

CHORUS

This is the accepted manuscript made available via CHORUS. The article has been published as:

Electronic states of metallic electric toroidal quadrupole order in math

xmlns="http://www.w3.org/1998/Math/MathML">mrow>ms ub>mi>Cd/mi>mn>2/mn>/msub>msub>mi>Re/mi>mn> 2/mn>/msub>msub>mi mathvariant="normal">O /mi>mn>7/mn>/msub>/mrow>/math> determined by combining quantum oscillations and electronic structure calculations

Hishiro T. Hirose, Taichi Terashima, Daigorou Hirai, Yasuhito Matsubayashi, Naoki Kikugawa, David Graf, Kaori Sugii, Shiori Sugiura, Zenji Hiroi, and Shinya Uji Phys. Rev. B **105**, 035116 — Published 10 January 2022 DOI: [10.1103/PhysRevB.105.035116](https://dx.doi.org/10.1103/PhysRevB.105.035116)

Electronic states of the metallic electric-toroidal-quadrupole order in $\rm Cd_2Re_2O_7$ ² determined by combining quantum oscillations and electronic structure calculations

Pyrochlore oxide $Cd_2Re_2O_7$ exhibits successive structural transitions upon cooling that break its inversion symmetry. The low-temperature noncentrosymmetric metallic phases are believed to be some odd-parity multipole ordered states that are associated with a Fermi-liquid instability due to the strong spin-orbit interaction (SOI) and electronic correlation. However, their microscopic ordering pictures and the driving force of the phase transitions are still unclear. We determined the electronic structure of the lowest temperature phase of $Cd_2Re_2O_7$ by combining quantum oscillation measurements with electronic structure calculations. The observed Fermi surfaces were well reproduced based on the optimized crystal structure, and we demonstrated the strong influence of the antisymmetric SOI. From the mass enhancement factor, we elucidated the strongly correlated nature of the electronic states. In addition, we visualized the microscopic picture of the $3z^2 - r^2$ -type metallic electric-toroidal-quadrupole (ETQ) order characterized by the Re–O bond order. These results corroborate that the metallic ETQ order is driven by a Fermi-liquid instability associated with the strong SOI and electronic correlation, as has been theoretically proposed. Our results provide the basis for exploring unconventional phenomena expected in the metallic ETQ order.

13 I. INTRODUCTION

 Fermi-liquid instability associated with the strong spin-orbit interaction and electronic correlation has attracted considerable interest in condensed matter $_{17}$ physics [\[1,](#page-19-0) [2\]](#page-19-1). It is theoretically expected that the insta- bility induces an inversion symmetry breaking order, such as an odd-parity multipole order in the metallic state[\[3\]](#page-19-2). In such a system, a multipole moment associated with Fermi surface (FS) splitting in the momentum space in- duces various off-diagonal responses such as the magneto-23 current effect $[4-6]$ $[4-6]$; in other words, the momentum- dependent spin polarizations on spin-split FSs respond to external fields as if there were multipole moments. Furthermore, it is also expected that the fluctuation of the inversion symmetry breaking order can lead to un- conventional superconductivities[\[7–](#page-19-5)[11\]](#page-19-6). The pyrochlore 29 oxide superconductor $Cd_2Re_2O_7$ is a promising candi-date compound[\[12\]](#page-19-7).

 $_{31}$ Cd₂Re₂O₇ shows successive structural transitions with ³² decreasing temperature. Above $T_{s1} \sim 200 \,\mathrm{K}$, Cd₂Re₂O₇ ³³ crystallizes in a centrosymmetric cubic structure (phase ³⁴ I: $Fd\overline{3}m$ where the Re atom is coordinated by six $O(1_I)$ ³⁵ atoms and makes the pyrochlore network that is interpen-³⁶ etrated by the $CdO(2_I)$ zincblende network [see Fig. [1\(](#page-2-0)a); ³⁷ the subscript "I" of the oxygen site numbers indicates 38 the notation for phase I[\[13\]](#page-19-8). At T_{s1} , a second-order ³⁹ structural transition to a noncentrosymmetric tetrago-40 nal structure (phase II: $I\overline{4}m2$) occurs [\[14\]](#page-19-9). Despite the $_{41}$ minimal lattice distortion [\[14,](#page-19-9) [15\]](#page-19-10), the results of resistiv-⁴² ity, magnetic susceptibility, Hall coefficient, and NMR ⁴³ measurements corroborate a drastic change of electronic 44 states at T_{s1} [\[16–](#page-19-11)[20\]](#page-19-12). Thus, the transition is thought to ⁴⁵ be an electronic origin, similar to the band Jahn–Teller ⁴⁶ transition[\[21\]](#page-19-13) or the electronic nematic transition[\[22\]](#page-19-14) 47 [\[23\]](#page-20-0). At $T_{s2} \sim 115$ K, a first-order structural transi-⁴⁸ tion to another noncentrosymmetric tetragonal structure 49 (phase III: $I4_122$) occurs [\[14,](#page-19-9) [24\]](#page-20-1). Considering both $I\overline{4}m2$ 50 and $I4_122$ are subgroups of $Fd\bar{3}m$ and the transition be-⁵¹ tween phases II and III is of the first order, they are likely ⁵² competing[\[25\]](#page-20-2). Recently, a next second-order structural ⁵³ transition to a noncentrosymmetric orthorhombic struc-54 ture (phase IV: F222) at $T_{s3} \sim 80$ K was observed in ⁵⁵ Raman spectra[\[26\]](#page-20-3). Because this transition has not been ⁵⁶ discernible in other experiments[\[12\]](#page-19-7) and the symmetry of ⁵⁷ phase IV is inconsistent with other experiments[\[14,](#page-19-9) [27–](#page-20-4) $58 \text{ } 29$, the symmetry reduction to $F222$ in low temperatures ⁵⁹ is still controversial. Finally, $Cd_2Re_2O_7$ exhibits super-60 conducting transition at $T_c = 0.97 \text{ K} [12, 30, 31]$ $T_c = 0.97 \text{ K} [12, 30, 31]$.

