS for
all environmental operators OE . This definition is non-
trivial only when OS has odd parity, in which case, the
relation with ÔS depends on the number of environmen-
tal Fermions present on the right of OS . Explicitly, we
can write, see Eq. (B.4),

OS = Ôe
S + PEÔ

o
S , (I.9)

where

PE =
∏
k∈E

exp [iπc†kck] . (I.10)

The simplicity of Eq. (I.9) should not hide its ability
to introduce a Bosonic-like structure in the formalism
as “hat” system operators commute with environmental
ones by construction.

This definition also allows us to write the following
identity for partial traces, see Appendix B 1 b, Eq. (B.18),

TrES [ASOEÔS ] = TrS
{
ASTrE [OE ]Ôe

S

+ TrE [PEOE ]Ôo
S

}
, (I.11)

where the operators OE , AS , and OS have support on the
environment and system. By taking AS to be arbitrary,
this equation can be used to implicitly define properties
of Fermionic partial traces (at least when “hat” operators
are present) thereby overcoming the issues originating
from the fact that, in general Tr[OEOS ] 6= TrE [OE ]OS
in Fermionic systems, see Eq. (B.14).

1. Strategy to solve for the reduced system dynamics

Taken together, Eq. (I.9) and Eq. (I.11) give us a prac-
tical strategy to find a formal solution for ρS(t). The first
step, is to use Eq. (I.9) to write the initial condition in
Eq. (I.7) as

ρ(0) = ρeq
E ρS(0) = ρeq

E ρ̂
e
S(0) + ρeq

E PE ρ̂
o
S(0) , (I.12)

and the interaction Hamiltonian in Eq. (I.6) as

HI = PEB
†ŝ− PEBŝ† , (I.13)

where B ≡ ∑k gkck. The second step, analyzed in the
next section, is to formally solve the Shrödinger equation
for ρ(t) to find a decomposition of the full density matrix
in the form

ρ(t) =
∑
i

ρiE ρ̂
i
S . (I.14)

Using the substitution OEÔS → ρ(t) in the left hand-side
of Eq. (I.11), direct comparison between the right-hand
side of Eq. (I.8) and Eq. (I.11) gives the following explicit
definition of reduced density matrix as

ρS(t) =
∑
i

TrE [ρiE ]ρ̂i,eS + TrE [PEρ
i
E ]ρ̂i,oS , (I.15)

see derivation of Eq. (B.22) in Appendix B 1 b for more
details.

As promised, in the next section we are going to find
the explicit expression for the terms in Eq. (I.14) which,
used in the equation above, will return the expansion of
ρS(t) in terms of a “reduced” Dyson series.

B. Reduced Dyson series

In the interaction frame, the full density matrix ρ(t)
can be written as the Dyson series

ρ(t) =

∞∑
n=0

(−i)n
n!

ˆ̂
T b
∫ t

0

[
n∏
i=1

dti
ˆ̂
H×I (ti)

]
ρ(0) , (I.16)

where, using Eq. (I.13), HI(t) = PEB
†(t)ŝ(t) −

PEB(t)ŝ†(t) (in which we used the invariance of PE un-
der the free dynamics of the bath) in terms of ŝ(t) =

U†S(t)ŝUS(t) and B(t) =
∑
k gkcke

−iωkt with U(t) =

exp[−iHSt]. Here ˆ̂
HX
I (t) = [H, ·], where we recall that

the double hat notation is used to label superoperators.
Here, the time ordering ˆ̂

T b is the same one used for
Bosonic variables. This is due to the fact that the Hamil-
tonian is even in the fields, see [63] pag. 217 and pag. 132.
We further stress that the time-ordering is defined as act-
ing at the level of superoperators, see Eq. (B.24).

The main ingredients of Eq. (I.16) are contributions of
the form ˆ̂

H×I (tn) · · · ˆ̂
H×I (t1)ρ(0) which, using Eq. (I.13)
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for the Hamiltonian and Eq. (I.12) for the initial state,
can be written as a sum over terms with the following
structure

ˆ̂
TE ˆ̂ρ′nE [ρeq

E ]
ˆ̂
TS ˆ̂ρ′nS [ρ̂e

S ] +
ˆ̂
TE ˆ̂ρ′′nE [ρeq

E PE ]
ˆ̂
TS ˆ̂ρ′′nS [ρ̂o

S ], (I.17)

where we omitted the zero-time specification in ρ
e/o
S (0)

and where the explicit expressions are presented in Ap-
pendix B 2, see Eq. (B.37). Here, we highlight that ˆ̂ρ′nE
and ˆ̂ρ′′nE involve environmental superoperators and that
ˆ̂ρ′nS and ˆ̂ρ′′nS are defined as the product of n superopera-
tors each evaluated at a different point in time.

Using the decomposition ˆ̂
T b =

ˆ̂
TE

ˆ̂
TS , these products

are time-ordered in terms of both the environment and
the system superoperators. Interestingly, sinceHI is even
in the fields, ˆ̂

TE and ˆ̂
TS can be chosen as Fermionic, i.e.,

producing an extra-minus sign each time they apply a
swap. This choice is made in order to keep the sym-
metries explicitly consistent with the application of the
Fermionic Wick’s theorem as we will see in the next sec-
tion.

By using Eq. (I.9) into the expressions for ˆ̂ρ′nS and ˆ̂ρ′′nS
present in Eq. (I.17), the full density matrix ρ(t) is writ-
ten in terms of the decomposition presented in Eq. (I.14),
see Eq. (B.35) for further details. In turn, this justifies
the use of Eq. (I.15) for the reduced density matrix, ul-
timately allowing to finally trace out the environmental
degrees of freedom to get, see Eq. (B.46),

ρS =

∞∑
n=0

(−1)n

n!

∫ t

0

(
n∏
i=1

dti

) ∑
qn,λn···q1,λ1

Cλn···λ1
qn···q1

ˆ̂
TS

[
ˆ̂
Sλ̄nqn · · ·

ˆ̂
Sλ̄1
q1

]
ρS(0) ,

(I.18)

where we observed that there is no need to keep the “hat”
notation for system operators once the environment has
been traced out, and where

Cλn···λ1
qn···q1 = TrE

[
ˆ̂
TE

ˆ̂
Bλnqn · · ·

ˆ̂
Bλ1
q1

]
[ρeq
E ] , (I.19)

with λ̄ = −λ. For notational convenience, we also hide
the time-dependence of the superoperators ˆ̂

B and ˆ̂
S de-

fined as

ˆ̂
Bλq [·] = δq,1B

λ[·] + δq,−1
ˆ̂
PE [·Bλ]

ˆ̂
Sλq [·] = δq,1s

λ[·]− δq,−1
ˆ̂
PS [·sλ] ,

(I.20)

where, for clarity, we omitted the time dependence (see
Eq. (B.87) for a more explicit version). This notation
uses the upper indexes to denote the presence (λ = 1)
or absence (λ = −1) of a Hermitian conjugation, and
lower indexes to characterize the left (q = +1) or right
(q = −1) action. Here, PS =

∏
k∈S exp [iπc†kck] is the

parity operator for the system. Remarkably, the disjoint
action on the odd and even initial conditions originally
present in the terms described in Eq. (I.17) has now been

completely encoded into the correlation Cλn···λ1
qn···q1 and

the superoperators ˆ̂
S which act on the full ρS(0) directly.

The environment considered here is described by a
quadratic Hamiltonian and it is initially at thermal equi-
librium. These characteristics specify the Gaussian na-
ture of the bath, i.e., the possibility to reduce the
n−point correlation functions appearing in Eq. (I.18) in
terms of 2-point ones. We analyze this in more detail in
the next section.

C. Wick’s theorem

At first sight, it is not obvious how to prove a Wick’s
theorem for the correlations defined in Eq. (I.19). The
issue is that the usual derivation (see for example, [64],
pag. 243) fails because superoperators do not obey clear-
cut commutation or anticommutation relations. For ex-
ample, superoperators which create different Fermionic
particles on different sides of their argument trivially
commute, while they anticommute when acting on the
same side. To deal with this, we use the elegant tech-
niques developed by Saptsov et al. in [65]. There, see also
the analysis done at the end of Appendix B 3 a, it is shown
that a form of Wick’s theorem holds when the correla-
tions are written in terms of linear combinations of the
fields ˆ̂

Bλq we used in the previous section, see Eq. (I.20).
For this reason, following [65], see also Appendix B 3, it
is then possible to apply Wick’s theorem to write

Cλn···λ1
qn···q1 =

∑
c∈C̄n

(−1)#c
∏
i,j∈c

Cλi,λjqi,qj , (I.21)

in terms of two-point correlation functions which, using,
Eq. (I.19), read

Cλi,λjqi,qj = TrE
[

ˆ̂
TE

ˆ̂
Bλiqi (ti)

ˆ̂
Bλjqj (tj)ρ

eq
E

]
. (I.22)

Here, each full-contraction c ∈ C̄n is one of the possible
sets of ordered pairs (or just, contractions) (i, j), i < j
over the set N̄n = {n, · · · , 1}. We further denote by #c
the parity of the full-contraction c, i.e., the parity of the
permutation needed to order the set N̄n, such that all
pairs in c are adjacent.

D. Influence superoperator

We now have all the tools needed to derive the formal
expression of an influence superoperator which generates
the reduced dynamics of the system.

In fact, using Wick’s theorem, Eq. (I.21), in the ex-
pression for the reduced density matrix in Eq. (I.18) we
explicitly obtain the following expression for the reduced
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density matrix

ρS =

∞∑
n=0

(−1)n

n!

∫ t

0

(
n∏
i=1

dti

)∑
q,λ

∑
c∈C̄n

(−1)#c

 ∏
(i,j)∈c

Cλi,λjqi,qj

 ˆ̂
TS

[
ˆ̂
Sλ̄nqn · · ·

ˆ̂
Sλ̄1
q1

]
ρS(0),

(I.23)

where
∑
q,λ ≡

∑
q1,λ1···qn,λn . Our goal is now to for-

mally re-sum this expression. To make progress, we re-
call the meaning of the factor (−1)#c. This sign depends
on the parity of the permutation needed to bring the set
N̄n = {n, · · · , 1} into one in which all the pairs (i, j) ∈ c
are adjacent. Quite conveniently, this is exactly the same
sign acquired when re-ordering the sequence of operators
ˆ̂
Sλ̄nqn · · ·

ˆ̂
Sλ̄1
q1 , such that all the pairs ˆ̂

Sλ̄iqi
ˆ̂
S
λ̄j
qj with (i, j) ∈ c

are adjacent. The origin of this latter extra-minus sign
lies in the Fermionic nature of the time ordering ˆ̂

TS , jus-
tifying the choice made in section IB. This means that
we can write, see Appendix B 4 a,

ρS(t) =

∞∑
n=0

(−1)2n

(2n)!

∑
c∈C2n

∏
(i,j)∈c

2
ˆ̂
TS

ˆ̂F(t)ρS(0) ,

(I.24)
where we also used the fact that correlations are non-
zero only for even n. The previous expression is written
in terms of the influence superoperator

ˆ̂F(t) =

∫ t

0

dt2

∫ t2

0

dt1
ˆ̂
W (t2, t1) , (I.25)

in which we enforced partial time-ordering by constrain-
ing the integration bounds which gives rise to the factor
2 in Eq. (I.24). We also defined, see Appendix B 4 b,

ˆ̂
W (t2, t1) =

∑
q1,q2,λ1,λ2

Cλ2,λ1
q2,q1

ˆ̂
S′λ̄2
q2 (t2)

ˆ̂
S′λ̄1
q1 (t1)

=
∑
σ=±

ˆ̂
Aσ(t2)

ˆ̂
Bσ(t2, t1) .

(I.26)

Here, the superoperators ˆ̂
Aσ and ˆ̂

Bσ are defined as

ˆ̂
Aσ(t)[·] = sσ̄(t)[·]− ˆ̂

PS [·sσ̄(t)]
ˆ̂
Bσ(t2, t1)[·] = −Cσsσ(t1)[·]− C̄ σ̄ ˆ̂

PS [·sσ(t1)],
(I.27)

with σ̄ = −σ and where Cσ ≡ Cσ(t2, t1) with

Cσ=1(t2, t1) = TrE
[
B†(t2)B(t1)ρE(0)

]
Cσ=−1(t2, t1) = TrE

[
B(t2)B†(t1)ρE(0)

]
.

(I.28)

We now observe that in Eq. (I.24) there is no actual de-
pendence on the contraction c (in ˆ̂F(t), all indexes are
contracted and all times are integrated over). In this way
the product over the pairs (i, j) ∈ c effectively simply
amounts in taking the nth power of the influence super-
operator. For the same reason, the sum over c ∈ C2n

effectively amounts in just counting the number of con-
tractions in a list of 2n elements, which is (2n−1)!!. With
this in mind, we can write

ρS(t) =

∞∑
n=0

(−1)2n(2n− 1)!!

(2n)!
2n

ˆ̂
TS

ˆ̂F(t)nρS(0)

=
ˆ̂
TSe

ˆ̂F(t)ρS(0) ,

(I.29)

where we used the identity (2n − 1)!!/(2n)! = 1/(2nn!),
see Appendix B 4 d. The formal expression in Eq. (I.29)
is the main result of this article and, for this reason, we
highlight its explicit form as

ρS(t) =
∑
p=±

ˆ̂
TS exp

{∫ t

0

dt2

∫ t2

0

dt1
ˆ̂
Wp(t2, t1)[·]

}
ρpS(0) ,

(I.30)
with ρ±S (0) = ρ

e/o
S (0), and where (see Appendix B 4 c)

ˆ̂
W±(t2, t1)[·] = −

∑
σ=±

Cσ(t2, t1)[sσ̄(t2), sσ(t1)·]∓

−
∑
σ=±

Cσ(t1, t2)[·sσ̄(t1), sσ(t2)]∓,

(I.31)
in which [·, ·]+ denotes the anticommutator and [·, ·]−
denotes the commutator. This equation describes the
reduced dynamics of the system in terms of the exponen-
tial of an influence superoperator and it can be applied
to both even and odd parity sectors. We note that, even
when restricting to the physical even-parity sector, it is
in general not possible to use parity symmetry to further
simplify the final expression. To better analyze this
point, we can consider the application of the operator ˆ̂

W

to an even state. In this case, the ˆ̂
PS appearing in the

definition for ˆ̂
Bσ ( ˆ̂

Aσ) can be effectively replaced by −1

(+1). However, this is not the case when ˆ̂
W appears in

Eq. (I.29), i.e., in the expression for the reduced dynam-
ics. In fact, in this case, the time-ordering might end up
introducing further superoperators in between any of the
ˆ̂
Aσ and ˆ̂

Bσ, thereby making the alleged simplifications
simply not correct (unless the superoperators in ˆ̂

W are
evaluated at the same point in time, as in the Markovian
regime).

Given the generality of Eq. (I.29), it is opportune to
show that we can recover well-known results in some spe-
cific limits. In the next section, we show that Eq. (I.29)
leads to a generalized-Lindblad Master equation in the
Markovian regime and that it is a sufficient condition to
derive a generalized version of the Hierarchical Equations
of Motion. The mentioned generalization consists in the
possibility to apply the formalism to initial states with
arbitrary parity symmetry and it recovers the usual Lind-
blad and HEOM form when restricted to the even-parity
sector.



6

II. APPLICATIONS

Despite its innocent appearance, the exponentiation
of the Fermionic influence superoperator in Eq. (I.29) is
not easy to solve. One reason is the presence of the time-
ordering operator ˆ̂

TS which prevents the direct computa-
tion of the integral in the expression for ˆ̂F(t). In turn this
makes Eq. (I.29) a formal expression ultimately referring
back to the reduced Dyson series.

In this section we analyze two different ways in which
this problem can be approached. One, is to operate in
a Markovian regime in which the action of the time-
ordering is trivial, allowing to derive a master equation in
Lindblad form. In more general regimes, it is instead pos-
sible to iteratively postpone the evaluation of the time-
ordering leading to the Hierarchical Equations of Motion.

A. Markovian regime

The formal expression in Eq. (I.29) describes all the ef-
fects of the environment on the system. Among them, is
an effective memory emerging when the correlation func-
tions in Eq. (I.28) are non-trivial for t2 6= t1. Because
of these memory effects, the time-ordering applied to the
terms ˆ̂Fn(t) in the reduced Dyson series might not leave
the two superoperators appearing in each ˆ̂F(t) adjacent
to each other thereby preventing the direct computation
of the integrals in the influence superoperator. The oppo-
site regime is when Cσ(t2, t1) ∝ δ(t2 − t1), i.e., when we
can neglect these memory effects. To better describe this
Markovian case, we first introduce the spectral density

J(ω) = π
∑
k

g2
kδ(ω − ωk) , (II.1)

which characterizes the strength of the system-
environment interaction in the continuum limit, and
in terms of which the correlations take the form (see
Eq. (D.5) in Appendix D)

Cσ(t2, t1) =

∫ ∞
−∞

dω

π
J(ω)eiσω(t2−t1)nσ(ω) , (II.2)

where nσ(ω) = [1− σ + 2σneq(ω)]/2 in terms of the equi-
librium Fermi-Dirac distribution neq(ω), see Eq. (D.3).
From this expression, we see that a sufficient condition
to define a Markovian regime is to have both J(ω) and
neq(ω) constant in frequency, i.e.,

J(ω) = Γ
neq(ω) = n0 ,

(II.3)

where Γ is a constant decay rate and 0 ≤ n0 ≤ 1. The as-
sumption of a constant spectral density is usually named
first Markov approximation ([50], pag. 160).

On the other hand, the assumption of a constant
Fermi-Dirac distribution implies, using Eq. (D.3) that

an environmental Fermion with energy ω must be in
an initial state with an energy-dependent temperature
β(ω) = log(1/n0 − 1)/ω. This explicitly shows how such
a condition is not compatible with a true thermal equilib-
rium (except in special limiting cases such as for quan-
tum transport at infinite bias, see [66, 67]). For this
reason, the Markov regime defined here is an idealization
in which the environmental degrees of freedom act as an
effective quantum white noise (see [50] pag. 164).

Using Eq. (II.3) into Eq. (II.2), we can write

Cσ(t2, t1) = Γ(1− σ + 2σn0)δ(t2 − t1) , (II.4)

where we used the exponential representation of the
Dirac delta which can be found, for example, in [50],
Eq. (5.3.11). As mentioned, this expression shows the
absence of memory effects, hence explicitly representing
the Markovian regime.

The delta-correlated environment considered in this
section allows drastic simplifications in Eq. (I.29). This
is mainly due to the fact that all superoperators in
Eq. (I.26) are evaluated at the same point in time, leading
to a simpler time-ordering action. As it can be explic-
itly seen in Appendix C 1, using Eq. (II.4) into Eq. (I.29)
leads to the following master equation in a generalized
Lindblad form

ρ̇S = −i[HS , ρS ]

+Γ
∑
r=±
{(1− n0)Dr[ρrS ] + n0D

r
s† [ρ

r
S ]} , (II.5)

where we omitted the time dependence for clarity. Here,
with an abuse of notation, the density matrix refers to the
Shrödinger picture and we defined ρr = δr,1ρ

e
S + δr,−1ρ

o
S

and Dr[·] = 2rO[·]O†−O†O[·]− [·]O†O, for a generic op-
erator O. The generalization of this equation with respect
to the more commonly used Lindblad equation lies in the
presence of an extra minus sign in the jump-term present
in the dissipator in the odd-parity sector, consistent with
Eq. (13) in [62].