[∗] [hishirose@gmail.com;](mailto:hishirose@gmail.com) Present address: National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki 305- 8564, Japan

[†] Present address: National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki 305-8564, Japan

[‡] Present address: National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki 305-8560, Japan

[§] Present address: Institute for Materials Research, Tohoku University, Sendai, Miyagi 980-8577, Japan

FIG. 1. (Color online) (a) Crystal structure of $Cd₂Re₂O₇$ in a conventional unit cell in phase I, which is drawn using VESTA[\[32\]](#page-20-8). (b) The notation for θ in a cubic conventional unit cell in phase I. (c) Tetragonal conventional unit cells (azure part) in phase III for the X, Y, and Z domains displayed in a cubic conventional unit cell (black line) in phase I.

⁶¹ Based on the lattice symmetries, Ref. [6](#page-19-4) theoretically ⁶² proposed that phases II and III are described by electric ⁹⁶ the quantitative estimation of the predicted phenomena, 63 (axial) toroidal quadrupoles (ETQs) with $x^2 - y^2$ and σ such as the magneto-current effect, requires information $3z^2 - r^2$ components, respectively, which are illustrated so of the FSs because they are sensitive to the electronic 65 in Fig. [2.](#page-2-1) For ease of understanding, we also show their \bullet states at the Fermi level (E_F) . ⁶⁶ corresponding spherical harmonic representations. ETQs σ are multipoles comprising electric toroidal moments, and σ Cd₂Re₂O₇ using τ showed complex frequency branches ⁶⁸ each electric toroidal moment is described by the toroidal ₁₀₂ and large cyclotron effective masses up to $9m_e$ (m_e is a ⁶⁹ (circular) charge arrangement. Because space inversion ¹⁰³ free electron mass)[\[37\]](#page-20-12). The angular dependence of the ⁷⁰ reverses the signs of these ETQs, they are types of odd-¹⁰⁴ frequencies was interpreted as part of the six spin-split ⁷¹ parity multipoles (note that the spherical harmonic rep-¹⁰⁵ FSs, calculated based on the reported structural param-⁷² resentations do not reverse the sign). Experimentally, ₁₀₆ eters taken at 90 K[\[38\]](#page-20-13). However, τ is sensitive only to ⁷³ magnetic torque (τ) measurement have proposed a co- $_{107}$ the anisotropy of the FS, which limits the observation of ⁷⁴ existence between the ETQ and electric quadrupole or-¹⁰⁸ quantum oscillations from the nearly isotropic part of the ⁷⁵ ders in phases II and III[\[29,](#page-20-5) [33\]](#page-20-9). By contrast, second ¹⁰⁹ FSs. In addition, a large discrepancy exists between the ⁷⁶ harmonic generation studies suggest the possibilities of ¹¹⁰ experimental results and the calculation. There are two π magnetic multipoles and ETQ orders in phase II[\[34–](#page-20-10)[36\]](#page-20-11). μ main reasons for this: One is that the crystal structure ⁷⁸ Therefore, the nature of multipole orders is still under ¹¹² parameters change with temperature, and the reported ⁷⁹ debate, and an identification of these orders is strongly ¹¹³ structure may not match the one at the lowest tempera-⁸⁰ demanded.

 α is the electronic states probably play a key role in the phase α is the strength is still controversial [\[12,](#page-19-7) [17,](#page-19-15) [19,](#page-19-16) [38\]](#page-20-13). transitions, those in the ordered states have not yet been ¹¹⁸ In the present study, we performed a complementary clarified. Consequently, the microscopic picture of the ¹¹⁹ measurement of quantum oscillations on the AC mag- δ so orders that arise in the metallic state remains unclear. 120 netic susceptibility (χ_{AC}) and electrical conductivity (σ). Corresponding to the spin splitting of FSs in the mo-¹²¹ As shown later, quantum oscillations in different physi- mentum space, a certain order should exist in the real ¹²² cal quantities exhibit different amplitudes, allowing us to space that is coupled to the crystal structure. Because ¹²³ identify new frequencies and trace individual branches. these changes in momentum and real spaces are in cor-¹²⁴ In addition, we succeeded in reproducing the quantum respondence, it is important to identify them simultane-¹²⁵ oscillation spectra much more accurately than in Ref. [37](#page-20-12) ously. These results will provide indirect evidence of the ¹²⁶ by refining the conditions we used to calculate the elec-multipole order. In addition, insights into the electronic ¹²⁷ tronic states; more specifically, we employed a structural

FIG. 2. (Color online) Electric toroidal quatrupoles of x^2 – y^2 and $3z^2 - r^2$ types are shown together with the spherical harmonic representations. The small green arrows represent the electric dipoles, whereas the large blue arrows represent the electric toroidal dipoles.

⁹⁴ states are indispensable to discuss the source of the en-⁹⁵ ergy stabilization in the ordered phases. Furthermore,

⁸¹ The determination of the electronic states in the or- ¹¹⁵ other reason is that the FSs are sensitive to the strength ⁸² dered phases is thus a crucial issue in $Cd_2Re_2O_7$. Though ¹¹⁶ of the electronic correlations considered in the calcula-Our previous quantum oscillation measurements on ¹¹⁴ ture at which we measured the quantum oscillations. The

¹²⁸ optimization while tuning the strength of the electronic ¹⁷⁸ positive (negative) for the minimum (maximum) cross-¹³⁰ tronic structure.

131 **II.** METHODS

¹³² A. Experiments

¹³⁶ standard field modulation method[\[39\]](#page-20-14). The modulation ¹³⁷ field B_{mod} of 0.01 T and 67.1 Hz was applied on a 1 mm^3 ¹⁴¹ nal of the coil voltage (v), which roughly corresponds ¹⁹⁵ ment method. $_{142}$ to $\mathrm{d}\chi_{\text{AC}}/\mathrm{d}B$, was obtained using standard lock-in acqui-¹⁴³ sition. The measurement was performed in a dilution ¹⁴⁴ refrigerator equipped with a 20 T superconducting mag-145 net. The quantum oscillations on the σ were measured by ¹⁴⁶ employing a standard four-probe method, which was con- $_{147}$ ducted in a ³He refrigerator with a 32 T resistive magnet ¹⁴⁸ at NHMFL. These data were analyzed together with the ¹⁹⁸ lated based on the rotationally invariant DFT+U method 149 previous τ data [\[37\]](#page-20-12). In all measurements, the samples 199 using the screened Coulomb and exchange parameters [\[40\]](#page-20-16) 150 were rotated around the $[1\bar{1}0]_c$ direction in the magnetic 200 as implemented in the QUANTUM ESPRESSO package ¹⁵¹ field, and the field angle θ was measured from the $[110]_c$ ²⁰¹ $[41]$. Fully relativistic optimized norm-conserving Van-152 direction, as illustrated in Fig. [1\(](#page-2-0)b). The measurement 202 derbilt pseudopotentials generated using the code ON-153 temperatures for the v, σ , and τ are 40 mK, 0.5 K, and 203 CVPSP [42-[45\]](#page-20-19) were used with the Perdew, Burke, and ¹⁵⁴ 30 mK, respectively, except for the temperature depen-²⁰⁴ Ernzerhof (PBE) type exchange potential [\[46\]](#page-20-20) and a ¹⁵⁵ dence measurements.

 $157 I4₁22$ space group symmetry (phase III) because the 207 a $16³$ k-point mesh was used to calculate the density ¹⁵⁸ symmetry reduction from I4122 to F222 is "almost" im-²⁰⁸ of states (DOS). The atomic positions were optimized ¹⁵⁹ perceptible in our data. In phase III, three types of ²⁰⁹ until the change in the total energy became less than $_{160}$ tetragonal domains, X, Y, and Z domains, are formed, $_{210}$ 10⁻⁶ eV. The FSs were calculated using the 24-orbital $_{161}$ whose c_t axes (subscript "t" denotes the notation in the $_{211}$ tight-binding model based on maximally localized Wan- μ_{162} tetragonal unit cell) lie along the $[100]_c$, $[010]_c$, and $[001]_c$ and μ_{162} nier functions constructed with the WANNIER90 program $_{163}$ directions, respectively, as shown in Fig. [1\(](#page-2-0)c). The ob- $_{213}$ [\[47\]](#page-20-21). The quantum oscillation frequencies were simulated ¹⁶⁴ served quantum oscillations include all signals from the ²¹⁴ using the algorithm described in Ref. [48.](#page-20-22) 165 three domains. Because B is confined within the $(1\bar{1}0)$ _c 215 It is not appropriate to entirely rely on experimental ¹⁶⁶ plane, signals from the X and Y domains are equivalent. ²¹⁶ crystal structures because they may depend on tempera- μ_{167} In addition, when $B \parallel [111]_c$, the signals from all do- μ_{217} ture, as noted later. In addition, the optimal screened $_{168}$ mains are equivalent. Note that in F222, the X, Y, and $_{218}$ Coulomb parameter U depends on the materials and ¹⁶⁹ Z domains are further split into two different domains for $\frac{19}{219}$ pseudopotentials [\[49\]](#page-20-23); therefore, it is not known a pri- 170 each, although that was imperceptible in the polarizing 220 ori. Thus, we employed a round-robin method to obtain ¹⁷¹ microscopy experiment ^{[\[28\]](#page-20-15)}.

 173 oscillation measured on a physical quantity q (v, σ, and 233 timized all the independent internal atomic coordinates 174τ) is expressed as follows:

$$
\frac{\tilde{q}}{|q|} = Cf_q |S''|^{-1/2} R_{\rm T} R_{\rm D} \sin \left[2\pi \left(\frac{F}{B} - \frac{1}{2}\right) \pm \frac{\pi}{4}\right], (1)
$$

¹⁷⁵ where C is a constant, and $S'' = \frac{\partial^2 S}{\partial k_{\parallel B}^2}$ is the cur-₂₂₉ value of $J = 0.3 \text{ eV}$ (see [A](#page-14-0)ppendix A for details). ¹⁷⁶ vature factor [\[39\]](#page-20-14). The higher harmonics, Zeeman ef-²³⁰ In the calculations, we fixed the lattice constants to