B. Hierarchical equations of motion

In this section we apply Eq. (I.25) to derive a gen-
eralized version of the HEOM which can be applied to
initial states with arbitrary parity symmetry. When ap-
plied to density matrices with even parity, this recovers
the HEOM in their usual form.

The HEOM [7, 8, 43–45, 48] are iterative equations
which are based on the following ansatz for the correla-
tion functions [68, 69]

Cσ(t2, t1) =
∑
m

aσme
−bσm(t2−t1) . (II.6)

where aσm, bσm ∈ C. In the continuum limit, the previous
expression has no loss of generality making the HEOM a
formally exact method.
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Nevertheless, for practical applications, the number
of non-trivial exponents in this expression needs to be
truncated. This leads to an approximation to the full
functional form of the correlation which can be non-
negligible for heavily structured environments or at zero
temperature due to the number of Matsubara frequen-
cies approaching a continuum, see [31, 70–72] (although
other, possibly more optimized, decompositions are pos-
sible [73]).

By using the ansatz above, the influence superoperator
in Eq. (I.25) takes the form, see Appendix C 2 a,

ˆ̂F(t) =

∫ t

0

dt2

∫ t2

0

dt1
∑
j

ˆ̂
Aj(t2)e−bj(t2−t1) ˆ̂Bj(t1),

(II.7)
in terms of the multi-index j = (m,σ) and where ˆ̂

Aj ≡
ˆ̂
Aσ as defined in Eq. (I.27), bj ≡ bσm, and

ˆ̂Bj(t)[·] ≡ ˆ̂Bσm(t)[·] = −
(
aσms

σ(t)[·] + āσ̄mPS [[·]sσ(t)]
)
,

(II.8)
with σ̄ = −σ. Using this expression into Eq. (I.25) and
taking a time derivative [35], see Eq. (C.24), we arrive at
the following self-referential equation of motion

ρ̇S(t) =
∑
j

ˆ̂
Aj(t)

ˆ̂
TS

ˆ̂
Θj(t)ρS(t) , (II.9)

with ˆ̂
Θj(t) =

∫ t

0

dτe−bj(t−τ) ˆ̂Bj(τ), which satisfies the

key property

d

dt
ˆ̂
Θj(t) = −bj ˆ̂

Θj(t) +
ˆ̂Bj(t) . (II.10)

The self-referential nature of Eq. (II.9) can be formally
lifted by writing

ρ̇S(t) = α−1
∑
j

ˆ̂
Aj(t)ρj(t) , (II.11)

in term of the auxiliary density matrix

ρj(t) = α
ˆ̂
TS

ˆ̂
Θj(t)ρS(t) , (II.12)

where we introduced the parameter α ∈ C upon which
the system’s dynamics does not depend. In fact, the
auxiliary density matrices in the HEOM are unphysical
degrees of freedom which can be re-scaled (see also [74]).

An interesting feature of Eq. (II.11) is that it involves
the time-ordering through the definition of the auxiliary
density matrix ρj , leading to the possibility of iteratively
postponing its challenging evaluation. In fact, we can
define the nth auxiliary density matrix as

ρ
(n)
jn···j1(t) = αn

ˆ̂
TS

ˆ̂
Θjn(t) · · · ˆ̂Θj1(t)ρS(t) , (II.13)

so that, in this notation, ρS(t) = ρ(0)(t). Its derivative
can be computed by using Eq. (II.10) and Eq. (II.11) and

leads to the following generalized version of the HEOM

ρ̇
(n)
jn···j1 =−

n∑
k=1

bjkρ
(n)
jn···j1 + α−1

∑
jn+1

ˆ̂
Aσn+1ρ

(n+1)
jn+1···j1

+α

n∑
k=1

(−1)n−k ˆ̂Bjkρ
(n−1)
jn···jk+1jk−1···j1 ,

(II.14)
which is valid for both even- and odd-parity initial condi-
tions, see Eq. (C.25). However, if we now assume ρ(0)(t)
to have even parity, then the parity superoperators inside
the definitions in Eq. (II.8) translate into signs dependent
on the iteration index n. By moving to the Shrödinger
picture and making the choice α = i, this leads to

ρ̇
(n)
jn···j1 =

(
ˆ̂L −

n∑
k=1

bjk

)
ρ

(n)
jn···j1

−i
∑
jn+1

ˆ̂Aσn+1
n ρ

(n+1)
jn+1···j1

−i
n∑
k=1

(−1)n−k ˆ̂Cjkn ρ(n−1)
jn···jk+1jk−1···j1 ,

(II.15)
see Eq. (C.29). Here, ˆ̂L = −i[HS , ·], and

ˆ̂Aσn[·] = sσ̄[·] + (−1)n[·]sσ̄
ˆ̂Cjn[·] = aσns

σ[·]− (−1)nāσ̄n[·]sσ .
(II.16)

The equation above is one of the standard forms for
the hierarchical equations of motion, see, for example,
Eq. (38) in [75].

C. Computing system correlation functions

The influence superoperator defined in the previous
section allows one to generate the reduced system dy-
namics without restrictions on the parity of the initial
state. This feature can be convenient when computing
correlation functions of the kind

CXY (t) = TrSE [XS(t)YSρ(0)] , (II.17)

where XS and YS are system operators. Here, the time
dependence is intended in the full system+environment
space, i.e., XS(t) = U†(t)XSU(t), where U = exp[−iHt]
in terms of the Hamiltonian in Eq. (I.1). Consequently,
we can write

CXY (t) = TrSE [XSU(t)YSρ(0)U†(t)] . (II.18)

Supposing Eq. (I.7) and using Eq. (I.8) and Eq. (I.29),
we can compute this quantity as

CXY (t) = TrS [XSρ
′
S(t)] = TrS [XS

ˆ̂
TSe

ˆ̂F(t)ρ′S(0)] ,
(II.19)

where the initial condition is ρ′S(0) = YSρS(0). We point
out that, for a physical initial state ρS(0) with even par-
ity, ρ′S(0) has the same parity as YS , which might be
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odd. However, since the results presented in the previ-
ous sections apply to initial states with arbitrary parity
symmetry, Eq. (II.19) follows directly.

Remarkably, it is also possible to compute thermal cor-
relations of the kind

Cth
XY (t) = TrSE [XS(t2)YS(t1)ρth]

= TrSE [XS(0)U(t2 − t1)YS(0)ρthU†(t2 − t1)] .
(II.20)

where t = t2 − t1 and where ρth ∝ exp(−βH) is
the combined system-environment thermal-equilibrium
state. One possible way to proceed is to suppose this
state to be separable (akin to the hypothesis of the quan-
tum regression theorem [76]) thereby reducing to solve
an expression equivalent to Eq. (II.18). However, the
thermal-equilibrium state usually includes entanglement
between the system and the environment, i.e., it is not
separable, i.e., Eq. (I.7) does not hold. This prevents us
from using the results given in section I directly.

To make progress, we can use the following idea [40,
77–80] instead. We suppose that at a time −T < 0 the
system+environment is in a separable non-equilibrium
state ρ(−T ) = ρeqρS(−T ). We then assume the exis-
tence of a thermal equilibration time T th � T , so that
the equality ρth = U(T )ρ(−T )U†(T ) holds. Using this
identity in Eq. (II.20) we can write

Cth
XY (t) = TrSE [XS(0)ρY (t)] , (II.21)

where t > 0 and

ρY (t) = U(t)YS(0)U(T )ρ(−T )U†(T )U†(t) . (II.22)

In order to compute this quantity, it is possible to gener-
alize the reasoning developed in section I and section II B
to find (see Appendix C 3) that the formal time-derivative
of the density matrix has the same form as Eq. (II.9), i.e.

ρ̇YS (t) =
∑
j

ˆ̂
Aj(t)

ˆ̂
TS

ˆ̂
Θj(t)ρ

Y
S (t) , (II.23)

but with a different initial condition given by

ρYS (0) = YS
ˆ̂
TSe

ˆ̂FT (0)ρYS (−T ) , (II.24)

where ˆ̂FT is defined in Eq. (C.45). This result offers the
following strategy to compute the correlations Cth(t).

i. Solve the HEOM from time −T (with initial con-
dition ρS(−T )) to time 0 to obtain a collection
of auxiliary density matrices ρ

(n)
jn···j1(0). For T

much longer than the thermal equilibration time,
ρS(0) = ρ(0)(0) = ρth represents the thermal state
of the system+environment.

ii. The HEOM are local in time, implying that the
matrices ρ(n)

jn···j1(0) must contain all the information
about the dynamics from time −T to 0 (needed to

further propagate the state further in time). This
information is equivalent to that contained in the
formal expression ˆ̂

TSe
ˆ̂FT (0)ρYS (−T ). From another

point of view, these matrices also represent the
system-environment entanglement [40, 77–80].

iii. Using Eq. (II.13), the initial condition ρYS (0) in
Eq. (II.24) can be implemented by multiplying each
auxiliary density matrix by YS , i.e., ρ

(n)
jn···j1(0) →

YSρ
(n)
jn···j1(0).

iv. As implied by Eq. (II.23), the density matrix ρYS (t)
at time t can be computed by solving the same
HEOM as before with initial condition given by the
auxiliary density matrices defined in (iii).

v. By using the matrix ρYS (t) computed in (iv), the
thermal correlation in Eq. (II.21) can be computed
as Cth

XY (t) = TrS [XS(0)ρYS (t)], by definition of par-
tial trace.

In conclusion, we showed that the possibility to ap-
ply the influence superoperator and the HEOM to ini-
tial states with arbitrary symmetry can be used to com-
pute thermal correlation functions which characterize the
equilibrium properties of the system+environment.

III. CONCLUSIONS

We presented a canonical derivation of an influence su-
peroperator which encodes the full dynamical effects of a
Fermionic environment linearly coupled to a Fermionic
quantum system. Such a superoperator can be used to
generate the reduced system dynamics without restric-
tions in terms of the parity of the initial state. In a
Markovian regime where the environment acts as an ideal
quantum white noise, the formalism becomes equivalent
to a generalized Lindblad Master equation. In general,
the expression for the Fermionic influence superoperator
represents a sufficient condition to deduce a version of the
Hierarchical Equation of Motion which can be applied to
states with arbitrary parity-symmetry, which is vital for
the evaluating impurity correlation functions and spectra
[40].
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Appendix A: Table of Symbols

In the following table we review the meaning of the
most relevant symbols used throughout the article.

Symbol Description

S System/Environment physical domain: S = S/E.

OS Generic operator in the domain S.

ÔS System operator equivalent to OS but commuted to
the right of all environmental operators.

ˆ̂
OS Generic superoperator in the domain S.

PS Parity operator in the domain S: PS =∏
k∈S exp[iπf†kfk], where fk destroys a Fermion in

the domain S.

ˆ̂
PS Parity superoperator: ˆ̂

PS [·] = PS [·]PS
ˆ̂
P
e/o
S Projector in the even/odd parity sector: ˆ̂

P
e/o
S [·] =

P e
S · P

e/o
S + P

o/e
S · P o

S .

O
e/o
S Even/odd part of the operator OS : O

e/o
S =

ˆ̂
P
e/o
S [OS ].

cσk Annihilation/creation (σ = ±1) operator for the kth
Fermion in the environment.

σ̄ Opposite of σ: σ̄ = −σ.

Bσ Environmental coupling operator: Bσ =∑
k∈E gkc

σ
k .

s System coupling operator.

ρeq Equilibrium state for the environment: ρeq
E =∏

k∈E [e−β(ωk−µE)c
†
k
ck/(1 + exp[−β(ωk − µ)])].

Cσ(t2, t1) Correlation function: Cσ(t2, t1) =
TrE

[
Bσ(t2)Bσ̄(t1)ρeq

E

]
.

C̄σ(t2, t1) Complex conjugate of the correlation function.

ˆ̂
TS Time-ordering superoperator in the domain S.

J(ω) Spectral density: J(ω) = π
∑
k∈E g

2
kδ(ω − ωk).

β, µ Inverse temperature and chemical potential.

neq(ω) Fermi equilibrium distribution: (exp[β(ω − µ)] +
1)−1.

ˆ̂
Bλq [·] Environmental superoperator ˆ̂

Bλq [·] = δq,1B
λ[·] +

δq,−1
ˆ̂
PE [·Bλ]

ˆ̂
Sλq [·] System superoperator ˆ̂

Sλq [·] = δq,1s
λ[·]−δq,−1

ˆ̂
PS [·sλ]

Table I: List of symbols
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Appendix B: Fermionic influence superoperator

Here, we present the detailed reasoning and calcula-
tions supporting each subsection of Section I.

1. A parity-friendly formalism

We start by presenting more details on the definition
of “hat” operators (see [62]) and on the Fermionic partial
trace.

a. “Hat” operators

Given a Fermionic system, its Hilbert space H is nat-
urally endowed with a Z2-graded structure H = He⊕Ho

due to the action of the parity operator see, for exam-
ple, [81–84]. Here, vectors in He/o are homogeneous, i.e.,
they have well defined (0/1) parity. This structure is also
inherited by operators O : H → H which can also be de-
composed into their even and odd part, i.e., O = Oe+Oo.

When we compose two or more Fermionic systems
(having Hilbert spaces H1 and H2) the physical anti-
commutation rules require a compatibility between the
tensor-product and the graded structure. To see this, it
is possible to consider a graded tensor product ⊗g which,
within the operator algebra, is characterized by the fol-
lowing identity

(Ox1 ⊗g Oy2)(O′x
′

1 ⊗g O′y
′

2 )=(−1)x
′yOx1O

′x
1 ⊗g Oy2O′y

′

2

(B.1)
where x, x′, y, y′ = e/o, and which characterizes the phys-
ical Fermionic statistics under particle-exchange. This
equation is equivalent to the following, perhaps more
evocative, definitions

Ox1O
y
2 = (Ox1 ⊗g Oy2)

Oy2O
x
1 = (−1)xy(Ox1 ⊗g Oy2) ,

(B.2)

where Ox ≡ Ox1 ⊗ I2 and Oy ≡ I1 ⊗ Oy2 . Using these
equations, it is possible define creation/annihilation op-
erators with proper Fermionic statistics so that the full
Hilbert space can be constructed by acting on the com-
posite vacuum |0〉 ≡ |0〉1 ⊗g |0〉2.

In order to systematically deal with the signs appearing
as a consequence of the graded structure, we follow [62].
It is in fact possible to map the graded-tensor product
between two Fermionic systems (which, for us, are the
Environment E and the system S), into a non-graded
tensor product ⊗ through the substitution

Ox1 ⊗g Oy2 7→ δy,0O
x
1 ⊗ Ôy2 + δy,1O

x
1P1 ⊗ Ôy2 , (B.3)

where P1 is the parity operator in the space H1. Identi-
fying 1 7→ E, 2 7→ S and for a generic operator OS with

no given parity symmetry, Eq. (B.3) leads to the more
direct identification

OS = Ôe
S + PEÔ

o
S , (B.4)

where, explicitly

PE =
∏
k∈E

exp [iπc†kck] (B.5)

is the parity operator over the environment variables and
where up-indexes e/o labels the even and odd part, i.e.,

Oe
S = P e

SOSP
e
S + P o

SOSP
o
S

Oo
S = P e

SOSP
o
S + P o

SOSP
e
S ,

(B.6)

where

P e
S = (PS + 1)/2

P o
S = (1− PS)/2 .

(B.7)

Intuitively in its “hat” version, a system operator is to be
placed on the right of any environmental operator. As a
consequence, Eq. (B.2) is replaced by the “Bosonic”-like
OxEÔ

y
S = ÔySO

x
E . This notation is extremely practical

to use. In fact, after using it in the initial condition in
Eq. (I.7) and in the interaction Hamiltonian in Eq. (I.6),
it allows to treat the tensor structure between system
and environment as if it was Bosonic, while still being
assured that all Fermionic signs are correctly accounted
for.

b. Partial trace in Fermionic systems

Within the graded structure of the Environ-
ment+System Hilbert space, a basis of vectors can be
written as

|vE , vS〉 ≡
(∏
i∈vE

c†i

)∏
j∈vS

c†j

 |0〉 , (B.8)

where vE (vS) is the ordered set specifying which environ-
mental (system) Fermions are present. We also explicitly
define the duals as

〈vS , vE | ≡ |vE , vS〉† (B.9)

= 〈0|

∏
j∈ṽS

cj

(∏
i∈ṽE

ci

)
, (B.10)

where ṽE/S denotes the sets vE/S inverted in their or-
dering. Here, c†i/j are creation operators for Fermions in
the environment and system. Using these definitions, we
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can write the partial trace of an operator OES over the
environment as

TrEOES ≡
∑

vE ,vS ,v′S

〈vS , vE |OES |vE , v′S〉 |vS〉 〈v′S | .

(B.11)
We now use this definition to prove useful identities.
First, we point out that, unfortunately, for Fermions, in
general we are prevented from using the, otherwise, very
convenient

TrE(OEOS)
?
= TrE(OE)OS . (B.12)

To see this explicitly, we can consider an environment
(system) made out of a single Fermion c (d). We can
further consider OE → IE and OS → d†. In this simple
case, using Eq. (B.11) we obtain

TrE(IEd†) = 〈1, 0| d† |0, 0〉 |1〉 〈0|+ 〈1, 1| d† |1, 0〉 |1〉 〈0|

= 〈1, 0| (d† + cd†c†) |0, 0〉 · |1〉 〈0|

= 0

6= TrE(IE)d†

= 2d† ,

(B.13)

which is enough to conclude that, in general,

TrE(OEOS) 6= TrE(OE)OS . (B.14)

At the same time, it is possible to prove that the analo-
gous version with “hat” operators holds, i.e.,

TrE(OEÔS) = TrE(OE)ÔS . (B.15)

In fact, since the partial trace over E must involve an
even number of environmental operators in order to give
a non-zero result, and using Eq. (B.11), we have

TrEOEÔS = TrEOe
EÔS

=
∑

vE ,vS ,v′S

〈0|

∏
j∈ṽE

cj

(∏
i∈ṽE

ci

)
Oe
E

(∏
i∈vS

c†i

)
ÔS

∏
j∈v′S

c†j

 |0〉 · |vS〉 〈v′S |
=

∑
vE ,vS ,v′S

〈0|
(∏
i∈ṽE

ci

)
Oe
E

(∏
i∈vE

c†i

)∏
j∈ṽS

cj

 ÔS

∏
j∈v′S

c†j

 |0〉 · |vS〉 〈v′S | ,
(B.16)

where in the last step we observed that the number of
environmental operators involved is even. Each of the
Fermions present in the matrix elements in the equation
above have to be appear an even number of times in order
for the result to be non-zero. As a consequence, inserting
an identity in between the environment and the system
operators is equivalent to introducing |0〉 〈0|. We then

have

TrE [OEÔS ] =
∑
vE

〈0|
(∏
i∈ṽE

ci

)
Oe
E

(∏
i∈vE

c†i

)
|0〉

∑
vS ,v′S

〈0|

∏
j∈ṽS

cj

 ÔS

∏
j∈v′S

c†j

 |0〉 · |vS〉 〈v′S |
= TrE [Oe

E ] 〈0|

∏
j∈ṽS

cj

 ÔS

∏
j∈v′S

c†j

 |0〉 · |vS〉 〈v′S |
= TrE (OE) ÔS ,

(B.17)
where in the last step we reintroduced the odd part to
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the operator OE (since it gives a zero contribution to the
trace) thereby proving Eq. (B.15).

While Eq. (B.15) does generalize Eq. (B.12), only valid
for Bosonic fields, it is not enough for our purposes and
we need the further generalization

TrES [ASOEÔS ] =

TrE [OE ]TrS [ASÔ
e
S ] + TrE [PEOE ]TrS [ASÔ

o
S ],

(B.18)

for all system operators AS . This can be proven directly
as

TrES [ASOEÔS ] = TrES [ASOE(Ôe
S + Ôo

S)]

= TrES [Ae
SOEÔ

e
S ] + TrES [Ao

SOEÔ
o
S ]

= TrES [Âe
SOEÔ

e
S ] + TrES [PEÂ

o
SOEÔ

o
S ]

= TrES [OEÂ
e
SÔ

e
S ] + TrES [PEOEÂ

o
SÔ

o
S ]

= TrEOETrSÂe
SÔ

e
S + TrEPEOETrSÂo

SÔ
o
S

= TrEOETrSÂSÔe
S + TrEPEOETrSÂSÔo

S

= TrSAS{TrE [OE ]Ôe
S + TrE [PEOE ]Ôo

S} ,

(B.19)

where, explicitly, we observed that traces with an odd
number of system-operators must be zero to justify the
second and sixth equality. To justify the third and
forth equalities we used the definition of hat-operator in
Eq. (B.4) and its properties. We further used the identity
in Eq. (B.15) in the fifth equality and finished noticing
that, once the environmental degrees of freedom have
been traced out, hat-operators are equivalent to normal
ones. The identity in Eq. (B.18) has a key role in charac-
terizing how to find an expression for the reduced density
matrix which is capable of computing the correct expec-
tation values. In section B 2, we explicitly see that the
full density matrix can be written as a linear combination
of terms taking the form OEÔS , see also the simplified
version in Eq. (I.14), i.e., ρ(t) =

∑
i ρ
i
E ρ̂

i
S , which leads

to

TrES [ASρ(t)] =
∑
i

TrES [ASρ
i
E ρ̂

i
S ]

=
∑
i

TrSAS{TrE [ρiE ]ρ̂i,eS + TrE [PEρ
i
E ]ρ̂i,oS }.

(B.20)

Using the fact that AS is a generic system operator, we
can compare the previous equation to the defining prop-
erty of the reduced density matrix in Eq. (I.8), i.e., the
ability to compute expectation values

TrES [ASρ(t)] ≡ TrSASρS(t) , (B.21)

to derive the expression for the reduced density matrix

ρS(t) =
∑
i

TrE [ρiE ]ρ̂i,eS + TrE [PEρ
i
E ]ρ̂i,oS , (B.22)

i.e., Eq. (I.15) in the main text.

2. Reduced Dyson series

The starting point of this section is the Dyson series
for the environment+system in Eq. (I.16), which reads

ρ(t) =

∞∑
n=0

(−i)n
n!

ˆ̂
T b
∫ t

0

[
n∏
i=1

dti
ˆ̂
H×I (ti)

]
ρ(0), (B.23)

where the time-ordering superoperator is defined as

ˆ̂
T b[

ˆ̂
HI(tP (n)) · · · ˆ̂

HI(tP (1))] =
ˆ̂
HI(tn) · · · ˆ̂

HI(t1),

(B.24)
where tn ≥ · · · ≥ t1 and P is a permutation. We
begin by analyzing in more detail the superoperator
ˆ̂
HX
I [·] = [HI , ·]. When it acts on an operator of the form

OEÔS , we have, using Eq. (I.13) and omitting the time
dependences,

HX
I [OEÔS ] = [HI , OEÔS ]

= PEB
†ŝOEÔS − PEBŝ†OEÔS

−OEÔSPEB†ŝ+OEÔSPEBŝ
†

= PEB
†OE ŝÔS − PEBOE ŝ†1ÔS

−OEPEB†ÔS ŝ+OEPEBÔS ŝ
†.

(B.25)
For reasons that will become apparent later (section
B 3), we now introduce the full-parity superoperator ˆ̂

P =
ˆ̂
PE

ˆ̂
PS before the terms where operators act on the right

of OEÔS , i.e., the last two terms in the expression above.
Here, ˆ̂

PE [·] = PE [·]PE , where PE =
∏
k∈E exp [iπc†kck]

and ˆ̂
PS [·] = PS [·]PS , where PS =

∏
j∈S exp [iπd†jdj ], with

ck (dj) the kth (jth) Fermion in the environment (sys-

tem). The introduction of the operator ˆ̂
P is “harmless”

([65], pag. 5) when the overall parity of OEÔS is even.
However, since we are interested in analyzing a more gen-
eral situation, we also introduce it in the odd parity sec-
tor, which requires an extra minus sign. We then write,
for OEÔS even

HX
I [OEÔS ] =

(
PEB

†OE
)
ŝÔS

− (PEBOE) ŝ†1ÔS −
(

ˆ̂
PEOEPEB

†
)

ˆ̂
PSÔS ŝ

+
(

ˆ̂
PEOEPEB

)
ˆ̂
PSÔS ŝ

†

=
∑
λ,q

ˆ̂
B′λq [OE ]

ˆ̂
Sλ̄q [ÔS ] ,

(B.26)
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and, for OEÔS odd,

HX
I [OEÔS ] =

(
PEB

†OE
)
ŝÔS

− (PEBOE) ŝ†1ÔS +
(

ˆ̂
PEOEPEB

†
)

ˆ̂
PSÔS ŝ

−
(

ˆ̂
PEOEPEB

)
ˆ̂
PSÔS ŝ

†

=
∑
λ,q

ˆ̂
B′λq [OE ]

ˆ̂
S′λ̄q [ÔS ] .

(B.27)

Here, down-indexes take the values ±1 and specify if the
operator acts on the left (+1) or right (−1) of its argu-
ment. Up-indexes take the values ±1 and distinguish the
presence (+1) or absence (−1) of daggers in the defini-
tion. We also used the notation λ̄ ≡ −λ . Explicitly, the
quantities ˆ̂

Bλq and ˆ̂
Sλq are defined as

ˆ̂
B′11 (t)[·] = PEB

†(t)[·]
ˆ̂
B′−1

1 (t)[·] = PEB(t)[·]
ˆ̂
B′1−1(t)[·] =

ˆ̂
PE [[·]PEB†(t)]

ˆ̂
B′−1
−1 (t)[·] =

ˆ̂
PE [[·]PEB(t)] ,

(B.28)

and

ˆ̂
S−1

1 (t)[·] = ŝ(t)[·]
ˆ̂
S1

1(t)[·] = −ŝ†(t)[·]
ˆ̂
S−1
−1(t)[·] = − ˆ̂

PS [[·]ŝ(t)]
ˆ̂
S1
−1(t)[·] =

ˆ̂
PS [[·]ŝ†(t)] .

(B.29)

The only difference between the even and odd case is the
definition of the system superoperators, which take an
extra minus sign when ˆ̂

PS appear, i.e.,

ˆ̂
S′−1

1 (t)[·] = ŝ(t)[·]
ˆ̂
S′11 (t)[·] = −ŝ†(t)[·]
ˆ̂
S′−1
−1 (t)[·] =

ˆ̂
PS [[·]ŝ(t)]

ˆ̂
S′1−1(t)[·] = − ˆ̂

PS [[·]ŝ†(t)] .

(B.30)

Now, using Eq. (B.26) and Eq. (B.27) we derive the first
order contribution to the Dyson equation in Eq. (I.16) as

[HI(t1), ρ(0)] =
∑
λ,q

[
ˆ̂
B′λq (t1)[ρeq

E ]
ˆ̂
Sλ̄q (t1)[ρ̂e

S(0)]

+
ˆ̂
B′λq (t1)[ρeq

E PE ]
ˆ̂
S′λ̄q (t1)[ρ̂o

S(0)]
] (B.31)

where we used the initial condition written in Eq. (I.12).
Since the superoperators ˆ̂

S involve hat-operators ŝ, the
result above is in the form

∑
j O

j
EÔ

j
S . Furthermore, since

the Hamiltonian HI is even in the fields, each term in
Eq. (B.31) has the same overall parity as the part of the
density matrix for the system (the initial condition) that
they are acting upon (for example, the first term is even
as it acts on the even part ρ̂e

S(0)). As a consequence,
we can use this symmetry, together with linearity, to ex-
plicitly write all perturbative terms in Eq. (I.16). For
example, the second order term T [HI(t2), [HI(t1), ρ(0)]]
becomes

∑
q,λ

ˆ̂
TE

ˆ̂
B′λ2
q2 (t2)

ˆ̂
B′λ1
q1 (t1)[ρeq

E ]
ˆ̂
TS

ˆ̂
Sλ̄2
q2 (t2)

ˆ̂
Sλ̄1
q1 (t1)[ρ̂e

S(0)]+

ˆ̂
TE

ˆ̂
B′λ2
q2 (t2)

ˆ̂
B′λ1
q1 (t1)[ρeq

E PE ]
ˆ̂
TS

ˆ̂
S′λ̄2
q2 (t2)

ˆ̂
S′λ̄1
q1 (t1)[ρ̂o

S(0)],

(B.32)
where used the short-hand

∑
q,λ ≡

∑
q1,λ1

∑
q2,λ2

, and
where we factorized the time-ordering operator for the
full system ˆ̂

T b =
ˆ̂
TE

ˆ̂
TS into time-ordering for the sys-

tem ˆ̂
TS and the environment ˆ̂

TE . Since these two newly
defined superoperators act on a sequence of system and
environmental field operators which have the same time-
ordering, we can define them to be of Fermionic type,
i.e.,

ˆ̂
TSOS(tP (n)) · · ·OS(tP (1)) = (−1)#POS(tn) · · ·OS(t1),

(B.33)
where tn ≥ · · · ≥ t1, and where P is a permutation with
parity #P . The same definition applies to ˆ̂

TE , upon
changing OS → OE . The importance of this choice be-
comes apparent in section ID.

By iteratively using the arguments above, we can write
the density matrix ρ(t) for the full environment+system
as
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ρ(t) =

∞∑
n=0

(−i)n
n!

∫ t

0

(
n∏
i=1

dti

) ∑
qn,λn,··· ,q1,λ1

[
ˆ̂
TE

ˆ̂
B′λnqn (tn) · · · ˆ̂

B′λ1
q1 (t1)[ρeq

E ]
]

ˆ̂
TS

[
ˆ̂
Sλ̄nqn (tn) · · · ˆ̂

Sλ̄1
q1 (t1)

]
[ρ̂e
S(0)]

+
∑

qn,λn,··· ,q1,λ1

[
ˆ̂
TE

ˆ̂
B′λnqn (tn) · · · ˆ̂

B′λ1
q1 (t1)[ρeq

E PE ]
]

ˆ̂
TS

[
ˆ̂
S′λ̄nqn (tn) · · · ˆ̂

S′λ̄1
q1 (t1)

]
[ρ̂o
S(0)]

 .

(B.34)

Here, we explicitly remark the absence of the operator PE
in front of the environmental operators acting on ρeq

E PE .
However, such an operator will appear in the correspond-
ing correlation functions as we are about to show.

Crucially, the expression above shows that the den-
sity matrix has a decomposition in the form given by
Eq. (I.14), i.e., as a sum of terms in which environmental
operators multiply “hat” system operators. Explicitly,

ρ(t) =
∑
i

ρiE ρ̂
i
S ≡

∑
ie

ρ′ieE ρ̂
′ie
S +

∑
io

ρ′′ioE ρ̂′′ioS . (B.35)

The terms in Eq. (B.35) are defined through the following
identifications

∑
ie/io

→
∞∑
n=0

(−i)n
n!

∫ t

0

(
n∏
i=1

dti

) ∑
qn,λn,··· ,q1,λ1

ρ′ieE → ˆ̂
TE

ˆ̂
B′λnqn (tn) · · · ˆ̂

B′λ1
q1 (t1)[ρeq

E ]

ρ̂′ieS → ˆ̂
TS

ˆ̂
Sλ̄nqn (tn) · · · ˆ̂

Sλ̄1
q1 (t1)[ρ̂e

S(0)]

ρ′′ioE → ˆ̂
TE

ˆ̂
B′λnqn (tn) · · · ˆ̂

B′λ1
q1 (t1)[ρeq

E PE ]

ρ̂′′ioS → ˆ̂
TS

ˆ̂
S′λ̄nqn (tn) · · · ˆ̂

S′λ̄1
q1 (t1)[ρ̂o

S(0)] .

(B.36)

We note that the full density matrix ρ(t) in Eq. (B.35)
could be, equivalently, written as∑
i

ˆ̂
TE ˆ̂ρ′iE [ρeq

E ]
ˆ̂
TS ˆ̂ρ′iS [ρe

S(0)] +
ˆ̂
TE ˆ̂ρ′′iE [ρeq

E PE ]
ˆ̂
TS ρ̂

′′i
S [ρo

S(0)] ,

(B.37)
where

ˆ̂ρ′iE → ˆ̂
B′λnqn (tn) · · · ˆ̂

B′λ1
q1 (t1)

ˆ̂ρ′iS → ˆ̂
Sλ̄nqn (tn) · · · ˆ̂

Sλ̄1
q1 (t1)

ˆ̂ρ′′iE → ˆ̂
B′λnqn (tn) · · · ˆ̂

B′λ1
q1 (t1)

ˆ̂ρ′′iS → ˆ̂
S′λ̄nqn (tn) · · · ˆ̂

S′λ̄1
q1 (t1) ,

(B.38)

which gives the explicit definitions to the quantities pre-
sented in Eq. (B.37) in the main text.
From now on, for clarity of exposition, we omit the primes
and double primes in ρie/oE and ρie/oS and, with a further

abuse of notation, use the indexes ie/o as the way to
uniquely identify them. As we remarked in section IA,
we can use the decomposition in Eq. (B.35) into Eq. (I.11)

TrESASρ(t) =

=
∑
i

TrSAS{TrE [ρiE ]ρ̂i,eS + TrE [PEρ
i
E ]ρ̂i,oS }

=
∑
ie

TrSAS{TrE [ρieE ]ρ̂ie,eS + TrE [PEρ
ie
E ]ρ̂ie,oS }

+
∑
io

TrSAS{TrE [ρioE ]ρ̂io,eS + TrE [PEρ
io
E ]ρ̂io,oS },

(B.39)
which, by direct comparison with Eq. (I.8)), allows to
write the reduced density matrix as Eq. (I.15) which
reads

ρS =
∑
i

TrE [ρiE ]ρ̂i,eS + TrE [PEρ
i
E ]ρ̂i,oS

=
∑
ie

TrE [ρieE ]ρ̂ie,eS + TrE [PEρ
ie
E ]ρ̂ie,oS (B.40)

+
∑
io

TrE [ρioE ]ρ̂io,eS + TrE [PEρ
io
E ]ρ̂io,oS ,

At this point, it is relevant to observe that Eq. (B.40)
relies on an even/odd decomposition of the system op-
erators ρ̂ioS and ρ̂ieS defined in Eq. (B.36). In principle,
despite the indexes-notation used, the parity of ρ̂ie/oS de-
pends on the order n (so that they have the same parity
as ρ̂e/o

S (0) for n even and opposite for n odd). Explicitly,
we have

ρ̂
ie/o,e/o
S =ρ̂

ie/o
S for n even

= 0 for n odd

ρ̂
ie/o,o/e
S = 0 for n even

=ρ̂
ie/o
S for n odd .

With this in mind, in Eq. (B.40) only the first and forth
term survive for n even and only the second and the third
survive for n odd, to get
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ρS =
∑

n=even

(−i)n
n!

∫ t

0

(
n∏
i=1

dti

) ∑
qn,λn···q1,λ1

{
C ′λn···λ1
qn···q1 T̂S

[
ˆ̂
Sλ̄nqn · · ·

ˆ̂
Sλ̄1
q1

]
ρ̂e
S(0) +D′λn···λ1

qn···q1 T̂S

[
ˆ̂
S′λ̄nqn · · ·

ˆ̂
S′λ̄1
q1

]
ρ̂o
S(0)

}

+
∑
n=odd

(−i)n
n!

∫ t

0

(
n∏
i=1

dti

) ∑
qn,λn···q1,λ1

{
C̃ ′λn···λ1
qn···q1 T̂S

[
ˆ̂
Sλ̄nqn · · ·

ˆ̂
Sλ̄1
q1

]
ρ̂e
S(0) + D̃′λn···λ1

qn···q1 T̂S

[
ˆ̂
S′λ̄nqn · · ·

ˆ̂
S′λ̄1
q1

]
ρ̂o
S(0)

}
,

where

C ′λn···λ1
qn···q1 = TrE T̂E

[
ˆ̂
B′λnqn · · ·

ˆ̂
B′λ1
q1

]
[ρeq
E ]

D′λn···λ1
qn···q1 = TrE T̂E

[
PE

ˆ̂
B′λnqn · · ·

ˆ̂
B′λ1
q1

]
[ρeq
E PE ]

(B.41)

and

C̃ ′λn···λ1
qn···q1 = TrE T̂E

[
PE

ˆ̂
B′λnqn · · ·

ˆ̂
B′λ1
q1

]
[ρeq
E ]

D̃′λn···λ1
qn···q1 = TrE T̂E

[
ˆ̂
B′λnqn · · ·

ˆ̂
B′λ1
q1

]
[ρeq
E PE ] .

For n odd, the correlation functions are zero as they con-
tain and odd number of creation/annihilation operators
for Fermions and the equilibrium state is a thermal state
(hence, even). As a consequence, we can write

ρS =

∞∑
n=0

(−i)n
n!

∫ t

0

(
n∏
i=1

dti

) ∑
qn,λn···q1,λ1

{
C ′λn···λ1
qn···q1 T̂S

[
ˆ̂
Sλ̄nqn · · ·

ˆ̂
Sλ̄1
q1

]
ρ̂e
S(0) +D′λn···λ1

qn···q1 T̂S

[
ˆ̂
S′λ̄nqn · · ·

ˆ̂
S′λ̄1
q1

]
ρ̂o
S(0)

}
.

(B.42)

It is interesting to realize how the two PE operators ex-
plicitly appearing (other PE operator are implicit in the
definition of the fields B) in the correlation functions
D′λn···λ1
qn···q1 given in Eq. (C.40) have different origin. The

PE multiplying ρeq
E ultimately originates from the de-

composition of the system initial condition in Eq. (I.12).
The remaining PE originates from the properties of the
partial trace for Fermions, i.e., from Eq. (I.15).

As a final step, we point out that the operators
PE implicitly present in the correlation functions in
Eq. (C.40) through the definition of the superoperators
ˆ̂
B in Eq. (B.28) always appear on the left of the operators
B (here we do not consider the operators PE originating
from ˆ̂

PE). As a consequence, using the cyclic property of
the trace, environmental correlations will always involve
terms in the form Tr[PEBλ1 · · ·PEBλnρeq

E ] apart from

the possible presence of an extra PE from ˆ̂
PE . Since

each field B has parity one, and since only correlation
functions for even n contribute, we can always anticom-
mute the PE with the fields and removing them using
P 2
E = 1 (the presence of the extra PE from ˆ̂

PE is irrel-
evant for this line of thought). This corresponds to ef-
fectively remove all the original PE in front of the fields
B in Eq. (B.28), by adding an extra (−i)n factor. This

leads to

ρS =

∞∑
n=0

(−1)n

n!