 129 correlation. This enables a discussion based on the elec- 179 sectional area S of the FS perpendicular to B, which 133 Single crystals of $Cd_2Re_2O_7$ were grown by the chemi-187 $\left(\cos\phi - \frac{1}{F}\frac{\partial F}{\partial \phi}\sin\phi\right)J_2(\lambda)FB^{1/2}/m^*$ for the field mod- $_{134}$ cal vapor transport method, as described in Ref. [20.](#page-19-12) The $_{188}$ ulation technique with the second-harmonic detection, ¹³⁵ quantum oscillations on the χ_{AC} were measured using a ₁₈₉ $f_{\sigma} = B^{1/2}m^*$ for electrical conductivity, assuming a uni-¹³⁸ size single crystal placed in a pickup coil with the [111]_c ₁₉₂ function, $\lambda = 2\pi FB_{\text{mod}}/B^2$, and ϕ is the angle between ¹³⁹ axis (subscript "c" denotes the notation in the cubic unit ¹⁹³ B and the pickup coil axis. Because of f_q , the relative ¹⁴⁰ cell) parallel to the coil axis. The second harmonic sig-¹⁹⁴ amplitude of each frequency depends on the measure-180 is related to frequency F, as $F = \hbar S/2\pi e$. The ¹⁸¹ temperature and Dingle reduction factors are given by $_{^{182}}$ $R_{\rm T}$ = $\xi/\sinh\xi$ and
 $R_{\rm D}$ = $\exp(-\xi_{\rm D}),$ respectively, where ¹⁸³ $\xi_{\text{(D)}} = 2\pi^2 k_\text{B} T_{\text{(D)}} m^* / e\hbar B$, T_{D} is the Dingle temper- μ_{B4} ature, m^* is the cyclotron effective mass, and k_{B} is ¹⁸⁵ the Boltzmann constant. The factor f_q is different ¹⁸⁶ for each physical quantity and is expressed as f_v = ¹⁹⁰ form scattering rate on FSs, and $f_{\tau} = (\partial F / \partial \theta) B^{3/2} / m^*$ 191 for magnetic torque. Here, J_2 is a second-order Bessel

¹⁹⁶ B. Calculations

¹⁵⁶ We analyzed the quantum oscillations based on the ²⁰⁶ was used for the self-consistent field procedure, whereas The fully relativistic electronic structure was calcu-205 plane-wave cutoff energy of 100 Ry . A 10^3 k-point mesh

¹⁷² Based on the Lifshitz–Kosevich formula, a quantum ²²² experimentally observed by quantum oscillations; we op-²²¹ electronic states that were as close as possible to those $_{224}$ in phase III with various values of U and the screened 225 exchange parameter J at the Re site. We found that the 226 result with $U = 4.5 \text{ eV}$ gives the simulated quantum os-²²⁷ cillation frequencies closest to the experiment, whereas $_{228}$ the dependence on J is minimal; thus, we used a typical

¹⁷⁷ fect, and Berry's phase are neglected. The \pm sign is ²³¹ those of phase I ($a_c = 10.2382 \text{ Å}$), which was optimized

 together with an internal coordinate using the above U and J values. This was done for three reasons: First, the ²³⁴ reported lattice distortion ratios in phase III $(0.044\%/50]$ and 0.016% [\[38\]](#page-20-13)) are smaller than the calculation error 236 of optimizing the lattice constants (\sim 1%). Second, the fixed lattice constant facilitates the comparison of the charge density between phases I and III. Finally, the lat- tice distortion is so small that the effect of the lattice distortion is imperceptible in the calculated FSs and the simulated quantum oscillation spectra. This indicates that the lattice distortion itself is not essential for the electronic states and may appear as a side effect of the atomic displacements. Thus, we ignored the lattice dis-tortion and focused on the atomic displacements.

²⁴⁶ During the structural optimization of phase III, we $_{247}$ constrained the symmetry to $I4₁22$. However, even if ²⁴⁸ we attempted the structural optimization of phase IV $_{249}$ (F222) using the same U and J values and starting from ²⁵⁰ the optimized phase III structure, the symmetry reduc- $_{251}$ tion from $I4_122$ to $F222$ was negligible; the violation $_{252}$ of the $I4_122$ symmetry in terms of the displacement of ²⁵³ atomic coordinates was less than 0.00005. Thus, we ig-²⁵⁴ nored the symmetry reduction to F222 in our calculation.

²⁵⁵ III. RESULTS

²⁵⁶ A. Quantum oscillations

²⁵⁷ 1. Fourier-transformed spectra for major axes

²⁵⁹ the quantum oscillations for the fields along the $\langle 001 \rangle_c$, ²⁸³ to the $J_2(\lambda)F$ factor in f_v . In the electrical conductivity, $_{260}$ $\langle 111 \rangle_c$, and $\langle 110 \rangle_c$ directions measured on the AC mag- $_{284}$ the branches with heavy effective masses tend to show ²⁶¹ netic susceptibility, electrical conductivity, and magnetic ²⁸⁵ relatively large amplitudes compared to the case of other ₂₆₂ torque. Clearly, the relative amplitudes of the quantum 286 physical quantities owing to the m^* factor in f_{σ} . This en-263 oscillation frequencies differ among the physical quanti- 287 abled us to observe the ω_7 , δ_1 , ω_{11} , γ_9 , and ω_{14} branches ²⁶⁴ ties. We observed several new peaks that were not ob-²⁸⁸ that cannot be clearly observed with the other methods. ²⁶⁵ served in the previous study[\[37\]](#page-20-12), and labeled all peaks ²⁸⁹ Magnetic torque has its strength (weakness) in observ-²⁶⁶ according to their origins (described later). Note that ²⁹⁰ ing highly (weakly) anisotropic branches because of the ₂₆₇ we revised the branch names used in Ref. [37](#page-20-12) because ₂₉₁ $\partial F/\partial \theta$ factor in f_{τ} . The fundamental frequencies ob-²⁶⁸ the number of Greek letters is short of naming all ob-²⁹² served for the three methods are shown in Fig. [4\(](#page-5-0)d). We ²⁶⁹ served branches. The masses of the major peaks were ²⁹³ connected all frequencies belonging to the same branch ²⁷⁰ obtained by fitting the temperature dependence of their ²⁹⁴ with the aid of intensity variation. $_{271}$ amplitudes with the R_T function. All major peaks are ²⁷² summarized in Table [I](#page-8-0) along with their corresponding ²⁷³ frequency and mass.