∫ t

0

(
n∏
i=1

dti

)
 ∑
qn,λn···q1,λ1

Cλn···λ1
qn···q1 T̂S

[
ˆ̂
Sλ̄nqn · · ·

ˆ̂
Sλ̄1
q1

]
ρ̂e
S(0)

+
∑

qn,λn···q1,λ1

Dλn···λ1
qn···q1 T̂S

[
ˆ̂
S′λ̄nqn · · ·

ˆ̂
S′λ̄1
q1

]
ρ̂o
S(0)

 ,
(B.43)

where

Cλn···λ1
qn···q1 = TrE T̂E

[
ˆ̂
Bλnqn · · ·

ˆ̂
Bλ1
q1

]
[ρeq
E ]

Dλn···λ1
qn···q1 = TrE T̂E

[
PE

ˆ̂
Bλnqn · · ·

ˆ̂
Bλ1
q1

]
[ρeq
E PE ] ,

(B.44)

with

ˆ̂
B1

1(t)[·] = B†(t)[·]
ˆ̂
B−1

1 (t)[·] = B(t)[·]
ˆ̂
B1
−1(t)[·] =

ˆ̂
PE [[·]B†(t)]

ˆ̂
B−1
−1(t)[·] =

ˆ̂
PE [[·]B(t)] .

(B.45)
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It is actually possible to simplify this expression even
further. To achieve this, we analyze the correlations
Dλn···λ1
qn···q1 . Our goal is to remove the two PE explicitly ap-

pearing in Eq. (B.44). We begin by observing that, if the
fields ˆ̂

B were normal operators (i.e., not superoperators),
we could simply use the cyclic property of the trace and
conclude that the presence of the PE is irrelevant. How-
ever, this reasoning does not hold with superoperators
because the operators they introduce might act either on
the left or on the right of the density matrix, changing
the relative position of the two PE .
Nevertheless, we can imagine to move the PE (which mul-
tiplies ρeq

E ) on the left, until it gets next to the remaining
PE . As we do this, we get an extra minus sign each time
one of the down-indexes of the ˆ̂

B is +1, i.e., it acts on
the left of the density matrix (hence it is “in between”
the first and the second PE). However, the down-indexes
q1, . . . , qn also label the system superoperators ˆ̂

S. As
a consequence, the two PE can be effectively dropped
by adding a minus sign each time a −1 appears in the
down indexes of the superoperators ˆ̂

S. This is, for us, ex-
tremely convenient as such a minus sign is exactly what
differentiates the operators ˆ̂

S′ from ˆ̂
S, see Eq. (B.29)

and Eq. (B.30). This last consideration allows to write
the reduced density matrix in a form which does not need
to explicitly distinguish which parity sector we are acting
upon, i.e.,

ρS =

∞∑
n=0

(−1)n

n!

∫ t

0

(
n∏
i=1

dti

)
 ∑
qn,λn···q1,λ1

Cλn···λ1
qn···q1 T̂S

[
ˆ̂
Sλ̄nqn · · ·

ˆ̂
Sλ̄1
q1

]
ρ̂e
S(0)

+
∑

qn,λn···q1,λ1

Cλn···λ1
qn···q1 T̂S

[
ˆ̂
Sλ̄nqn · · ·

ˆ̂
Sλ̄1
q1

]
ρ̂o
S(0)


=

∞∑
n=0

(−1)n

n!

∫ t

0

(
n∏
i=1

dti

)
∑

qn,λn···q1,λ1

Cλn···λ1
qn···q1 T̂S

[
ˆ̂
Sλ̄nqn · · ·

ˆ̂
Sλ̄1
q1

]
ρ̂S(0) ,

(B.46)
which is Eq. (I.18) in the main text.

3. Wick’s theorem

In this section we review the proof of the Wick’s the-
orem for superoperators in [65] and analyze the time-
ordered case.

a. Wick’s theorem for superoperators

To keep this article self-contained, to adapt the
notation, and to highlight its elegance, in this section

we briefly review the proof of the Wick’s theorem for
Fermionic superoperators developed by Saptsov and
Wegewijs in [65].

The main object of study are correlations of the form

Sn = Tr(ˆ̂cpnqn · · · ˆ̂cp1
q1ρ

eq
E ) , (B.47)

where ρeq
E = exp[−β∑k(ωk − µ)c†kck]/Zeq

E , with Zeq
E =∏

k(1+exp[−β(ωk−µ)]), and where p = (λ, k) is a multi-
index so that λ = ±1 defines the presence (λ = +1) or
absence (λ = −1) of a dagger and k is an external index
labeling the Fermions of the bath. The index q = ±1
specifies whether the operator acts on the left (q = 1) or
right q = −1. Explicitly, we have

ˆ̂cpq [·] = ˆ̂cλ,kq [·]

= δq,+1c
p[·] + δq,−1[·]cp ,

(B.48)

where

cp = c(λ,k) = (δλ,1c
†
k + δλ,−1ck) . (B.49)

Using this notation, the usual Fermionic anticommuta-
tion rules read

{cp, cp′} = δp,p̄′ , (B.50)

where p = (λ, k) and p̄ ≡ (λ̄, k) with λ̄ = −λ.

The main issue to prove a Wick’s theorem for super-
operators is that no definite commutation or anticom-
mutation rules hold for superoperators. We can see this
explicitly as

{ˆ̂cp1
q1 ,

ˆ̂cp2
q2}(·) =

= δq1,+1δq2,+1δp1,p̄2
(·) + 2δq1,+1δq2,−1c

p1(·)cp2

+ 2δq1,−1δq2,+1c
p2(·)cp1 + δq1,−1δq2,−1δp1,p̄2

(·)

= δp1,p̄2 (δq1,+1δq2,+1 + δq1,−1δq2,−1)

+ 2δq1,+1δq2,−1c
p1(·)cp2 + 2δq1,−1δq2,+1c

p2(·)cp1 .

(B.51)
The factor 2 in the second line appears as a consequence
of the fact that ˆ̂cp1 and ˆ̂cp

′

−1 commute, i.e., [ˆ̂cp1,
ˆ̂cp
′

−1] = 0.
The elegant consideration presented in [65] is to consider
the modified fields

ˆ̂J pq = δq,+1
ˆ̂cpq + δq,−1

ˆ̂
PE ˆ̂cpq , (B.52)

where ˆ̂
PE [·] = PE ·PE . This “harmless” (see [65], pag. 5)
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definition has profound effects as, now,

{ ˆ̂J p1
q1 ,

ˆ̂J p2
q2 }(·) = δq1,+1δq2,+1δp1,p̄2{cp1 , cp̄1}(·)

+ δq1,+1δq2,−1(cp1PE(·)cp2PE + PEc
p1(·)cp2PE)

+ δq1,−1δq2,+1(PEc
p2(·)cp1PE + cp2PE(·)cp1PE)

+ δq1,−1δq2,−1δp1,p̄2P
2
E(·) (cp2PEc

p̄1PE + cp1PEc
p̄2PE)

= δq1,+1δq2,+1δp1,p̄2
(·) + q1δq1,−1δq2,−1δp1,p̄2

(·)

= q1δp1,p̄2
δq1,q2 ,

(B.53)
which starts to resemble the Fermionic anticommutation
rules. To complete the mapping, it is possible [65] to
introduce

ˆ̂
Jpq =

1√
2

δq,+1

∑
q′

q′ ˆ̂J pq′ + δq,−1

∑
q′

ˆ̂J pq′


=

[
δq,+1

(
ˆ̂cp1 −

ˆ̂
PE ˆ̂cp−1

)
+ δq,−1

(
ˆ̂cp1 +

ˆ̂
PE ˆ̂cp−1

)]
√

2
.

(B.54)
For future reference, these expressions can be inverted to
obtain the Fermionic operators as

ˆ̂cp1 =
1√
2

(
ˆ̂
Jp−1 +

ˆ̂
Jp+1

)
ˆ̂
PE ˆ̂cp−1 =

1√
2

(
ˆ̂
Jp−1 −

ˆ̂
Jp+1

)
.

(B.55)

We now have, defining q̄ = −q,

{ ˆ̂
Jp1
q1 ,

ˆ̂
Jp2
q2 } = 1

2δq1,+1δq2,+1{
∑
q q

ˆ̂J p1
q ,
∑
q q

ˆ̂J p2
q }

+ 1
2δq1,+1δq2,−1{

∑
q q

ˆ̂J p1
q ,
∑
q

ˆ̂J p2
q }

+ 1
2δq1,−1δq2,+1{

∑
q

ˆ̂J p1
q ,
∑
q q

ˆ̂J p2
q }

+ 1
2δq1,−1δq2,−1{

∑
q

ˆ̂J p1
q ,
∑
q

ˆ̂J p2
q }

= 1
2δq1,+1δq2,+1

∑
q

∑
q′ qq

′{ ˆ̂J p1
q ,

ˆ̂J p2

q′ }

+ 1
2δq1,+1δq2,−1

∑
q

∑
q′ q{

ˆ̂J p1
q ,

ˆ̂J p2

q′ }

+ 1
2δq1,−1δq2,+1

∑
q

∑
q′ q
′{ ˆ̂J p1

q ,
ˆ̂J p2

q′ }

+ 1
2δq1,−1δq2,−1

∑
q

∑
q′{

ˆ̂J p1
q ,

ˆ̂J p2

q′ }

= 1
2δq1,+1δq2,+1δp1,p̄2

∑
q qqq

+ 1
2δq1,+1δq2,−1δp1,p̄2

∑
q qq

+ 1
2δq1,−1δq2,+1δp1,p̄2

∑
q qq

+ 1
2δq1,−1δq2,−1δp1,p̄2

∑
q q

= δq1,+1δq2,−1δp1,p̄2 + δq1,−1δq2,+1δp1,p̄2

= δq1,q̄2δp1,p̄2
,

(B.56)
which elegantly resembles the Fermionic anticommuta-
tion rules. But this is not all, as other important relations
hold. One is the fluctuation-dissipation-like relation

ˆ̂
Jp±1(ρeq

E ) = (ˆ̂cp1 ∓
ˆ̂
PE ˆ̂cp−1)(ρeq

E )

= cλkρ
eq
E ∓ PEρeq

E c
λ
kPE

= (eλβ(ωk−µ) ± 1)ρeq
E c

λ
k ,

(B.57)

where we used Eq. (B.73) and the fact that ρeq
E is even

in the number of Fermionic operators. We then have

ˆ̂
Jp−1(ρeq

E ) = (eλβ(ωk−µ)−1)

(eλβ(ωk−µ)+1)

ˆ̂
Jp+1(ρeq

E )

= tanh(λβ(ωk − µ)/2)
ˆ̂
Jp+1(ρeq

E ) .

(B.58)

Another important relation is the “closure”

Tr
[

ˆ̂
Jq+1·

]
= 0 , (B.59)

which is proved by using the cyclic property of the trace
as

Tr
[

ˆ̂
Jp+1·

]
= Tr

[
(ˆ̂cp1 −

ˆ̂
PE ˆ̂cp−1)·

]
= Tr

[
cλk · −PE · cλkPE

]
= Tr

[
cλk · −cλk ·

]
= 0 .

(B.60)
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Everything is now ready to prove Wick’s theorem. We
consider

Sn = Tr
[
Jp1
q1 · · · Jpnqn ρ

eq
E

]
, (B.61)

which is non-zero only for even n. In this case, if qn =
+1, we can anticommute it on the left and then use the
closure property to derive

Sn =

n−1∑
i=1

(−1)#Pi,nTr

{Jpnqn , Jpiqi }Jp1
q1 · · ·︸︷︷︸

i,n

Jpnqn ρβ


=

n−1∑
i=1

(−1)#Pi,nTr[{Jpiqi , Jpnqn }ρ
eq
E ]Si,nn−2

=

n−1∑
i=1

(−1)#Pi,n〈Jpiqi Jpnqn 〉ES
i,n
n−2 ,

(B.62)
where the underbrace indicates the indexes labeling
the missing operators and where we used Eq. (B.56)
in the second step and we used the closure property
Eq. (B.59) in the last step. We also defined Si,nn−2 =

Tr

Jp1
q1 · · ·︸︷︷︸

i,n

Jpnqn ρ
eq
E

 and 〈·〉E = Tr[·ρeq
E ]. Here, #Pi,n

is the number of transpositions needed to bring Jpnqn and
Jpiqi adjacent [65].

If qn = −1, we cannot apply the closure relation
directly. However, we can first use the fluctuation-
dissipation relation Eq. (B.58) to obtain

Sn = tn

n−1∑
i=1

(−1)#Pi,nTr[{Jpnq̄n , Jpiqi }ρβ ]Si,nn−2

= tn

n−1∑
i=1

(−1)#Pi,nTr[Jpiqi J
pn
q̄n ρE ]Si,nn−2

=

n−1∑
i=1

(−1)#Pi,nTr[Jpiqi J
pn
qn ρE ]Si,nn−2

=

n−1∑
i=1

(−1)#Pi,n〈Jpiqi Jpnqn 〉ES
i,n
n−2 ,

(B.63)

where qn = (λn, kn) is a multi-index and defined tn ≡
tanh(λnβ(ωkn −µ)/2). In order to derive the second line
we used the closure property Eq. (B.59) and to obtain
the third line we used the fluctuation-dissipation relation
Eq. (B.58) again.
Proceeding this way iteratively, we prove

Tr
[
Jp1
q1 · · · Jpnqn ρ

eq
E

]
=
∑
c∈Cn

(−1)#c
∏

(i,j)∈c
〈Jpiqi Jpjqj 〉E .

(B.64)
Here, each full-contraction c ∈ Cn is one of the possible
sets of ordered pairs (or just, contractions) (ic, jc), ic < jc
over the set Nn = {1, · · · , n}. We further denoted by #c
the parity of the contraction c, i.e., the parity of the
permutation needed to order the set Nn, such that all
pairs in c are adjacent.

To conclude, we observe that, in order to use this form
of Wick’s theorem, the superoperators have to be written
in terms of ˆ̂cp1 and ˆ̂

PE ˆ̂cp−1 defined in Eq. (B.55). Using
B(t) =

∑
k gkcke

−iωkt, we can write the superoperators
ˆ̂
B defined in Eq. (I.20) as

ˆ̂
Bλ1 (t) =

∑
k gk

ˆ̂cp1e
−iωkt

ˆ̂
Bλ−1(t) =

∑
k gk

ˆ̂
PE ˆ̂cp−1e

−iωkt
(B.65)

where p = (λ, k). This shows that, as long as the correla-
tions are written in terms of the superoperators ˆ̂

B above,
we can indeed use the Wick’s theorem in Eq. (B.64), jus-
tifying the reasoning done in section IC.

b. Time-ordering in Wick’s theorem

The form of the Wick’s theorem in Eq. (B.64) implies
that if P a is a single swap between two adjacent superop-
erators (let us say between Jpaqa and Jpa+1

qa+1 ), the parity #c
of each full-contraction c will provide an extra minus-sign
unless (a, a + 1) ∈ c. In fact, the parity of the permu-
tation needed to order the set (after applying P a) such
that all pairs are adjacent is −(#c) when (a, a+ 1) /∈ c.

When (a, a+1) ∈ c, there is no extra-sign as a and a+1,
even if swapped, are already adjacent. This slight imper-
fection with respect to total antisymmetry implies that
special care needs to be taken with respect to the order
in which the original sequence appears inside the corre-
lation. However, total antisymmetry can be restored by
simply considering Fermionic time-ordering of the origi-
nal sequence. In this case, supposing tn ≥ · · · ≥ t1, we
have

Tr
[

ˆ̂
T [J

pP (1)
qP (1)

· · · JpP (n)
qP (n)

]ρeq
E

]
= (−1)#PW [Jpnqn · · · Jp1

q1 ],

(B.66)
where P is a generic permutation and where

W [pnqn · · · Jp1
q1 ] =

∑
c∈C̄n

(−1)#c
∏
i,j∈c
〈Jpiqi Jpjqj 〉E . (B.67)

Here, C̄n is the set of contractions over the set N̄n =
{n, · · · , 1}. Importantly, since i, j are ordered as in the
sequence given toW , we can always include an additional
time-ordering in the definition to obtain

Tr
[

ˆ̂
TJ

pP (1)
qP (1)

· · · JpP (n)
qP (n)

]ρeq
E

]
= (−1)#PWT [Jpnqn · · · Jp1

q1 ] ,

(B.68)
where

WT [Jp1
q1 · · · Jpnqn ] =

∑
c∈C̄n

(−1)#c
∏
i,j∈c
〈 ˆ̂T [Jpiqi J

pj
qj ]〉E ,

(B.69)
which fulfills

WT [P a[Jpnqn · · · Jp1
q1 ]] = −WT [Jpnqn · · · Jp1

q1 ] . (B.70)
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In fact,

WT [P a[Jpnqn · · · Jp1
q1 ]] =

= −
∑
c∈Cn

(−1)#c
∏

(i,j)∈c,(a,b) 6∈c
〈 ˆ̂T [Jpiqi J

pj
qj ]〉E

+
∑
c∈Cn

(−1)#c
∏

(i,j)∈c,(a,b)∈c
〈 ˆ̂T [P a[Jpiqi J

pj
qj ]]〉E

= −
∑
c∈Cn

(−1)#c
∏

(i,j)∈c,(a,b) 6∈c
〈 ˆ̂T [Jpiqi J

pj
qj ]〉E

−
∑
c∈Cn

(−1)#c
∏

(i,j)∈c,(a,b)∈c
〈 ˆ̂T [Jpiqi J

pj
qj ]〉E

= −
∑
c∈Cn

(−1)#c
∏

(i,j)∈c
〈 ˆ̂T [Jpiqi J

pj
qj ]〉E .

(B.71)

Since we can always decompose the generic permutation
P appearing in Eq. (B.68) in terms of transpositions P a,
by repetitive application of Eq. (B.70) we obtain

Tr
[

ˆ̂
T [J

pP (1)
qP (1)

· · · JpP (n)
qP (n)

]ρeq
E

]
= WT [J

pP (1)
qP (1)

· · · JpP (n)
qP (n)

] .

(B.72)
This is an rather convenient result as we can apply the
Wick’s operator W directly to the original sequence, in-
dependently from its order.

c. Commutation relations with equilibrium distribution

In this subsection we prove the relation

cλkρ
eq
E = eλβ(ωk−µ)ρeq

E c
λ
k , (B.73)

where λ = ±1 and where ρeq
E = exp[−β∑k(ωk −

µ)c†kck]/Zeq
E with Zeq

E =
∏
k(1 + exp[−β(ωk − µ)]). To

start we have

ckρ
eq
E = cke

−β(ωk−µ)c†kcke−β
∑
j 6=k(ωj−µ)c†jcj/Zeq

E

= ck[1 + (e−β(ωk−µ) − 1)c†kck]

×e−β
∑
j 6=k(ωj−µ)c†jcj/Zeq

E

= e−β(ωk−µ)cke
−β∑

j 6=k(ωj−µ)c†jcj/Zeq
E ,

(B.74)
We also have

ρeq
E ck = e−β(ωk−µ)c†kckcke

−β∑
j 6=k(ωj−µ)c†jcj/Zeq

E

= [1 + (e−β(ωk−µ) − 1)c†kck]

×cke−β
∑
j 6=k(ωj−µ)c†jcj/Zeq

E

= cke
−β∑

j 6=k(ωj−µ)c†jcj/Zeq
E ,

(B.75)

so that, by comparison, we obtain

ckρ
eq
E = e−β(ωk−µ)ρeq

E ck . (B.76)

Similarly,

c†kρ
eq
E = c†ke

−β(ωk−µ)c†kcke−β
∑
j 6=k(ωj−µ)c†jcj/Zeq

E

= c†k[1 + (e−β(ωk−µ) − 1)c†kck]

×e−β
∑
j 6=k(ωj−µ)c†jcj/Zeq

E

= c†ke
−β∑

j 6=k(ωj−µ)c†jcj/Zeq
E ,

(B.77)
and

ρeq
E c
†
k = e−β(ωk−µ)c†kckc†ke

−β∑
j 6=k(ωj−µ)c†jcj/Zeq

E

= [1 + (e−β(ωk−µ) − 1)c†kck]

×c†ke−β
∑
j 6=k(ωj−µ)c†jcj/Zeq

E

= e−β(ωk−µ)c†ke
−β∑

j 6=k(ωj−µ)c†jcj/Zeq
E ,

(B.78)
so that

c†kρ
eq
E = eβ(ωk−µ)ρeq

E c
†
k . (B.79)

Together, Eq. (B.76) and Eq. (B.79) prove Eq. (B.73).

4. Influence Superoperator

In this section we explicitly derive the expression for
the influence superoperator ˆ̂F(t) in Eq. (I.29) and for
the superoperator ˆ̂

W in Eq. (I.26). We also provide a
relation between the factorial and the double factorial
which is used to re-sum the reduced Dyson series.

a. Expression for the influence superoperator

Given the arguments in the main text, from Eq. (I.23)
we find that the reduced density matrix depends on the
quantity

ˆ̂
TS

∫ t

0

dt2dt1
ˆ̂
W (t2, t1) (B.80)

To proceed, note the following symmetry

ˆ̂
TS

ˆ̂
W (t2, t1) =

ˆ̂
TS

ˆ̂
W (t1, t2) . (B.81)
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In fact,

ˆ̂
TSW (t1, t2) =∑
q1,q2,λ1,λ2

Cλ2,λ1
q2,q1 (t1, t2)

ˆ̂
TS

ˆ̂
Sλ̄2
q2 (t1)

ˆ̂
Sλ̄1
q1 (t2)

= −
∑

q1,q2,λ1,λ2

Cλ1,λ2
q1,q2 (t2, t1)

ˆ̂
TS

ˆ̂
Sλ̄2
q2 (t1)

ˆ̂
Sλ̄1
q1 (t2)

=
∑

q1,q2,λ1,λ2

Cλ1,λ2
q1,q2 (t2, t1)

ˆ̂
TS

ˆ̂
Sλ̄1
q1 (t2)

ˆ̂
Sλ̄2
q2 (t1)

=
ˆ̂
TSW (t2, t1) ,

(B.82)

where we used the fact that

Cλ2,λ1
q2,q1 (t1, t2) = TrE

[
ˆ̂
TE

ˆ̂
Bλ2
q2 (t1)

ˆ̂
Bλ1
q1 (t2)[ρE(0)]

]
= −TrE

[
ˆ̂
TE

ˆ̂
Bλ1
q1 (t2)

ˆ̂
Bλ2
q2 (t1)[ρE(0)]

]
= −Cλ1,λ2

q1,q2 (t2, t1) .

(B.83)
In turn, this means that

ˆ̂
TS

∫ t

0

dt2dt1
ˆ̂
W (t2, t1)

=
ˆ̂
TS

∫ t

0

dt2

∫ t

0

dt1[θ(t2 − t1) + θ(t1 − t2)]
ˆ̂
W (t2, t1)

=

(∫ t

0

dt2

∫ t2

0

dt1 +

∫ t

0

dt1

∫ t1

0

dt2

)
ˆ̂
TS

ˆ̂
W (t2, t1)

= 2
ˆ̂
TS

∫ t

0

dt2

∫ t2

0

dt1
ˆ̂
W (t2, t1) ,

(B.84)
where, in the last step, we used Eq. (B.81). The expres-
sion above allows to write Eq. (I.24).

b. Expression for the superoperator ˆ̂
W

We start from the expression of the superoperator ˆ̂
W

defined in Eq. (I.25) which reads

W (t2, t1) =
∑

q1,q2,λ1,λ2

Cλ2,λ1
q2,q1 (t2, t1)

ˆ̂
Sλ̄2
q2 (t2)

ˆ̂
Sλ̄1
q1 (t1) ,

(B.85)

where the two-point correlations can be written as, see
Eq. (I.22),

Cλ2,λ1
q2,q1 (t2, t1) = TrE

[
ˆ̂
TE

ˆ̂
Bλ2
q2 (t2)

ˆ̂
Bλ1
q1 (t1)[ρE(0)]

]
,

(B.86)
along with Eq. (I.20) which describes the superoperators
ˆ̂
B and ˆ̂

S

ˆ̂
B1

1 [·] = B†[·],
ˆ̂
B−1

1 [·] = B[·],
ˆ̂
B1
−1[·] =

ˆ̂
PE [·B†],

ˆ̂
B−1
−1 [·] =

ˆ̂
PE [·B],

ˆ̂
S−1

1 [·] = ŝ[·]
ˆ̂
S1

1 [·] = −ŝ†[·]
ˆ̂
S−1
−1 [·] = − ˆ̂

PS [·ŝ]
ˆ̂
S1
−1[·] =

ˆ̂
PS [·ŝ†],

(B.87)

Explicitly, the superoperators ˆ̂
B read

ˆ̂
B1

1(t)[·] =
∑
k

gkc
†
k(t)[·] (B.88)

ˆ̂
B−1

1 (t)[·] =
∑
k

gkck(t)[·] (B.89)

ˆ̂
B1
−1(t)[·] =

∑
k

gk
ˆ̂
PE [[·]c†k(t)] (B.90)

ˆ̂
B−1
−1(t)[·] =

∑
k

gkck
ˆ̂
PE [[·]ck(t)] , (B.91)

Note that among the 16 terms in Eq. (B.85), only 8 are
non-trivial. This is due to the fact that, since ρE(0) is
even, the extra-constraint δλ2,λ̄1

appears (indexes λ = ±1
correspond to creation/annihilation operators). The non-
zero contributions are, for t2 ≥ t1,
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TrE
(

ˆ̂
B1

1(t2)
ˆ̂
B−1

1 (t1)ρE(0)
)

ˆ̂
S−1

1 (t2)
ˆ̂
S1

1(t1)[·] = TrE
(
B†(t2)B(t1)[ρE(0)]

) ˆ̂
S−1

1 (t2)
ˆ̂
S1

1(t1)[·]

TrE
(

ˆ̂
B1
−1(t2)

ˆ̂
B−1

1 (t1)ρE(0)
)

ˆ̂
S−1
−1(t2)

ˆ̂
S1

1(t1))[·] = TrE
(
PEB(t1)[ρE(0)]B†(t2)PE

) ˆ̂
S−1
−1(t2)

ˆ̂
S1

1(t1))[·]

TrE
(

ˆ̂
B−1

1 (t2)
ˆ̂
B1

1(t1)ρE(0)
)

ˆ̂
S1

1(t2)
ˆ̂
S−1

1 (t1)[·] = TrE
(
B(t2)B†(t1)[ρE(0)]

) ˆ̂
S1

1(t2)
ˆ̂
S−1

1 (t1)[·]

TrE
(

ˆ̂
B−1
−1(t2)

ˆ̂
B1

1(t1)ρE(0)
)

ˆ̂
S1
−1(t2)

ˆ̂
S−1

1 (t1)[·] = TrE
(
PEB

†(t1)[ρE(0)]B(t2)PE
) ˆ̂
S1
−1(t2)

ˆ̂
S−1

1 (t1)[·]

TrE
(

ˆ̂
B1

1(t2)
ˆ̂
B−1
−1(t1)ρE(0)

)
ˆ̂
S−1

1 (t2)
ˆ̂
S1
−1(t1)[·] = TrE

(
B†(t2)PE [ρE(0)]B(t1)PE

) ˆ̂
S−1

1 (t2)
ˆ̂
S1
−1(t1)[·]

TrE
(

ˆ̂
B1
−1(t2)

ˆ̂
B−1
−1(t1)ρE(0)

)
ˆ̂
S−1
−1(t2)

ˆ̂
S1
−1(t1)[·] = TrE

(
PEPE [ρE(0)]B(t1)PEB

†(t2)PE
) ˆ̂
S−1
−1(t2)

ˆ̂
S1
−1(t1)[·]

TrE
(

ˆ̂
B−1

1 (t2)
ˆ̂
B1
−1(t1)ρE(0)

)
ˆ̂
S1

1(t2)
ˆ̂
S−1
−1(t1)[·] = TrE

(
B(t2)PE [ρE(0)]B†(t1)PE

) ˆ̂
S1

1(t2)
ˆ̂
S−1
−1(t1)[·]

TrE
(

ˆ̂
B−1
−1(t2)

ˆ̂
B1
−1(t1)ρE(0)

)
ˆ̂
S1
−1(t2)

ˆ̂
S−1
−1(t1)[·] = TrE

(
PEPE [ρE(0)]B†(t1)PEB(t2)PE

) ˆ̂
S1
−1(t2)

ˆ̂
S−1
−1(t1)[·] .

(B.92)

Above, we kept the superoperators acting on the system
as the time-ordering acts at the superoperator level. We
can then write

W (t2, t1) =

Cσ=1(t2, t1)
[

ˆ̂
S−1

1 (t2)
ˆ̂
S1

1(t1) +
ˆ̂
S−1
−1(t2)

ˆ̂
S1

1(t1)
]

+Cσ=−1(t2, t1)
[

ˆ̂
S1

1(t2)
ˆ̂
S−1

1 (t1) +
ˆ̂
S1
−1(t2)

ˆ̂
S−1

1 (t1)
]

+Cσ=−1(t1, t2)
[
− ˆ̂
S−1

1 (t2)
ˆ̂
S1
−1(t1)− ˆ̂

S−1
−1(t2)

ˆ̂
S1
−1(t1)

]
+Cσ=1(t1, t2)

[
− ˆ̂
S1

1(t2)
ˆ̂
S−1
−1(t1)− ˆ̂

S1
−1(t2)

ˆ̂
S−1
−1(t1)

]
,

(B.93)

where we defined

Cσ=1(t2, t1) = TrE
[
B†(t2)B(t1)ρE(0)

]
Cσ=−1(t2, t1) = TrE

[
B(t2)B†(t1)ρE(0)

]
.

(B.94)

We can group the terms to obtain Eq. (I.26) in the main
text as

W (t2, t1) =

=
ˆ̂
S−1

1 (t2)
[
Cσ=1(t2, t1)

ˆ̂
S1

1(t1)− Cσ=−1(t1, t2)
ˆ̂
S1
−1(t1)

]
+

ˆ̂
S−1
−1(t2)

[
Cσ=1(t2, t1)

ˆ̂
S1

1(t1)− Cσ=−1(t1, t2)
ˆ̂
S1
−1(t1)

]
+

ˆ̂
S1

1(t2)
[
−Cσ=1(t1, t2)

ˆ̂
S−1
−1(t1) + Cσ=−1(t2, t1)

ˆ̂
S−1

1 (t1)
]

+
ˆ̂
S1
−1(t2)

[
−Cσ=1(t1, t2)

ˆ̂
S−1
−1(t1) + Cσ=−1(t2, t1)

ˆ̂
S−1

1 (t1)
]

=
[

ˆ̂
S−1

1 (t2) +
ˆ̂
S−1
−1(t2)

] [
Cσ=1(t2, t1)

ˆ̂
S1

1(t1)− Cσ=−1(t1, t2)
ˆ̂
S1
−1(t1)

]
−
[

ˆ̂
S1
−1(t2) +

ˆ̂
S1

1(t2)
] [
Cσ=1(t1, t2)

ˆ̂
S−1
−1(t1)− Cσ=−1(t2, t1)

ˆ̂
S−1

1 (t1)
]

=
∑
σ=±

Aσ(t2)Bσ(t2, t1) .

(B.95)

where
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Aσ(t) = σ
(

ˆ̂
S−σσ (t) +

ˆ̂
S−σ−σ (t)

)
= ŝσ̄(t)[·]− ˆ̂

PS [[·]ŝσ̄(t)]

Bσ=1(t2, t1) = Cσ=1(t2, t1)
ˆ̂
S1

1(t1)− Cσ=−1(t1, t2)
ˆ̂
S1
−1(t1) = −Cσ=1(t2, t1)ŝ†(t1)[·]− Cσ=−1(t1, t2)PS [[·]ŝ†(t1)]

Bσ=−1(t2, t1) = Cσ=1(t1, t2)
ˆ̂
S−1
−1(t1)− Cσ=−1(t2, t1)

ˆ̂
S−1

1 (t1) = −Cσ=1(t1, t2)PS [[·]ŝ(t1)]− Cσ=−1(t2, t1)ŝ(t1)[·] ,
(B.96)

It is further possible to derive the more compact notation

Bσ(t2, t1)

= − (Cσ(t2, t1)ŝσ(t1)[·] + C σ̄(t1, t2)PS [[·]ŝσ(t1)])

= −
(
Cσ(t2, t1)ŝσ(t1)[·] + C̄ σ̄(t2, t1)PS [[·]ŝσ(t1)]

)
,

(B.97)
where we used Eq. (D.8).

c. Proof of Eq. (I.31)

The starting point of this section is Eq. (I.25) which
describes the influence superoperator as

ˆ̂F(t) =

∫ t

0

dt2

∫ t2

0

dt1
ˆ̂
W (t2, t1) (B.98)

where

ˆ̂
W (t2, t1)[·] =

∑
σ=±

ˆ̂
Aσ(t2)

ˆ̂
Bσ(t2, t1)[·]

= −C(1)s2s
†
1[·] + C(1) ˆ̂

PS [s†1 · s2]

−C̄(−1)s2
ˆ̂
PS [·s†1] + C̄(−1) ˆ̂

PS [
ˆ̂
PS [·s†1]s2]

−C(−1)s†2s1[·] + C(−1) ˆ̂
PS [s1 · s†2]

−C̄(1)s†2
ˆ̂
PS [·s1] + C̄(1) ˆ̂

PS [
ˆ̂
PS [·s1]s†2] ,

(B.99)
where we used the short-hands C(1) = Cσ=1(t2, t1),
C(−1) = Cσ=−1(t2, t1), sσ1 = sσ(t1), and sσ2 = sσ(t2).
We now define ˆ̂

W±(t2, t1) as the composition of ˆ̂
W with

the projectors ˆ̂
P

e/o
S onto the even/odd sector, i.e.,

ˆ̂
W±(t2, t1)[·] =

ˆ̂
W (t2, t1)[

ˆ̂
P

e/o
S [·]]

= −C(1)s2s
†
1 · ±C(1)s†1 · s2

±C̄(−1)s2 · s†1 − C̄(−1) · s†1s2

−C(−1)s†2s1 · ±C(−1)s1 · s†2
±C̄(1)s†2 · s1 − C̄(1) · s1s

†
2

= −C(1)[s2, s
†
1·]∓ − C̄(−1)[·s†1, s2]∓

−C(−1)[s†2, s1·]∓ − C̄(1)[·s1, s
†
2]∓
(B.100)

Using Cσ(t2, t1) = C̄σ(t1, t2), we can write

ˆ̂
W±(t2, t1)[·] = −

∑
σ=±

Cσ(t2, t1)[sσ̄(t2), sσ(t1)·]∓

−
∑
σ=±

Cσ(t1, t2)[·sσ̄(t1), sσ(t2)]∓,

(B.101)
which proves Eq. (I.31) in the main text.

d. A relation between factorial and double factorial

The double factorial of an integer n is defined as

n!! = n(n− 2) · · · 2 for n even

n!! = n(n− 2) · · · 1 for n odd .

(B.102)

We can see that if we multiply the double factorials of two
consecutive numbers, we can “fill the gaps” with respect
to the definition of factorial. Explicitly,

n!!(n− 1)!! = n! . (B.103)

Another interesting connection between double and sin-
gle factorial is

(2n)!! = 2n(2n− 2) · · · 2 = 2nn! . (B.104)

Using Eq. (B.103) and Eq. (B.104) we have

(2n− 1)!! =
(2n)!

(2n)!!
=

(2n)!

2nn!
. (B.105)
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Appendix C: Applications

Here, we provide details on the derivations of the re-
sults presented in Section II.

1. Markovian regime

In section IIA we analyzed the idealized conditions un-
der which the correlations characterizing the environment
take the form in Eq. (II.4), i.e.

Cσ(t2, t1) = Γσδ(t2 − t1) , (C.1)

where

Γσ = Γ(1− σ + 2σn0) . (C.2)

This Markovian regime leads to drastic simplifications in
Eq. (I.29). In fact, all superoperators present in ˆ̂

W are
evaluated at the same point in time making the time-
ordering procedure much easier to handle. Specifically,
using Eq. (C.1), into Eq. (I.25), we have

ˆ̂F(t)[·] = −1

2

∫ t

0

dt′
∑
σ

(
sσ̄(t′)[·]− ˆ̂

PS [[·]sσ̄(t′)]
)(

Γσsσ(t′)[·] + Γ̄σ̄
ˆ̂
PS [[·]sσ(t′)]

)
, (C.3)

where we used
∫ t2

0
dt1δ(t2 − t1) = 1/2,(see Eq. 5.3.12

in [50]). Using Eq. (C.53), this also means that, in the
Shroedinger picture,

ρ̇Shr
S (t) = −i[HS , ρ

Shr
S (t)] + L[ρShr

S (t)] , (C.4)

where

L[·] = U(t)
d

ˆ̂F(t)

dt
U†(t)[·] , (C.5)

with U(t) = exp(−iHSt). For clarity of notation, from
now on we will omit the label “Shr”. Using the def-
inition of operators in the interaction frame, sσ(t) =
U†(t)sσU(t) and taking the derivative of Eq. (C.3), we
find

L[·] = −(s · − ˆ̂
PS [·s])(Γσ=1s† ·+Γ̄σ=−1 ˆ̂

PS [·s†])/2

−(s† · − ˆ̂
PS [·s†])(Γσ=−1s ·+Γ̄σ=1 ˆ̂

PS [·s])/2.
(C.6)

Note that L[·] preserves the parity of its argument, i.e.,
it maps even (odd) operators into even (odd) operators.
Using the decomposition

ρS(t) = ρe
S(t) + ρo

S(t) , (C.7)

we can write the action of the superoperators ˆ̂
PS to write

ρ̇S(t) = −i[HS , ρS(t)] + Le[ρe
S(t)] + Lo[ρo

S(t)] , (C.8)

where

ρ
e/o
S =

ˆ̂
P e/o[ρS ] , (C.9)

in terms of

ˆ̂
P e = P e · P e + P o · P o

ˆ̂
P o = P e · P o + P o · P e ,

(C.10)

with

P e = (PS + 1)/2

P o = (1− PS)/2 .

(C.11)

The even/odd dissipators in Eq. (C.8) are defined as,

Le[·] = −(Γσ=1ss† ·+Γ̄σ=−1 · s†s

−Γ̄σ=−1s · s† − Γσ=1s† · s)/2

−(Γσ=−1s†s ·+Γ̄σ=1 · ss†

−Γ̄σ=1s† · s− Γσ=−1s · s†)/2

=
(
Γσ=1[2s† · s− ss† · − · ss†]

+ Γσ=−1[2s · s† − s†s · − · s†s]
)
/2 .

(C.12)

When the argument is odd, terms involving one and only
one ˆ̂

PS change sign with respect to the even case. This
leads to

Lo[·] =
(
Γσ=1[−2s† · s− ss† · − · ss†]

+ Γσ=−1[−2s · s† + s†s ·+ · s†s]
)
/2 .

(C.13)
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Using Eq. (C.2) into Eq. (C.8) we obtain the following
explicit Lindblad equation in the Shroedinger picture

ρ̇S(t) = −i[HS , ρS(t)]

+Γ(1− n0)Ds[ρ
e
S(t)] + Γn0Ds† [ρ

e
S(t)]

+Γ(1− n0)D′s[ρ
o
S(t)] + Γn0D

′
s† [ρ

o
S(t)] ,

(C.14)
where Ds[·] = 2s[·]s† − s†(t)s[·] − [·]s†s, Ds† =
2s†(t)[·]s(t)− ss†[·]− [·]ss†, D′s[·] = −2s[·]s† − s†(t)s[·]−
[·]s†s, D′s† = −2s†(t)[·]s(t) − ss†[·] − [·]ss†. In a more
compact form, this equation becomes Eq. (II.5).