²⁷⁴ 2. Angular dependence of frequencies

²⁷⁵ The Fourier-transformed spectra as a function of field ²⁹⁹ ulated angular dependence of the Fourier-transformed 276 direction are plotted as color images in Figs. [4\(](#page-5-0)a), 4(b), 300 spectra using a typical $f_q = B^{1/2}/m^*$ is shown in $_{277}$ and $4(c)$ $4(c)$ for the AC magnetic susceptibility, electrical ₃₀₁ Figs. $4(e)$ and $4(f)$ as colored images. Here, the deeper ₂₇₈ conductivity, and magnetic torque, respectively. The AC ₃₀₂ color corresponds to the larger amplitude, as indicated in ²⁷⁹ magnetic susceptibility with the field modulation tech-³⁰³ the color scales shown at the bottom, and we used differ-²⁸⁰ nique is effective in visualizing numerous branches, in-³⁰⁴ ent colors for branches derived from each FS. The more ²⁸¹ cluding those with small angular dependence, whereas it ³⁰⁵ specific simulations using f_v , f_σ , and f_τ are provided in

FIG. 3. (Color online) (a) Fourier-transformed spectra measured on three different quantities $(v, \sigma, \text{ and } \tau)$ for the magnetic fields along the $\langle 001 \rangle_c$, (b) $\langle 111 \rangle_c$, and (c) $\langle 110 \rangle_c$ directions. The field ranges for the Fourier transformation are 6.4–17.6 T, 17–32 T, and 10–17.5 T for AC magnetic susceptibility, electrical conductivity, and magnetic torque [\[37\]](#page-20-12), respectively.

²⁵⁸ Figure [3](#page-4-0) shows the Fourier-transformed spectra of ²⁸² has a disadvantage in detecting small frequencies owing

²⁹⁵ 3. Assignment of branches to orbits on the Fermi surfaces

²⁹⁶ To assign the observed branches to the orbits on FSs, ²⁹⁷ we simulated the quantum oscillation frequencies based ²⁹⁸ on the calculated electronic states of phase III. The sim-

FIG. 4. (Color online) (a) Angular dependence of Fourier-transformed spectra measured on the AC magnetic susceptibility, (b) electrical conductivity, and (c) magnetic torque [\[37\]](#page-20-12). The color scales shown at the bottom indicate the relationship between the color and amplitude A. (d) Angular dependence of the observed frequencies. Higher harmonics are omitted. The lines connecting markers are guides for the eye that are speculated from the angular variation of frequencies and amplitudes. (e) Angular dependence of Fourier-transformed spectra simulated based on the calculated electronic states of phase III. Eq. [1](#page-3-0) with $f_q = B^{1/2}/m^*$, $T_D = 0.1$ K, and $T = 50$ mK was used in the simulation, and the field range of 5-17.5 T was used for the Fourier transformation. Higher harmonics are neglected. Colors indicate the corresponding FSs for each branch, and the deeper color corresponds to a larger A, as shown in the color scales at the bottom. The branches corresponding to the experimentally observed branches are labeled. In addition, the δ_2 , ζ_1 , and ζ_2 branches are labeled for explanation. (f) Enlarged view of (e) for $0 \leq F \leq 100$ T.

³⁰⁷ different compared to the previously reported [\[37\]](#page-20-12).

³⁰⁸ The calculated FSs and corresponding orbits are repre-309 sented in Fig. [5](#page-6-0) for the two orientations corresponding to 322 ³¹⁰ the Z and X domains. The calculated FSs consist of six ³²³ served branches to the orbits on the FSs as follows 311 FSs: two hole FSs (FS7 and FS8) and four electron FSs $\frac{324}{8}$ [see Figs. [4\(](#page-5-0)d)]: The α_1 and α_2 branches coincide at 312 (FS9, FS10, FS11, and FS12). We named these FSs after $\frac{1}{25}$ $\beta \parallel [111]_c$, and thus, they are from the cross-sections 313 the index of the bands in the Re $5d$ t_{2g} manifold. The FSs $\,$ 326 of the same part of an FS in different domains. Because 314 are strongly different from the previously reported [\[37\]](#page-20-12). 327 they nearly diverge as $F \propto 1/\cos\theta$ or $F \propto 1/\cos(90^\circ - \theta)$, ³¹⁵ FS7 consists of a small double-conical-shaped pocket at ³²⁸ they correspond to the minimum orbit on the double-³¹⁶ the Z point and even smaller spherical pockets at the X ³²⁹ conical-shaped pocket of FS7 surrounding the Z point. 317 point. The FS8 comprises a large pocket at the Z point 330 Similarly, the nearly flat β_1 and β_2 branches originate $_{318}$ and a bumpy cylinder extending along the c_t axis. The $_{331}$ from cross-sections of the spherical FS12.

³⁰⁶ the Appendix [B.](#page-15-0) The simulated spectra are are largely ³¹⁹ FS9 to FS12 are located around the Γ point; the FS10 to ³²⁰ FS12 are roughly spherical, while the FS9 has an extra ³²¹ part similar to crowns developing up and down.

Supported by the simulation, we assigned the ob-

FIG. 5. (Color online) FSs of $Cd_2Re_2O_7$ calculated for phase III. Extremal orbits corresponding to the observed branches and some major non-observed branches are indicated for the Z (left) and X (right) domains. Purple and yellow surfaces enclose holes and electrons, respectively. The Brillouin zone in phase III is indicated for each domain.