2. Hierarchical equations of motion

Here, we provide the details of the derivation of the
Hierarchical Equations of motion.

a. An expression for the influence superoperator

Here, we explicitly derive Eq. (II.7), i.e., the expression
for the influence superoperator when the correlations in
Eq. (I.28) are given by the ansatz in Eq. (II.6). In fact,
using such an ansatz, the superoperator ˆ̂

W in Eq. (I.26)
reads

ˆ̂
W (t2, t1)[·] =

∑
σ

ˆ̂
Aσ(t2)

ˆ̂
Bσ(t2, t1)[·]

= −
∑
σ

ˆ̂
Aσ(t2) {Cσ(t2, t1)ŝσ(t1)[·]

+C̄ σ̄(t2, t1)
ˆ̂
PS [[·]ŝσ(t1)]

}
= −

∑
n,σ

ˆ̂
Aσ(t2)

{
aσne
−bσn(t2,t1)ŝσ(t1)[·]

+āσ̄ne
−b̄σ̄n(t2,t1) ˆ̂

PS [[·]ŝσ(t1)]
}

= −
∑
n,σ

ˆ̂
Aσ(t2)e−b

σ
n(t2,t1)

×
{
aσnŝ

σ(t1)[·] + āσ̄n
ˆ̂
PS [[·]ŝσ(t1)]

}
,

(C.15)
where in the last step we used the very convenient
Eq. (D.14). Using the definition in Eq. (II.8), i.e.,

ˆ̂Bσn(t)[·] = −
(
aσnŝ

σ(t)[·] + āσ̄nPS [[·]ŝσ(t)]
)
, (C.16)

we can write

ˆ̂
W (t2, t1)[·] =

∑
n,σ

ˆ̂
Aσ(t2)e−b

σ
n(t2,t1) ˆ̂Bσn(t1) , (C.17)

which, using Eq. (I.25), immediately leads to Eq. (II.7)
in the main text, i.e.,

ˆ̂F(t) =

∫ t

0

dt2

∫ t2

0

dt1
∑
n,σ

Aσ(t2)e−b
σ
n(t2−t1) ˆ̂Bσn(t1) .

(C.18)

b. HEOM

Here, we present all details to derive a generalized ver-
sion of the HEOM valid in both even- and odd-parity
sector which contains the usual expression for the HEOM
in the even-parity sector. The starting point is the ex-
pression for the nth auxiliary density matrix defined in
Eq. (II.13) which, omitting the time-dependence for the
density matrices, reads as

ρ
(n)
jn···j1(t) = αn

ˆ̂
TS

ˆ̂
Θjn(t) · · · ˆ̂Θj1(t)ρ(0)(t) , (C.19)

with ρ(0)(t) ≡ ρS(t). The superoperators ˆ̂
Θ are defined

as

ˆ̂
Θj(t) ≡ ˆ̂

Θσ
m(t) =

∫ t

0

dτe−bj(t−τ) ˆ̂Bj(τ) , (C.20)

where we defined the multi-index j = (m,σ) and, con-
sistently bj ≡ bσm and ˆ̂Bj ≡ ˆ̂Bσm. The derivative of ˆ̂

Θ is
given by

d

dt
ˆ̂
Θj(t) = −bσm ˆ̂

Θj(t) +
ˆ̂Bj(τ) , (C.21)

In order to compute the derivative of the previous aux-
iliary density matrixes, we further need the derivative of
ρ(0)(t) = ρS(t). Using, Eq. (C.51)

d

dt
ρS(t) =

ˆ̂
TS

(
d

dt
ˆ̂F(t)

)
ρS(t) . (C.22)

From Eq. (II.7), the time-derivative of ˆ̂F(t) is simply
given by

d

dt
ˆ̂F(t) =

∑
n,σ

ˆ̂
Aσ(t)

∫ t

0

dτe−b
σ
m(t−τ) ˆ̂Bσm(τ)

=
∑
m,σ

ˆ̂
Aσ(t)

ˆ̂
Θσ
n(t)

≡
∑
j

ˆ̂
Aj(t)

ˆ̂
Θj(t) ,

(C.23)

where ˆ̂
Aj(t) ≡ ˆ̂

Aσ(t) which, redundantly, makes ˆ̂
A also

a (trivial) function of n. Inserting the equation above in
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Eq. (C.22), we find

d

dt
ρS(t) =

ˆ̂
TS
∑
m,σ

ˆ̂
Aσ(t)

ˆ̂
Θσ
m(t)ρS(t)

=
∑
σ

ˆ̂
Aσ(t)

ˆ̂
TS
∑
m

ˆ̂
Θσ
m(t)ρS(t)

≡
∑
j

ˆ̂
Aj(t)

ˆ̂
TS

ˆ̂
Θj(t)ρS(t) . (C.24)

Using Eq. (C.21) and Eq. (C.24) we can write the deriva-
tive of the auxiliary density matrices in Eq. (C.19) as

ρ̇
(n)
jn···j1(t) = αn

ˆ̂
TS

n∑
k=1

ˆ̂
Θjn(t) · · ·

[
−bjk ˆ̂

Θjk(t) +
ˆ̂Bjk(t)

]
· · · ˆ̂Θj1(t)ρ(0)(t)

+αn
ˆ̂
TS

ˆ̂
Θjn(t) · · · ˆ̂Θj1(t)

∑
jn+1

ˆ̂
Ajn+1(t)

ˆ̂
Θjn+1

(t)ρ(0)(t)

=

n∑
k=1

(−bjk)ρ
(n)
jn···j1 + α

n∑
k=1

(−1)n−k ˆ̂Bjk(t)ρ
(n−1)
jn···jk+1jk−1···j1 + α−1

∑
jn+1

ˆ̂
Ajn+1(t)ρ

(n+1)
jn+1···j1 ,

(C.25)

where the superoperators ˆ̂
A and ˆ̂B are given by Eq. (I.27)

and Eq. (II.8), i.e.,

ˆ̂
Aj(t) ≡ ˆ̂

Aσ(t) = ŝσ̄(t)[·]− ˆ̂
PS [[·]ŝσ̄(t)]

ˆ̂Bj(t) ≡ ˆ̂Bσm(t) = −
(
aσmŝ

σ(t)[·] + āσ̄mPS [[·]ŝσ(t)]
)
.

(C.26)
In the last step of Eq. (C.25), we accounted for the minus
signs originating when moving the superoperators ˆ̂Bjk(t)

on the very left (a sign appears each time ˆ̂
B moves across

a ˆ̂
Θ). On the contrary, signs appearing when moving the

superoperators ˆ̂
Ajn+1(t) on the very left are always com-

pensated by the ones appearing when moving ˆ̂
Θjn+1

(t)
which also needs to be brought on the left in order to be
able to use Eq. (C.19).

We can now go back to the Shroedinger picture by mul-
tiplying each iteration of the HEOM by U ·U† where U =
exp(−iHSt) is the free evolution of the system. Using
Ud/dt(Ô)U† = d/dt(UÔU†) − LÔ, where ˆ̂L = −i[HS , ·]
we derive the generalized Hierarchical Equations of Mo-
tion

ρ̇
Schr,(n)
jn···j1 = (

ˆ̂L −
n∑
k=1

bjk)ρ
Schr,(n)
jn···j1

+α

n∑
k=1

(−1)n−k ˆ̂BjkρSchr,(n−1)
jn···jk+1jk−1···j1

+α−1
∑
jn+1

ˆ̂
Ajn+1ρ

Schr,(n+1)
jn+1···j1 .

(C.27)
Here, the adjective “generalized” is motivated by the fact

that the previous expression can be applied to both even-
and odd-parity sectors. If we now assume ρ(0)(t) to be
have a definite parity symmetry, then the parity super-
operators inside the definitions in Eq. (C.26) translate
into signs dependent on the iteration index n. For ex-
ample, assuming ρ(0)(t) to be physical, hence even, when
Aσ acts on ρ(0), the parity operator adds a minus sign
(note that ˆ̂

PS acts on the density matrix multiplied by
the odd operator ŝ), while when it acts on ρ(n), the par-
ity operator is trivial. We can then write, omitting the
label Schr,

ρ̇
(n)
jn···j1 = (

ˆ̂L −
n∑
k=1

bjk)ρ
(n)
jn···j1

−α
n∑
k=1

(−1)n−k ˆ̂Cjkn ρ(n−1)
jn···jk+1jk−1···j1

+α−1
∑
jn+1

ˆ̂Aσn+1
n ρ

(n+1)
jn+1···j1 ,

where

ˆ̂Ajn[·] ≡ ŝσ̄[·] + (−1)n[·]ŝσ̄

ˆ̂Cjn[·] ≡ aσnŝ
σ[·]− (−1)nāσ̄n[·]ŝσ ,

(C.28)

where the notation is slightly redundant as it implies a
trivial dependence of ˆ̂A on the index m, originating from
the expansion of the correlation in Eq. (II.6). For the
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specific choice α = i, we obtain

ρ̇
(n)
jn···j1 = (

ˆ̂L −
n∑
k=1

bjk)ρnjn···j1 − i
∑
jn+1

ˆ̂Ajn+1
n ρ

(n+1)
jn+1···j1

−i
n∑
k=1

(−1)n−k ˆ̂Cjkn ρ(n−1)
jn···jk+1jk−1···j1 ,

(C.29)
which represents one of the standard expressions for
the HEOM, see, for example, Eq. (38) in [75]. In the
Appendix C 2 c we give an explicit derivation of these

equations up to order 2.

c. Explicit calculation up to order 2

Here, we more explicitly compute the HEOM up to or-
der 2. We start by taking the derivative of the quantity in
Eq. (II.12), which is done using Eq. (II.10) and Eq. (II.9)
to obtain (omitting the time-dependence for the density
matrices)

ρ̇σ1
m1

=
d

dt

[
α

ˆ̂
TSΘσ1

m1
(t)ρS

]
= α

ˆ̂
TS
[
−bσ1

m1
Θσ1
m1

(t) +Bσ1
m1

(t)
]
ρS + α

ˆ̂
TSΘσ1

m1
(t)α−1

∑
m2,σ2

Aσ2(t)ρσ2
m2

= −bσ1
m1
ρσ1
m1

+ αBσ1
m1

(t)ρS +
ˆ̂
TSΘσ1

m1
(t)

∑
m2,σ2

Aσ2(t)α
ˆ̂
TSΘσ2

m2
ρS

= −bσ1
m1
ρσ1
m1

+ αBσ1
m1

(t)ρS + α−1
∑
m2,σ2

Aσ2(t)ρσ2,σ1
m2,m2

,

(C.30)

where we defined

ρσ2,σ1
m2,m2

= α2 ˆ̂
TSΘσ2

m2
Θσ2
m2

(t)ρS . (C.31)

We moved the operator Θσ2
m2

across Aσ2 and Θσ1
m1

result-

ing in a + sign. We then further moved Aσ2 across the
two Θ operators, again resulting in a + sign. Similarly,
we can proceed onto the next order to obtain

ρ̇σ2,σ1
m2,m1

= α2 d

dt

[
ˆ̂
TSΘσ2

m2
(t)Θσ1

m1
(t)ρS

]
= α2 ˆ̂

TS
[
−bσ2

m2
Θσ2
m2

(t) +Bσ2
m2

(t)
]

Θσ1
m1

(t)ρS + α2 ˆ̂
TSΘσ2

m2
(t)
[
−bσ1

m1
Θσ1
m1

(t) +Bσ1
m1

(t)
]
ρS

+α2 ˆ̂
TSΘσ2

m2
(t)Θσ1

m1
(t)α−1

∑
n3,σ3

Aσ3(t)ρσ3
n3

= −bσ2
m2
ρσ2,σ1
m2,m1

+ αBσ2
m2

(t)ρσ1
m1
− bσ1

m1
ρσ2,σ1
m2,m1

− αBσ1
m1

(t)ρσ2
m2

+α2 ˆ̂
TSΘσ2

m2
(t)Θσ1

m1
(t)α−1

∑
n3,σ3

Aσ3(t)α
ˆ̂
TSΘσ3

m2
(t)ρS

= −bσ2
m2
ρσ2,σ1
m2,m1

+ αBσ2
m2

(t)ρσ1
m1
− bσ1

m1
ρσ2,σ1
m2,m1

− αBσ1
m1

(t)ρσ2
m2

+ α2
∑
n3,σ3

Aσ3(t)
ˆ̂
TSΘσ3

m2
(t)Θσ2

m2
(t)Θσ1

m1
(t)ρS

= −bσ2
m2
ρσ2,σ1
m2,m1

+ αBσ2
m2

(t)ρσ1
m1
− bσ1

m1
ρσ2,σ1
m2,m1

− αBσ1
m1

(t)ρσ2
m2

+ α−1
∑
n3,σ3

Aσ3(t)ρσ3,σ2,σ1
n3,m2,m1

= (−bσ1
m1
− bσ2

m2
)ρσ2,σ1
m2,m1

+ α

2∑
j=1

(−1)2−jBσjnj (t)ρ
σ3−j
n3−j

+ α−1
∑
m2,σ3

Aσ3(t)ρσ3,σ2,σ1
m3,m2,m1

,

(C.32)

where

ρσ3,σ2,σ1
n3,m2,m1

(t) = α3 ˆ̂
TSΘσ3

m2
(t)Θσ2

m2
(t)Θσ1

m1
(t)ρ . (C.33)

Minus signs appear when the operators Θ cross each
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other or other operators.

3. Computing system correlation functions

Here, we show how the correlations at thermal equilib-
rium in Eq. (II.20), i.e.,

Cth
XY (t) = TrSE [XS(0)U(t2 − t1)YS(0)ρthU†(t2 − t1)]

(C.34)
can be computed using the HEOM in Eq. (II.14). Our
starting point is Eq. (II.21) which writes the correlation
as

Cth
XY (t) = TrSE [XS(0)ρY (t)] , (C.35)

where

ρY (t) = U(t)YS(0)U(T )ρ(−T )U†(T )U†(t) , (C.36)

in terms of a separable state ρ(−T ) and a time T such
that ρth = U(T )ρ(−T )U†(T ).

To start, using the same definitions which lead to
Eq. (I.16), we can write

ρY (t) =

∞∑
n=0

(−i)n
n!

ˆ̂
T b ˆ̂
YS(0)

∫ t

−T

[
n∏
i=1

dti
ˆ̂
H×I (ti)

]
ρ(−T ) ,

(C.37)
where we defined ˆ̂

YS(0)[·] = YS(0)[·] as the superoperator
version of YS(0) and used the (Bosonic) time-ordering to
reposition it outside the integral. By using the decompo-
sition in Eq. (I.9), we can write ˆ̂

YS(0)[·] =
ˆ̂
Y e
S (0) +

ˆ̂
Y o
S (0)

where ˆ̂
Y e
S (0)[·] = Ŷ e

S (0)[·] and ˆ̂
Y o
S (0)[·] =

ˆ̂
P ′E(0)Ŷ o

S (0)[·]
with ˆ̂

P ′E [·] = PE [·].
Due to the presence of ˆ̂

YS(0), in order to make progress
in evaluating Eq. (C.37), we need to adapt the reasoning
done to deduce Eq. (B.34) from Eq. (B.23). We can write

ρY (t) =

∞∑
n=0

(−i)n
n!

∫ t

0

(
n∏
i=1

dti

) ∑
qn,λn,··· ,q1,λ1{[

ˆ̂
TE

ˆ̂
B′λnqn (tn) · · · ˆ̂

B′λ1
q1 (t1)[ρeq

E ]
]

ˆ̂
TS

[
ˆ̂
Y e
S (0)

ˆ̂
Sλ̄nqn (tn) · · · ˆ̂

Sλ̄1
q1 (t1)

]
[ρ̂e
S(−T )]

+
[

ˆ̂
TE

ˆ̂
P ′E(0)

ˆ̂
B′λnqn (tn) · · · ˆ̂

B′λ1
q1 (t1)[ρeq

E ]
]

ˆ̂
TS

[
ˆ̂
Y o
S (0)

ˆ̂
S′λ̄nqn (tn) · · · ˆ̂

S′λ̄1
q1 (t1)

]
[ρ̂e
S(−T )]

+
[

ˆ̂
TE

ˆ̂
B′λnqn (tn) · · · ˆ̂

B′λ1
q1 (t1)[ρeq

E PE ]
]

ˆ̂
TS

[
ˆ̂
Y e
S (0)

ˆ̂
S′λ̄nqn (tn) · · · ˆ̂

S′λ̄1
q1 (t1)

]
[ρ̂o
S(−T )]

+
[

ˆ̂
TE

ˆ̂
P ′E(0)

ˆ̂
B′λnqn (tn) · · · ˆ̂

B′λ1
q1 (t1)[ρeq

E PE ]
]

ˆ̂
TS

[
ˆ̂
Y o
S (0)

ˆ̂
Sλ̄nqn (tn) · · · ˆ̂

Sλ̄1
q1 (t1)

]
[ρ̂o
S(−T )]

}
.

(C.38)

Here, it is important to keep the time dependence for all
superoperators (including ˆ̂

P ′E(0)) to allow for the action
of time-ordering. As we defined in section IB, the time-
orderings ˆ̂

TS and ˆ̂
TB are Fermionic when acting on the

fields ˆ̂
B′ and ˆ̂

S. This definition is possible because the
ordering of the fields ˆ̂

B inside ˆ̂
TB mirrors that of the fields

ˆ̂
S inside ˆ̂

TS . On the other hand, the current situation
involving the operator ˆ̂

YS is not as symmetrical. For this
reason, we consider the field ˆ̂

YS and ˆ̂
P ′E to be commuted

under the action of ˆ̂
TS and ˆ̂

TE other than anticommuted.
We are now ready to take the partial trace which leads

to

ρYS (t) =
∑

n=even

(−i)n
n!

∫ t

0

(
n∏
i=1

dti

) ∑
qn,λn···q1,λ1{

C ′λn···λ1
qn···q1 T̂S

[
ˆ̂
Y e
S (0)

ˆ̂
Sλ̄nqn · · ·

ˆ̂
Sλ̄1
q1

]
ρ̂e
S(0) + C ′′λn···λ1

qn···q1 T̂S

[
ˆ̂
Y o
S (0)

ˆ̂
S′λ̄nqn · · ·

ˆ̂
S′λ̄1
q1

]
ρ̂e
S(0)

+ D′λn···λ1
qn···q1 T̂S

[
ˆ̂
Y e
S (0)

ˆ̂
S′λ̄nqn · · ·

ˆ̂
S′λ̄1
q1

]
ρ̂o
S(0) +D′′λn···λ1

qn···q1 T̂S

[
ˆ̂
Y o
S (0)

ˆ̂
Sλ̄nqn · · ·

ˆ̂
Sλ̄1
q1

]
ρ̂o
S(0)

}
,

(C.39)

where, since the operator ˆ̂
Y o
S (0) changes the parity of the state, the correlations take the form
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C ′λn···λ1
qn···q1 = TrE T̂E

[
ˆ̂
B′λnqn · · ·

ˆ̂
B′λ1
q1

]
[ρeq
E ]

C ′′λn···λ1
qn···q1 = TrE T̂E

[
PE

ˆ̂
P ′E(0)

ˆ̂
B′λnqn · · ·

ˆ̂
B′λ1
q1

]
[ρeq
E ]

D′λn···λ1
qn···q1 = TrE T̂E

[
PE

ˆ̂
B′λnqn · · ·

ˆ̂
B′λ1
q1

]
[ρeq
E PE ]

D′′λn···λ1
qn···q1 = TrE T̂E

[
ˆ̂
P ′E(0)

ˆ̂
B′λnqn · · ·

ˆ̂
B′λ1
q1

]
[ρeq
E PE ] .