332 The angular dependence of the frequencies and the in- $\frac{350}{2}$ cause of S'' being as small as -0.3 . 333 tensities of the γ_{1-18} branches are almost consistent with 334 the simulation for FS8. Particularly, the γ_1 , γ_2 , γ_{4-7} , 335 γ_{11} , and γ_{12} branches corresponding to the large pocket ³³⁶ around the Z point were quantitatively well reproduced 337 in the simulation. These branches were not reproduced 352 intensities of the ε_{1-8} are close to the simulation for ³³⁸ in Ref. [37](#page-20-12) because they are sensitive to the value of U $\frac{1}{339}$ and only appear when U is close to 4.5 eV, as shown in $354 \theta = 90^\circ$ diverge rapidly as θ decreases; such splitting and $_{340}$ Appendix [A.](#page-14-0) Note that the pair of branches $\{\gamma_3, \gamma_{15}\}$ ass divergence of the branches reflect that the FS9 has the 341 arises from cross-sections of the same part of the FS8 in ³⁵⁶ additional part that is developing outwards. These fea- 342 the different domains because they coincide at $B \parallel [111]_c$; 357 tures do not emerge from the nearly spherical shape of 343 similarly, $\{\gamma_4, \gamma_5\}$, $\{\gamma_6, \gamma_7\}$, $\{\gamma_{11}, \gamma_{12}\}$, $\{\gamma_{13}, \gamma_{14}\}$, and 358 the FS9 calculated in Ref. [37.](#page-20-12) $344 \{\gamma_{17}, \gamma_{18}\}\$ branches are pairs.

³⁴⁵ The δ_1 branch observed for $\theta = 44-72.5^{\circ}$ is ascribed ³⁴⁶ to FS11. The simulation for FS11 shows that the am-³⁴⁷ plitude of the oscillations increases significantly around ³⁶⁰ and simulated branches described above guarantees that $\theta = 44-72.5^{\circ}$ (the more specific simulations in Ap- 361 our calculation reproduces most of the real shapes of FSs ³⁴⁹ pendix [B](#page-15-0) show this feature more clearly), which is be- ³⁶² more closely than those of Ref. [37.](#page-20-12)

The angular dependence of the frequencies and the 353 the FS9. Notably, multiple branches ε_{3-7} observed near

The satisfactory agreement between the experimental

⁴¹⁷ 1. Optimized crystal structure

B. Electronic states

364 Nonetheless, there are still some other branches, ω_{1-14} , ³⁶⁵ whose origins remain uncertain. We can speculate their 366 origins to some extent. The ω_{1-4} and ω_{7-11} branches may ω_{148} ³⁶⁷ originate from the crown-like part of the FS9 because we ⁴¹⁹ lated results of the quantum oscillations guarantees the ³⁶⁸ were unable to observe any of the simulated branches ⁴²⁰ validity of our calculation and enables us to discuss the ³⁶⁹ arising from the crown-like part that are expected be-⁴²¹ relationship between the crystal structure and the elec- $_{370}$ low 800 T [compare Figs. [4\(](#page-5-0)d) and 4(e)]. Perhaps, the $_{422}$ tronic states of Cd₂Re₂O₇. First, we compare the opti-³⁷¹ crown-like part has a slightly different shape. As seen ⁴²³ mized structure of phase I with the experimental data. ³⁷² in its complex shape, the crown-like part comprises an ⁴²⁴ There are two variable parameters in the structure of 373 intersection of several bands, which is sensitive to small ₄₂₅ phase I: the lattice constant a and the atomic coordi-374 perturbations; therefore, reproducing the shape, includ- $_{426}$ nate x of the O(2_I) site $(x, 1/8, 1/8)$ [see Fig. [1\(](#page-2-0)a)] [\[53\]](#page-21-0). ³⁷⁵ ing the fine details, is difficult.

 377 branches between them, which are significantly reminis- 429 temperature [\[14,](#page-19-9) [38,](#page-20-13) [54,](#page-21-1) [55\]](#page-21-2), and almost consistent with 378 cent of the magnetic breakdown [\[39,](#page-20-14) [51,](#page-20-25) [52\]](#page-20-26). The cen-430 10.2358 Å taken at 250 K [\[55\]](#page-21-2). Thus, the calculated lat-³⁷⁹ tral angle of this five-fold split structure is approximately ⁴³¹ tice constant reproduces the experimental values within 380 60[°], which is close to the direction in which the crown- 432 a typical error of the order of 1%. The optimized x is 381 like part develops. Thus, we speculate that the ω_5 and 433 0.3172, which agrees well with the experimental values $382 \omega_6$ branches arise from the magnetic breakdown between 434 in the range of 0.315–0.319[\[14,](#page-19-9) [38,](#page-20-13) [54,](#page-21-1) [55\]](#page-21-2). Therefore, ³⁸³ FS9 and FS8 or between FS9 and FS10.

The ω_{12} branch might be ascribed to a splitting of γ_{11} ⁴³⁶ experiments; thus, that of phase III may also be reliable. ³⁸⁵ caused by the misalignment of the crystal, which lifts ⁴³⁷ Next, we examine the optimized structure of phase III. 386 the degeneracy of the branches arising from the X and Y 438 Figure $6(a)$ $6(a)$ shows the optimized structure of the ReO₆ 387 domains. Similarly, the ω_{14} branch may be ascribed to 439 units of phase III. The azure arrows indicate the direction 388 the splitting of γ_{15} caused by misalignment of the crystal. 440 and relative magnitude of the atomic displacements with 389 However, the ω_{13} branch cannot be explained by a sim- 441 respect to phase I. The $O(1₁)$ site surrounding a Re atom 390 ilar splitting of the γ_{15} branch because more splitting of 442 splits into three different sites: $O(1)$, $O(2)$, and $O(3)$ (the 391 up to four branches (just above and below ω_{13}) was ob-443 absence of the "I" subscript of site numbers of oxygen 392 served around the γ_{15} branch in the modulation method 444 indicates the notation for phase [II](#page-9-0)I). Table II lists the 393 [see Figs. [4\(](#page-5-0)a) and 4(d)]. Recalling that the orthorhom- 445 atomic coordinates of the optimized structure of phase $_{394}$ bic distortion to $F222$ splits the X and Y domains into 446 III, together with the experimental results obtained at 395 two different domains for each, the four-fold splitting of 447 4K using neutron diffraction[\[50\]](#page-20-24) and at 90K using X-ray 396 the γ_{15} branch is possibly a hallmark of the symmetry 448 diffraction $[38]$. For reference, the displacements from the

³⁹⁸ the symmetry at the lowest temperature).

³⁹⁹ 5. Non-observed branches

401 expected from FS10 that were not experimentally ob- ϵ as sion between $O(2)$ and $O(1)$; in the calculation, $O(2)$ is 402 served. We did not observe any frequency from FS10, 458 repelled from $O(1)$ because the displacement of $O(1)$ is ⁴⁰³ which is in contrast with the fact that we observed al-⁴⁵⁹ larger than that in the experiments. ⁴⁰⁴ most all branches expected from FS8. The absence of ⁴⁰⁵ FS10 is unlikely in the viewpoint of the carrier compen-⁴⁶¹ pendences because the displacements at 4 K are larger 406 sation between the electrons and holes. The m^* and S'' 462 than those at 90K. This is plausible because the or- $\frac{407}{407}$ values simulated for the ζ_1 and ζ_2 branches were small; $\frac{403}{409}$ der parameters are coupled with the structure and be-408 particularly, m^* and S'' calculated for the ζ_1 branch in 464 come smaller at higher temperatures. Indeed, physi- μ_{409} B || $\langle 001 \rangle$ were 0.780 and 0.446, respectively, both of μ_{465} cal properties show temperature dependences in phase μ ¹⁰ which are smaller than those of any branches belonging μ ⁶⁶ III[\[19,](#page-19-16) [20,](#page-19-12) [24,](#page-20-1) [56\]](#page-21-3). As a continuous and drastic change $_{411}$ to FS8 (see Table [I\)](#page-8-0). Therefore, the absence of frequen- $_{467}$ in magnetic torque is observed below 20 K[\[33\]](#page-20-9), the elec-⁴¹² cies from FS10 might indicate that the effective masses ⁴⁶⁸ tronic states and the structural parameters may drasti-⁴¹³ of the orbits on FS10 are more enhanced than those on ⁴⁶⁹ cally change at lower temperatures; this is in stark con-414 FS8. Appendix [D](#page-16-0) describes the m^*/m_b distribution on 470 trast to ordinary structural transition, in which signif-415 each FS orbit, where m_b is the bare band mass.

376 For the ω_5 and ω_6 branches, we observed three 428 than the reported values 10.225–10.226 Å taken at room 397 reduction to $F222$ (see Appendix. [C](#page-15-1) for a discussion of 449 nondistorted coordinates in phase I are also listed. The We briefly mention the simulated branches, ζ_1 and ζ_2 , 456 posite. This may be explained by the electrostatic repul-The agreement between the experimental and simu- $_{427}$ The optimized a is 10.2382 Å, which is slightly larger ⁴³⁵ our optimized structure of phase I is consistent with the ⁴⁵⁰ atomic displacements in the optimized structure except ⁴⁵¹ for Re are larger than the measured displacements. The ⁴⁵² difference of the Re displacement between the calculation ⁴⁵³ and experimental results may not be important because 454 the displacement is quite small. The direction of the $O(2)$ ⁴⁵⁵ displacement in the calculation and experiments are op-

The structural parameters may have temperature de-⁴⁷¹ icant structural change occurs only near the transition