(C.40)
Now, we notice that the difference between the fields ˆ̂

S

and ˆ̂
S′ is, ultimately, just a sign when the down-indexes

are negative, see Eq. (B.29) and Eq. (B.30). The same
sign can be implemented in the bath correlations by

adding two extra PE , i.e., we can consider Eq. (C.43)
with the substitutions ˆ̂

S′λq → ˆ̂
Sλq and

C ′′λn···λ1
qn···q1 → TrE T̂E

[
P 2
E

ˆ̂
P ′E(0)

ˆ̂
B′λnqn · · ·

ˆ̂
B′λ1
q1

]
[ρeq
E PE ]

= D′′λn···λ1
qn···q1

D′λn···λ1
qn···q1 → TrE T̂E

[
P 2
E

ˆ̂
B′λnqn · · ·

ˆ̂
B′λ1
q1

]
[ρeq
E P

2
E ]

= C ′λn···λ1
qn···q1 ,

(C.41)
which leads to

ρYS (t) =
∑

n=even

(−i)n
n!

∫ t

0

(
n∏
i=1

dti

) ∑
qn,λn···q1,λ1{

C ′λn···λ1
qn···q1 T̂S

[
ˆ̂
Y e
S (0)

ˆ̂
Sλ̄nqn · · ·

ˆ̂
Sλ̄1
q1

]
(ρ̂e
S(0) + ρ̂o

S(0)) +D′′λn···λ1
qn···q1 T̂S

[
ˆ̂
Y o
S (0)

ˆ̂
Sλ̄nqn · · ·

ˆ̂
Sλ̄1
q1

]
(ρ̂e
S(0) + ρ̂o

S(0))
}

.

(C.42)

It is not possible to further reduce D′′ because of the
presence of ˆ̂

P ′E(0) whose action adds a sign corresponding

to the number of times the fields ˆ̂
B
λj
qj appear with qj = 1

and tj < 0. However, the same sign can be introduced
on the system variables to write

ρYS (t) =
∑

n=even

(−i)n
n!

∫ t

0

(
n∏
i=1

dti

) ∑
qn,λn···q1,λ1{

C ′λn···λ1
qn···q1 T̂S

[
ˆ̂
Y e
S (0)

ˆ̂
Sλ̄nqn · · ·

ˆ̂
Sλ̄1
q1

]
(ρ̂e
S(0) + ρ̂o

S(0)) + C ′λn···λ1
qn···q1 T̂S

[
ˆ̂
Y o
S (0)

ˆ̂
PS(0)

ˆ̂
Sλ̄nqn · · ·

ˆ̂
Sλ̄1
q1

]
PS(ρ̂e

S(0) + ρ̂o
S(0))

}
.

(C.43)

It is now possible to keep YS(0) “factorized” on the left
and follow all the reasoning which allowed us to deduce
Eq. (I.29) from Eq. (B.42) to get

ρYS (t) =
ˆ̂
TS

ˆ̂
Y e
S (0)e

ˆ̂FT (t)ρYS (−T )

+
ˆ̂
TS

ˆ̂
Y o
S (0)

ˆ̂
PS(0))e

ˆ̂FT (t)PSρ
Y
S (−T )

=
ˆ̂
TSe

ˆ̂FT (t)[
ˆ̂
Y e
S (0) +

ˆ̂
Y o
S (0)

ˆ̂
PS(0)PS ]ρYS (−T ) ,

(C.44)
which is valid for t ≥ 0 and where

ˆ̂FT (t) =

∫ t

−T
dt2

∫ t2

−T
dt1

ˆ̂
W (t2, t1) . (C.45)

Interestingly, despite the presence of the operator ˆ̂
Y , the

formal time-derivative of the density matrix ρYS (t) has
the same form as Eq. (II.9), i.e.

ρ̇YS (t) =
∑
j

ˆ̂
Aj(t)

ˆ̂
TS

ˆ̂
Θj(t)ρ

Y
S (t) . (C.46)

However, the presence of ˆ̂
Y gives rise to a different bound-

ary condition which reads

ρYS (0) =
ˆ̂
TSe

ˆ̂FT (0)[
ˆ̂
Y e
S (0) +

ˆ̂
Y o
S (0)

ˆ̂
PS(0)PS ]ρYS (−T )

= YS
ˆ̂
TSe

ˆ̂FT (0)ρYS (−T ) ,

(C.47)
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ρeqρS(−T ) ρth YSρ
th U(t)YSρ

thU†(t)

ρS(−T )
ρ(0)(0)

ρ
(n)
jn···j1(0)

YSρ
(0)(0)

YSρ
(n)
jn···j1(0)

ρYS (t)

U(T ) YS YS

HEOM YS HEOM

Figure 2: Diagram showing how to generate the reduced ρYS (t) needed to compute the correlation function Cth
XY (t). The first

row shows the time evolution in the system+environment while the second row the reduced system evolution. Down-arrows
refer to the computation of the reduced-density matrices following the definition in Eq. (I.8).

where we used that all superoperators in ˆ̂
F (0) are eval-

uated at times t < 0 and their number is even.
The differential equation in Eq. (C.46) together with

the initial condition in Eq. (C.47) offer a direct way to
compute the correlations in Eq. (C.34). To achieve this,
it is sufficient to show that the diagram in Fig. (2) com-
mutes. We prove this justifying all the down arrows in
Fig. 2.

1. ρS(−T ) is the reduced density matrix of
TrE [ρeqρS(−T )]. This is an immediate con-
sequence of the identity in Eq. (I.11) and
the fact that ρeq has even parity, leading to
TrE [ρeqρS(−T )] = ρS(−T ).

2. ρ(0)(0) is the reduced density matrix of TrE [ρth].
This is a direct consequence of the meaning of the
HEOM as given in Eq. (II.14).

3. YSρ(0)(0) is the reduced density matrix of
TrE [YSρ

th]. This is a consequence of the defini-
tion of partial trace in Eq. (I.8). In fact, for all
system operators AS , we have TrES [AS(YSρ

th)] =
TrES [ASYS(ρth)] = TrS [ASYSρ

(0)] where in the
last equality we used the second down-arrow from
the left. Since the superoperator associated with
YS is evaluated at time 0, Eq. (II.13) implies that
also the auxiliary density matrices ρ(n)

jn,··· ,j1 need to
be multiplied by YS .

4. ρYS (t) is the reduced density matrix of
U(t)YSρ

thU†(t). This is a consequence of
Eq. (C.46) which implies that the reduced den-
sity matrix ρYS (t) can be computed using the
usual HEOM equation, given in Eq. (II.14),
with initial condition in Eq. (C.47, i.e.,
ρYS (0) = YS

ˆ̂
TSe

ˆ̂FT (0)ρYS (−T ). Using the re-
sults above, this initial condition does correspond
to the auxiliary density matrices in the third place
of the second row of the diagram.

a. Derivative of the reduced density matrix

Here, we derive an expression for the time derivative of
the reduced density matrix. We do this explicitly because
the Fermionic time-ordering always requires some extra-
attention. The time derivative of the reduced density
matrix in Eq. (I.29) can be written as

d

dt
ρS(t) =

d

dt
ˆ̂
TSe

ˆ̂F(t)ρS(0)

=
ˆ̂
TS

∞∑
n=0

d

dt

ˆ̂F(t)n

n!
ρS(0) .

(C.48)

Now, the derivative of a single ˆ̂F(t) is

d

dt
ˆ̂F(t) =

d

dt

∫ t

0

dt2

∫ t2

0

dt1
ˆ̂
W (t2, t1)

=

∫ t

0

dt1
ˆ̂
W (t, t1)

=
∑
i2,k2

ˆ̂
Sk̄2
i2

(t)

∫ t

0

dt1
∑
i1,k1

Ck2,k1

i2,i1
(t, t1)

ˆ̂
Sk̄1
i1

(t1),

(C.49)
which, importantly, contains two system’s superopera-
tors. The T-product of the nth power of ˆ̂F(t) can be
written as

ˆ̂
TS

d

dt
ˆ̂Fn(t) =

ˆ̂
TS

d

dt
[
ˆ̂F(t) · · · ˆ̂F(t)]

=
ˆ̂
TS

d

dt
[
ˆ̂F(t)] · · · ˆ̂F(t) + · · ·+ ˆ̂

TS
ˆ̂F(t) · · · d

dt
[
ˆ̂F(t)]

= n
ˆ̂
TS

d

dt
[
ˆ̂F(t)]

ˆ̂F(t) · · · ˆ̂F(t)︸ ︷︷ ︸
n−1

,

(C.50)
where, since the derivative of a single ˆ̂F(t) contains two
system’s superoperators, we can always move it in front
without “penalty” signs from the Fermionic time order-
ing. Therefore,

d

dt
ρS(t) =

ˆ̂
TS

(
d

dt
ˆ̂F(t)

)
ρS(t) . (C.51)
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To finish, we change to the Shroedinger frame defined as

ρShr
S (t) = U(t)ρS(t)U†(t) , (C.52)

where U = e−iHSt, and where HS is the system’s Hamil-
tonian. The time derivative in this frame reads

d

dt
ρShr
S (t) =

d

dt
U(t)ρS(t)U†(t)

= −i[H, ρS(t)] + U(t)
d

dt
[ρS(t)]U†(t)

= −i[H, ρS(t)]

+U(t)[
ˆ̂
TS

(
d

dt
ˆ̂F(t)

)
ρS(t)]U†(t) .

(C.53)

Appendix D: Identities for the correlation functions

In this section, we derive constraints on the correla-
tions Cσ(t2, t1) defined in Eq. (B.94). To do this, we
define the spectral density

J(ω) = π
∑
k

g2
kδ(ω − ωk) , (D.1)

which quantifies the strength of the interaction between
the environment and the system. We then have

Cσ=1(t2, t1) = TrE [B†(t2)B(t1)ρeq
E ]

=
∑
k

g2
kTrE [c†k(t2)ck(t1)ρeq

E ]

=
∑
k

g2
ke
iωk(t2−t1)neq

k

=
1

π

∫
dωJ(ω)eiω(t2−t1)neq(ω) ,

(D.2)

where neq
k = TrE [c†kckρ

eq
E ]. The equilibrium ther-

mal state for the environment is the Boltzmann
distribution ρeq

E = exp [−β∑k(ωk − µ)c†kck]/Zeq
E =∏

k e
−β(ωk−µ)c†kck/(1 + exp[−β(ωk − µ)]), where Zeq

E =

TrE exp [−β∑k(ωk − µ)c†kck] =
∏
k(1 + exp[−β(ωk −

µ)]). These definitions allow to write the Fermi-Dirac dis-
tribution neq

k = exp [−β(ωk − µ)]/(1+exp[−β(ωk−µ)]) =
1/(exp[β(ωk − µ)] + 1) which, in the continuum version,
reads

neq(ω) =
1

exp[β(ω − µ)] + 1
. (D.3)

We can also consider

Cσ=−1(t2, t1) = TrE [B(t2)B†(t1)ρ]

=
∑
k

g2
kTrE [ck(t2)c†k(t1)ρ]

=
∑
k

g2
ke
−iωk(t2−t1)TrE [ckc

†
kρ]

=
∑
k

g2
ke
−iωk(t2−t1)(1− neq

k )

=
1

π

∫
J(ω)e−iω(t2−t1)[1− neq(ω)] .

(D.4)

Both Eq. (D.2) and Eq. (D.4) can be written together as

Cσ(t2, t1) =

∫
dω

π
J(ω)eiσω(t2−t1) 1− σ + 2σneq(ω)

2
,

(D.5)
which is Eq. (II.2) in the main article. Alternatively, we
can also write

Cσ=−1(t2, t1) = TrE [B(t2)B†(t1)ρ]

=
∑
k

g2
kTrE [ck(t2)c†k(t1)ρ]

=
∑
k

g2
ke
−iωk(t2−t1)TrE [ckc

†
kρ]

=
∑
k

g2
ke
β(ωk−µ)e−iωk(t2−t1)TrE [c†kckρ]

= e−βµ
∑
k

g2
ke
−iωk[t2−(t1−iβ)]neq

k

=
e−βµ

π

∫
dωJ(ω)e−iω[t2−(t1−iβ)]neq(ω) ,

(D.6)

where we used Eq. (B.73), i.e.,

c†kρβ = eβ(ωk−µ)ρβc
†
k . (D.7)

Inspection of Eq. (D.2) and Eq. (D.6) directly leads to
the following correspondence between time-reversal and
conjugation, i.e.,

C̄σ(t2, t1) = Cσ(t1, t2) , (D.8)

where the bar denotes complex conjugation and for σ =
±1. At the same time, by comparing Eq. (D.2) and
Eq. (D.6) we arrive to the relation

Cσ=−1(t1, t2) = e−βµCσ=1(t2 − iβ, t1) . (D.9)

Using the ansatz in Eq. (II.6), i.e.,

Cσ(t2, t1) =
∑
m

aσme
−bσm(t2−t1) , (D.10)
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together with Eq. (D.9) and Eq. (D.8) we find

Cσ=−1(t1, t2) = C̄σ=−1(t2, t1)

=
∑
m

āσ=−1
m e−b̄

σ=−1
m (t2−t1)

Cσ=−1(t1, t2) = e−βµ
∑
m

aσ=1
m e−b

σ=1
m (t2−t1)eiβb

σ=1
m ,

(D.11)
which implies

āσ=−1
m = e−β(µ−ibσ=1

m )aσ=1
m

b̄σ=−1
m = bσ=1

m .

(D.12)

This allows us to explicitly write

Cσ=1(t2, t1) =
∑
m

aσ=1
m e−b

σ=1
m (t2−t1)

Cσ=−1(t1, t2) =
∑
m

āσ=−1
m e−b̄

σ=−1
m (t2−t1)

=
∑
m

āσ=−1
m e−b

σ=1
m (t2−t1) ,

which shows their similarity in the time-dependence in
the exponent. Similarly,

Cσ=1(t1, t2) =
∑
m

āσ=1
m e−b̄

σ=1
m (t2−t1)

=
∑
m

āσ=1
m e−b

σ=−1
m (t2−t1)

Cσ=−1(t2, t1) =
∑
m

aσ=−1
m e−b

σ=−1
m (t2−t1) .

(D.13)

Similarly, since Eq. (D.12) implies b̄σ̄m = bσm, we have

C̄ σ̄(t2, t1) =
∑
m

āσ̄me
−b̄σ̄m(t2−t1)

=
∑
m

āσ̄me
−bσm(t2−t1) .

(D.14)

∗ Electronic address: cirio.mauro@gmail.com
† Electronic address: nwlambert@gmail.com
1 R. Feynman and F. Vernon, The theory of a general quan-
tum system interacting with a linear dissipative system,
Ann. Phys. 24, 118–173 (1963).

2 A. Caldeira and A. Leggett, Path integral approach to
quantum Brownian motion, Physica A 121, 587–616
(1983).

3 A. Caldeira and A. Leggett, Quantum tunnelling in a dis-
sipative system, Ann. Phys. 149, 374 (1983).

4 P. Hedegård and A. O. Caldeira, Quantum dynamics of
a particle in a Fermionic environment, Phys. Scripta 35,
609–622 (1987).

5 Y.-C. Chen, A new method for quantum processes in
Fermionic heat baths, J. Stat. Phys. 49, 811–826 (1987).

6 L. Bönig, K. Schönhammer, and W. Zwerger, Influence-
functional theory for a heavy particle in a Fermi gas, Phys.
Rev. B 46, 855–860 (1992).

7 J. Jin, X. Zheng, and Y. Yan, Exact dynamics of dissipative
electronic systems and quantum transport: Hierarchical
equations of motion approach, J. Chem. Phys. 128, 234703
(2008).

8 C. Schinabeck, R. Härtle, and M. Thoss, Hierarchical quan-
tum master equation approach to electronic-vibrational
coupling in nonequilibrium transport through nanosys-
tems: Reservoir formulation and application to vibrational
instabilities, Phys. Rev. B 97, 235429 (2018).

9 C. Y. Hsieh and J. Cao, A unified stochastic formulation of
dissipative quantum dynamics. I. Generalized hierarchical
equations., J. Chem. Phys. 148, 014103 (2018).

10 C. Y. Hsieh and J. Cao, A unified stochastic formulation of
dissipative quantum dynamics. II. Beyond linear response
of spin baths., J. Chem. Phys. 148, 014104 (2018).

11 J. Shao, Decoupling quantum dissipation interaction via
stochastic fields, J. Chem. Phys. 120, 5053 (2004).

12 L. Han, A. Ullah, Y.-A. Yan, X. Zheng, Y. Yan, and
V. Chernyak, Stochastic equation of motion approach to
Fermionic dissipative dynamics. I. Formalism, J. Chem.
Phys. 152, 204105 (2020).

13 A. Ullah, L. Han, Y.-A. Yan, X. Zheng, Y. Yan, and
V. Chernyak, Stochastic equation of motion approach to
Fermionic dissipative dynamics. II. Numerical implemen-
tation, J. Chem. Phys. 152, 204106 (2020).

14 Y. Yan, Theory of open quantum systems with bath of
electrons and phonons and spins: Many-dissipaton density
matrixes approach, J. Chem. Phys. 140, 054105 (2014).

15 Y. Yan, J. Jin, R.-X. Xu, and X. Zheng, Dissipation equa-
tion of motion approach to open quantum systems, Front.
Phys. 11, 110306 (2016).

16 R.-X. Xu, Y. Liu, H.-D. Zhang, and Y. Yan, Theory of
quantum dissipation in a class of non-Gaussian environ-
ments, Chin. J. Chem. Phys. 30, 395 (2017).

17 R.-X. Xu, Y. Liu, H.-D. Zhang, and Y. Yan, Theories of
quantum dissipation and nonlinear coupling bath descrip-
tors, Chin. J. Chem. Phys. 148, 114103 (2018).

18 A. Garg, J. N. Onuchic, and V. Ambegaokar, Effect of fric-
tion on electron transfer in biomolecules, J. Chem. Phys.
83, 4491 (1985).

19 R. Martinazzo, B. Vacchini, K. H. Hughes, and
I. Burghardt, Communication: Universal Markovian re-
duction of Brownian particle dynamics, J. Chem. Phys.
134, 011101 (2011).

20 J. Iles-Smith, N. Lambert, and A. Nazir, Environmental
dynamics, correlations, and the emergence of noncanonical
equilibrium states in open quantum systems, Phys. Rev. A
90, 032114 (2014).

mailto:cirio.mauro@gmail.com
mailto:nwlambert@gmail.com
https://doi.org/https://doi.org/10.1016/0003-4916(63)90068-X
https://doi.org/doi:10.1016/0378-4371(83)90013-4
https://doi.org/doi:10.1016/0378-4371(83)90013-4
https://doi.org/doi:10.1016/0003-4916(83)90202-6
https://doi.org/10.1088/0031-8949/35/5/001
https://doi.org/10.1088/0031-8949/35/5/001
https://doi.org/10.1007/BF01009357
https://doi.org/10.1103/PhysRevB.46.855
https://doi.org/10.1103/PhysRevB.46.855
https://doi.org/https://doi.org/10.1063/1.2938087
https://doi.org/https://doi.org/10.1063/1.2938087
https://doi.org/10.1103/PhysRevB.97.235429
https://doi.org/https://doi.org/10.1063/1.5018725
https://doi.org/https://doi.org/10.1063/1.5018726
https://doi.org/https://doi.org/10.1063/1.1647528
10.1063/1.5142164
10.1063/1.5142164
10.1063/1.5142166
https://doi.org/https://doi.org/10.1063/1.4863379
https://doi.org/https://doi.org/10.1007/s11467-016-0513-5
https://doi.org/https://doi.org/10.1007/s11467-016-0513-5
https://doi.org/https://doi.org/10.1063/1674-0068/30/cjcp1706123
https://doi.org/https://doi.org/10.1063/1.4991779
https://doi.org/10.1063/1.449017
https://doi.org/10.1063/1.449017
https://doi.org/10.1063/1.3532408
https://doi.org/10.1063/1.3532408
https://doi.org/10.1103/PhysRevA.90.032114
https://doi.org/10.1103/PhysRevA.90.032114


32

21 P. Strasberg, G. Schaller, N. Lambert, and T. Brandes,
Nonequilibrium thermodynamics in the strong coupling
and non-Markovian regime based on a reaction coordinate
mapping, New J. Phys. 18, 073007 (2016).

22 M. P. Woods, R. Groux, A. W. Chin, S. F. Huelga, and
M. B. Plenio, Mappings of open quantum systems onto
chain representations and Markovian embeddings, J. Math.
Phys. 55, 032101 (2014).

23 M. Wertnik, A. Chin, F. Nori, and N. Lambert, Optimizing
co-operative multi-environment dynamics in a dark-state-
enhanced photosynthetic heat engine, J. Chem. Phys. 149,
084112 (2018).

24 A. W. Chin, A. Rivas, S. F. Huelga, and M. B. Plenio,
Exact mapping between system-reservoir quantum models
and semi-infinite discrete chains using orthogonal polyno-
mials, J. Math. Phys. 51, 092109 (2010).

25 J. Prior, A. W. Chin, S. F. Huelga, and M. B. Plenio,
Efficient simulation of strong system-environment interac-
tions, Phys. Rev. Lett. 105, 050404 (2010).

26 D. Tamascelli, A. Smirne, J. Lim, S. F. Huelga, and
M. B. Plenio, Efficient simulation of finite-temperature
open quantum systems, Phys. Rev. Lett. 123, 090402
(2019).

27 A. Nüßeler, I. Dhand, S. F. Huelga, and M. B. Plenio,
Efficient simulation of open quantum systems coupled to a
Fermionic bath, Phys. Rev. B 101, 155134 (2020).

28 B. M. Garraway, Nonperturbative decay of an atomic sys-
tem in a cavity, Phys. Rev. A 55, 2290–2303 (1997).

29 D. Tamascelli, A. Smirne, S. F. Huelga, and M. B. Ple-
nio, Nonperturbative treatment of non-Markovian dynam-
ics of open quantum systems, Phys. Rev. Lett. 120, 030402
(2018).

30 A. Lemmer, C. Cormick, D. Tamascelli, T. Schaetz, S. F.
Huelga, and M. B. Plenio, A trapped-ion simulator for
spin-boson models with structured environments, New J.
Phys. 20, 073002 (2018).

31 N. Lambert, S. Ahmed, M. Cirio, and F. Nori, Modelling
the ultra-strongly coupled spin-boson model with unphys-
ical modes, Nat. Commun. 10, 3721 (2019).

32 F. Mascherpa, A. Smirne, A. D. Somoza, P. Fernández-
Acebal, S. Donadi, D. Tamascelli, S. F. Huelga, and M. B.
Plenio, Optimized auxiliary oscillators for the simulation of
general open quantum systems, Phys. Rev. A 101, 052108
(2020).

33 M. Brenes, J. J. Mendoza-Arenas, A. Purkayastha, M. T.
Mitchison, S. R. Clark, and J. Goold, Tensor-network
method to simulate strongly interacting quantum thermal
machines, Phys. Rev. X 10, 031040 (2020).

34 H.-P. Breuer and F. Petruccione, The Theory Of Open
Quantum Systems (Oxford University Press, Oxford,
2002).

35 J. Ma, Z. Sun, X. Wang, and F. Nori, Entanglement dy-
namics of two qubits in a common bath, Phys. Rev. A 85
(2012).

36 E. Aurell, R. Kawai, and K. Goyal, An operator deriva-
tion of the Feynman–Vernon theory, with applications to
the generating function of bath energy changes and to
an-harmonic baths, J. Phys. A-Math. Theor. 53, 275303
(2020).

37 J. Ma, Private communication.
38 G. C. Wick, A. S. Wightman, and E. P. Wigner, The intrin-

sic parity of elementary particles, Phys. Rev. 88, 101–105
(1952).

39 G. C. Wick, A. S. Wightman, and E. P. Wigner, Superse-

lection rule for charge, Phys. Rev. D 1, 3267–3269 (1970).
40 Z. H. Li, N. H. Tong, X. Zheng, D. Hou, J. H. Wei, J. Hu,

and Y. J. Yan, Hierarchical Liouville-space approach for
accurate and universal characterization of quantum impu-
rity systems, Phys. Rev. Lett. 109, 266403 (2012).

41 G. Lindblad, On the generators of quantum dynamical
semigroups, Commun. Math. Phys. 48, 119 (1976).

42 V. Gorini, A. Kossakowski, and E. Sudarshan, Completely
positive dynamical semigroups of n-level systems, J. Math.
Phys. 17, 821 (1976).

43 Y. Tanimura, Nonperturbative expansion method for a
quantum system coupled to a harmonic-oscillator bath,
Phys. Rev. A 41, 6676–6687 (1990).

44 Y. Tanimura, Stochastic Liouville, Langevin,
Fokker–Planck, and master equation approaches to
quantum dissipative systems, J. Phys. Soc. Jpn. 75,
082001 (2006).

45 Y. Tanimura and R. Kubo, Time evolution of a quantum
system in contact with a nearly Gaussian-Markoffian noise
bath, J. Phys. Soc. Jpn. 58, 101–114 (1989).

46 A. Ishizaki and Y. Tanimura, Quantum dynamics of system
strongly coupled to low-temperature colored noise bath:
Reduced hierarchy equations approach, J. Phys. Soc. Jpn.
74, 3131–3134 (2005).

47 A. Ishizaki and G. R. Fleming, Unified treatment of quan-
tum coherent and incoherent hopping dynamics in elec-
tronic energy transfer: Reduced hierarchy equation ap-
proach, J. Chem. Phys. 130, 234111 (2009).

48 R. Härtle, G. Cohen, D. R. Reichman, and A. J. Millis, De-
coherence and lead-induced interdot coupling in nonequi-
librium electron transport through interacting quantum
dots: A hierarchical quantum master equation approach,
Phys. Rev. B 88, 235426 (2013).

49 J. K. Sowa, N. Lambert, T. Seideman, and E. M. Gauger,
Beyond Marcus theory and the Landauer–Büttiker ap-
proach in molecular junctions. II. A self-consistent Born
approach, J. Chem. Phys. 152, 064103 (2020).

50 C. Gardiner and P. Zoller, Quantum noise: a handbook of
Markovian and non-Markovian quantum stochastic meth-
ods with applications to quantum optics (Springer Science,
2004).

51 D. A. Lidar, Lecture notes on the theory of open quantum
systems, arXiv:1902.00967 (2019).

52 N. Shammah, S. Ahmed, N. Lambert, S. De Liberato, and
F. Nori, Open quantum systems with local and collective
incoherent processes: Efficient numerical simulations using
permutational invariance, Phys. Rev. A 98, 063815 (2018).

53 H.-N. Xiong, P.-Y. Lo, W.-M. Zhang, D. H. Feng, and
F. Nori, Non-Markovian complexity in the quantum-to-
classical transition, Sci. Rep. 5, 13353 (2015).

54 Z.-Y. Zhou, Y.-A. Yan, S. Hughes, J. Q. You, and F. Nori,
Accessing the bath information in open quantum systems
with the stochastic c-number Langevin equation method,
Phys. Rev. A 100, 042112 (2019).

55 F. Minganti, A. Miranowicz, R. W. Chhajlany, and F. Nori,
Quantum exceptional points of non-Hermitian Hamiltoni-
ans and Liouvillians: The effects of quantum jumps, Phys.
Rev. A 100, 062131 (2019).

56 F. Minganti, A. Miranowicz, R. W. Chhajlany, I. I.
Arkhipov, and F. Nori, Hybrid-Liouvillian formalism con-
necting exceptional points of non-Hermitian Hamiltonians
and Liouvillians via postselection of quantum trajectories,
Phys. Rev. A 101, 062112 (2020).

57 L. Ferialdi, Exact closed master equation for Gaussian non-

https://doi.org/10.1088/1367-2630/18/7/073007
https://doi.org/10.1063/1.4866769
https://doi.org/10.1063/1.4866769
10.1063/1.5040898
10.1063/1.5040898
https://doi.org/10.1063/1.3490188
https://doi.org/10.1103/PhysRevLett.105.050404
https://doi.org/10.1103/PhysRevLett.123.090402
https://doi.org/10.1103/PhysRevLett.123.090402
https://doi.org/10.1103/PhysRevB.101.155134
https://doi.org/10.1103/PhysRevA.55.2290
https://doi.org/10.1103/PhysRevLett.120.030402
https://doi.org/10.1103/PhysRevLett.120.030402
https://doi.org/10.1088/1367-2630/aac87d
https://doi.org/10.1088/1367-2630/aac87d
https://doi.org/https://doi.org/10.1038/s41467-019-11656-1
https://doi.org/10.1103/PhysRevA.101.052108
https://doi.org/10.1103/PhysRevA.101.052108
https://doi.org/10.1103/PhysRevX.10.031040
https://journals.aps.org/pra/abstract/10.1103/PhysRevA.85.062323
https://journals.aps.org/pra/abstract/10.1103/PhysRevA.85.062323
https://doi.org/10.1088/1751-8121/ab9274
https://doi.org/10.1088/1751-8121/ab9274
https://doi.org/10.1103/PhysRev.88.101
https://doi.org/10.1103/PhysRev.88.101
https://doi.org/10.1103/PhysRevD.1.3267
https://doi.org/10.1103/PhysRevLett.109.266403
https://doi.org/10.1007/BF01608499
https://doi.org/doi:10.1063/1.522979
https://doi.org/doi:10.1063/1.522979
https://doi.org/10.1103/PhysRevA.41.6676
https://doi.org/10.1143/JPSJ.75.082001
https://doi.org/10.1143/JPSJ.75.082001
https://doi.org/10.1143/JPSJ.58.101
https://doi.org/10.1143/JPSJ.74.3131
https://doi.org/10.1143/JPSJ.74.3131
10.1063/1.3155372
https://doi.org/10.1103/PhysRevB.88.235426
10.1063/1.5143146
https://arxiv.org/abs/1902.00967
https://doi.org/10.1103/PhysRevA.98.063815
https://doi.org/10.1038/srep13353
https://doi.org/10.1103/PhysRevA.100.042112
https://doi.org/10.1103/PhysRevA.100.062131
https://doi.org/10.1103/PhysRevA.100.062131
https://doi.org/10.1103/PhysRevA.101.062112


33

Markovian dynamics, Phys. Rev. Lett. 116, 120402 (2016).
58 M. W. Y. Tu and W.-M. Zhang, Non-Markovian decoher-

ence theory for a double-dot charge qubit, Phys. Rev. B
78, 235311 (2008).

59 W.-M. Zhang, P.-Y. Lo, H.-N. Xiong, M. W.-Y. Tu, and
F. Nori, General non-Markovian dynamics of open quan-
tum systems, Phys. Rev. Lett. 109, 170402 (2012).

60 N. Friis, A. R. Lee, and D. E. Bruschi, Fermionic-mode
entanglement in quantum information, Phys. Rev. A 87,
022338 (2013).

61 N. Friis, Reasonable Fermionic quantum information the-
ories require relativity, New J. Phys. 18, 033014 (2016).

62 F. Schwarz, M. Goldstein, A. Dorda, E. Arrigoni, A. We-
ichselbaum, and J. von Delft, Lindblad-driven discretized
leads for nonequilibrium steady-state transport in quan-
tum impurity models: Recovering the continuum limit,
Phys. Rev. B 94, 155142 (2016).

63 W. Greiner and J. Reinhardt, Field Quantization
(Springer-Verlag Berlin Heidelberg, 1996).

64 J. R. W. Greiner, Quantum transport theory (Perseus
group, 1998).

65 R. B. Saptsov and M. R. Wegewijs, Fermionic superoper-
ators for zero-temperature nonlinear transport: Real-time
perturbation theory and renormalization group for Ander-
son quantum dots, Phys. Rev. B 86, 235432 (2012).

66 T. H. Stoof and Y. V. Nazarov, Time-dependent resonant
tunneling via two discrete states, Phys. Rev. B 53, 1050–
1053 (1996).

67 S. A. Gurvitz and Y. S. Prager, Microscopic derivation of
rate equations for quantum transport, Phys. Rev. B 53,
15932–15943 (1996).

68 H.-B. Chen, N. Lambert, Y.-C. Cheng, Y.-N. Chen, and
F. Nori, Using non-Markovian measures to evaluate quan-
tum master equations for photosynthesis, Sci. Rep. 5,
12753 (2015).

69 A. Fruchtman, N. Lambert, and E. Gauger, When do per-
turbative approaches accurately capture the dynamics of
complex quantum systems?, Sci. Rep. 6, 28204 (2016).

70 J. Strumpfer and K. Schulten, Open quantum dynamics
calculations with the hierarchy equations of motion on par-
allel computers, J. Chem. Theory Comput. 8, 2808 (2012).

71 Z. Tang, X. Ouyang, Z. Gong, H. Wang, and J. Wu, Ex-
tended hierarchy equation of motion for the spin-boson
model, J. Chem. Phys. 143, 224112 (2015).

72 J. M. Moix and J. Cao, A hybrid stochastic hierarchy equa-
tions of motion approach to treat the low temperature dy-

namics of non-Markovian open quantum systems, J. Chem.
Phys. 139, 134106 (2013).

73 J.-J. Ding, R.-X. Xu, and Y. Yan, Optimizing hierarchical
equations of motion for quantum dissipation and quantify-
ing quantum bath effects on quantum transfer mechanisms,
J. Chem. Phys. 136, 224103 (2012).

74 Q. Shi, L. Chen, G. Nan, R.-X. Xu, and Y. Yan, Efficient
hierarchical Liouville space propagator to quantum dissi-
pative dynamics, J. Chem. Phys. 130, 084105 (2009).

75 N. Lambert, T. Raheja, S. Ahmed, A. Pitchford, and
F. Nori, BoFiN-HEOM: A Bosonic and Fermionic nu-
merical hierarchical-equations-of-motion library with ap-
plications in light-harvesting, quantum control, and single-
molecule electronics, arXiv:2010.10806 (2020).

76 G. Guarnieri, A. Smirne, and B. Vacchini, Quantum regres-
sion theorem and non-Markovianity of quantum dynamics,
Phys. Rev. A 90, 022110 (2014).

77 A. G. Dijkstra and Y. Tanimura, Non-Markovian entangle-
ment dynamics in the presence of system-bath coherence,
Phys. Rev. Lett. 104, 250401 (2010).

78 A. G. Dijkstra and Y. Tanimura, System bath correlations
and the nonlinear response of qubits, J. Phys. Soc. Jpn.
81, 063301 (2012).

79 Y. Tanimura, Reduced hierarchical equations of motion in
real and imaginary time: Correlated initial states and ther-
modynamic quantities, J. Chem. Phys. 141, 044114 (2014).

80 Y. Tanimura, Numerically “exact” approach to open quan-
tum dynamics: The hierarchical equations of motion
(HEOM), J. Chem. Phys. 153, 020901 (2020).

81 L. Fidkowski and A. Kitaev, Topological phases of
Fermions in one dimension, Phys. Rev. B 83, 075103
(2011).

82 N. Bultinck, D. J. Williamson, J. Haegeman, and
F. Verstraete, Fermionic matrix product states and one-
dimensional topological phases, Phys. Rev. B 95, 075108
(2017).

83 N. Bultinck, D. J. Williamson, J. Haegeman, and F. Ver-
straete, Fermionic projected entangled-pair states and
topological phases, J. Phys. A-Math. Theor. 51, 025202
(2017).

84 H. Shapourian and S. Ryu, Entanglement negativity of
Fermions: Monotonicity, separability criterion, and clas-
sification of few-mode states, Phys. Rev. A 99, 022310
(2019).

https://doi.org/10.1103/PhysRevLett.116.120402
https://doi.org/10.1103/PhysRevB.78.235311
https://doi.org/10.1103/PhysRevB.78.235311
https://doi.org/10.1103/PhysRevLett.109.170402
https://doi.org/10.1103/PhysRevA.87.022338
https://doi.org/10.1103/PhysRevA.87.022338
https://doi.org/10.1088/1367-2630/18/3/033014
https://doi.org/10.1103/PhysRevB.94.155142
https://doi.org/10.1103/PhysRevB.86.235432
https://doi.org/10.1103/PhysRevB.53.1050
https://doi.org/10.1103/PhysRevB.53.1050
https://doi.org/10.1103/PhysRevB.53.15932
https://doi.org/10.1103/PhysRevB.53.15932
https://doi.org/10.1038/srep12753
https://doi.org/10.1038/srep12753
https://doi.org/https://doi.org/10.1038/srep28204
https://doi.org/10.1021/ct3003833
https://doi.org/10.1063/1.4936924
https://doi.org/10.1063/1.4822043
https://doi.org/10.1063/1.4822043
https://doi.org/https://doi.org/10.1063/1.4724193
https://aip.scitation.org/doi/abs/10.1063/1.3077918
https://arxiv.org/abs/2010.10806
https://doi.org/10.1103/PhysRevA.90.022110
https://doi.org/10.1103/PhysRevLett.104.250401
https://doi.org/10.1143/JPSJ.81.063301
https://doi.org/10.1143/JPSJ.81.063301
10.1063/1.4890441
10.1063/5.0011599
https://doi.org/10.1103/PhysRevB.83.075103
https://doi.org/10.1103/PhysRevB.83.075103
https://doi.org/10.1103/PhysRevB.95.075108
https://doi.org/10.1103/PhysRevB.95.075108
https://doi.org/10.1088/1751-8121/aa99cc
https://doi.org/10.1088/1751-8121/aa99cc
https://doi.org/10.1103/PhysRevA.99.022310
https://doi.org/10.1103/PhysRevA.99.022310

	Fermionic influence superoperator
	A parity-friendly formalism
	Strategy to solve for the reduced system dynamics

	Reduced Dyson series
	Wick's theorem
	Influence superoperator

	Applications
	Markovian regime
	Hierarchical equations of motion
	Computing system correlation functions

	Conclusions
	Acknowledgments
	Table of Symbols
	Fermionic influence superoperator
	A parity-friendly formalism
	``Hat'' operators
	Partial trace in Fermionic systems

	Reduced Dyson series
	Wick's theorem
	Wick's theorem for superoperators
	Time-ordering in Wick's theorem
	Commutation relations with equilibrium distribution

	Influence Superoperator
	Expression for the influence superoperator
	Expression for the superoperator 
	Proof of Eq. (I.31)
	A relation between factorial and double factorial


	Applications
	Markovian regime
	Hierarchical equations of motion
	An expression for the influence superoperator
	HEOM
	Explicit calculation up to order 2

	Computing system correlation functions
	Derivative of the reduced density matrix


	Identities for the correlation functions
	References