			Experiment	$\operatorname{Calculation}$					
Field direction	Branch	F(T)	$m^*/m_{\rm e}$	Domain	$_{\rm FS}$	F(T)	$m_{\rm b}/m_{\rm e}$	$S^{\prime\prime}$	$m^*/m_{\rm b}$
$\langle 001 \rangle_c$	α_1 ^a	51	0.99(3)	\overline{z}	FS7	17	0.259	$+0.765$	$\overline{3.8(1)}$
	${\omega_1}^{\bf ab}$	${\bf 287}$	2.4(1)						
	$\omega_2{}^{\bf ab}$	$313\,$	2.7(1)						
	β_1	$342\,$	2.6(1)	X, Y	$\operatorname{FS12}$	$251\,$	0.462	-3.958	5.6(3)
	${\gamma_1}^{\bf a}$	$369\,$	3.4(3)	Ζ	$_{\mathrm{FSS}}$	$\,204$	0.855	$+46.338$	4.0(3)
	β_2	446	3.1(2)	\rm{Z}	$\operatorname{FS12}$	404	0.729	-8.345	4.2(3)
	δ_2			X, Y	FS11	$455\,$	1.019	-3.424	
	γ_2	$523\,$	4.6(2)	\rm{Z}	$_{\mathrm{FSS}}$	486	1.492	-19.380	3.1(1)
	γ_3	$731\,$	5.4(2)	${\bf Z}$	$_{\mathrm{FSS}}$	$1037\,$	1.088	$+8.507$	4.9(1)
	δ_1			${\bf Z}$	$\rm FS11$	$885\,$	0.950	-25.468	
	ζ_1			\rm{Z}	FS10	$1287\,$	0.780	$+0.446$	
	ε_3	1740	6.3(4)	\rm{Z}	$_{\rm FS9}$	$2258\,$	2.771	$+24.902$	2.3(1)
	ζ_2			X, Y	$\operatorname{FS10}$	1793	1.043	-6.004	
	γ_{10}	1824	5.6(1)	\rm{Z}	$_{\mathrm{FSS}}$	$2072\,$	$2.163\,$	-24.702	2.58(5)
	$\omega_{12}{}^{\bf a}$	$1875\,$	11.0(25)						
	γ_{11}	1921		X, Y	$_{\mathrm{FSS}}$	1839	3.513	-18.331	
	ε_4	$\>2072$		Ζ	$_{\rm FS9}$	$2323\,$	6.038	$+97.817$	
	ε_5	$\sqrt{2113}$	5.41(3)	X, Y	$_{\rm FS9}$	$\bf 2332$	1.986	-1.660	2.72(2)
	ε_6	$\sqrt{2134}$		\rm{Z}	FS9	2360	1.653	$+3.243$	
	ε_7	2280	6.2(1)	\rm{Z}	FS9	$2406\,$	1.914	-11.383	3.26(5)
$\overline{\langle 111 \rangle_c}$	$\alpha_1, \alpha_2^{\overline{a}}$	106	1.77(3)	$\overline{X, Y, Z}$	$\overline{\mathrm{FS7}}$	$\overline{34}$	0.540	$+6.708$	3.28(5)
	ω_3 ^a	$285\,$	2.4(2)	X, Y, Z					
	$\beta_1,\,\beta_2$	$373\,$	3.0(2)	X, Y, Z	$\operatorname{FS12}$	$\!291$	$\,0.586\,$	-4.606	5.1(4)
	$\delta_1, \, \delta_2$			X, Y, Z	$\rm FS11$	$528\,$	0.948	-7.911	
	$\omega_4,\,\omega_5{}^{\bf a}$	$570\,$	4.57(5)	X, Y, Z					
	ω_7	$745\,$	6.6(3)	$\mathbf{X}, \mathbf{Y}, \mathbf{Z}$					
	ω_{11}	1100	7.5(2)	X, Y, Z					
	$\gamma_4,\,\gamma_5$	1361		X, Y, Z	$_{\mathrm{FSS}}$	1284	2.616	-4.247	
	$\gamma_6,\,\gamma_7$	1489		X, Y, Z	$_{\mathrm{FSS}}$	1427	$3.490\,$	-19.915	
	$\zeta_1, \, \zeta_2$			X, Y, Z	FS10	1642	1.103	-3.115	
	$\gamma_{13},\,\gamma_{14}$	$2070\,$		X, Y, Z	FS8	$2387\,$	2.863	$+15.523$	
	ω_{13}	$2180\,$	7.5(1)	X, Y, Z					
	γ_3 ^c	$2220\,$	7.6(1)	Z	$_{\mathrm{FSS}}$	$\bf 2414$	$3.030\,$	-8.864	2.50(4)
	$\frac{\gamma_{15}^{\text{c}}}{\gamma_{15}^{\text{c}}}$	$2250\,$	7.94(8)	X, Y	$_{\mathrm{FSS}}$	2414	$3.030\,$	-8.864	2.62(3)
$\langle 110 \rangle_c$	$\alpha_2^{\mathbf{a}}$	$\overline{74}$		$\overline{X}, \overline{Y}$	FS7	$\overline{26}$	0.395	$+2.460$	
	β_2	$342\,$	2.5(2)	\rm{Z}	$\operatorname{FS12}$	$248\,$	0.489	-2.545	5.2(3)
	β_1	$379\,$	3.3(3)	X, Y	$\operatorname{FS12}$	$319\,$	0.638	-6.242	5.1(5)
	ω_4	453	3.31(7)						
	δ_1			\rm{Z}	FS11	$\rm 499$	0.955	-7.785	
	δ_2			X, Y	$\rm FS11$	$526\,$	0.966	-4.475	
	ω_8	$835\,$	4.5(2)						
	ω_9	$\boldsymbol{902}$	6.4(5)						
	ω_{10}	$1029\,$	4.4(7)						
	γ_6	1355		X, Y	$_{\mathrm{FSS}}$	$1255\,$	3.673	$+1.499$	
	γ_9	1440		X, Y	$_{\mathrm{FSS}}$	$1815\,$	2.371	-14.004	
	ζ_2			X, Y	FS10	$1831\,$	$2.471\,$	-34.839	
	γ_{12}	1875		\rm{Z}	$_{\mathrm{FSS}}$	1827	3.089	-10.890	
	ω_{13}	1992							
	ζ_1			\rm{Z}	$\operatorname{FS10}$	1929	2.238	-26.553	
	γ_{15}	$\,2032$	6.3(4)	X, Y	$_{\mathrm{FSS}}$	$\bf 2343$	2.699	-11.123	2.3(2)
	ω_{14}	2140							
	γ_{16}	$2217\,$	6.2(3)	X, Y	$_{\mathrm{FSS}}$	$2506\,$	$2.295\,$	$+0.609$	2.7(2)

TABLE I. Experimental and calculated parameters of the FSs in phase III.

^a Experimental data for these branches were obtained using magnetic torque data, whereas the others were obtained from the AC magnetic susceptibility data except for ω_{14} , which is from the electrical conductivity data.

b These two branches coincide at $B \parallel [001]_c$. Because the effective masses of the torque data were measured slightly away from $[001]_c$, they split into two peaks.

^c These two branches are expected to coincide at B \parallel [111]_c. They split into two peaks probably because of the to misalignment of the sample.

TABLE II. Comparison of the optimized atomic coordinates of phase III with the reported experimental results at $4 K[50]$ $4 K[50]$ and 90 K[\[38\]](#page-20-13). The upper half shows the atomic coordinates x, y, and z. The lower half shows the displacements from the nondistorted coordinates (the optimized structure of phase I), δx , δy , and δz .

		Optimized ^a			$4K^b$			90K ^c		
		\boldsymbol{x}	Y	\boldsymbol{z}	\boldsymbol{x}	\boldsymbol{y}	\boldsymbol{z}	\boldsymbol{x}	\boldsymbol{y}	\boldsymbol{z}
Cd	8f	0.51311	1/4	1/8	0.51036	1/4	1/8	0.5041(6)	1/4	1/8
Re	8 f	0.99838	1/4	1/8	0.99911	1/4	1/8	0.9967(3)	1/4	1/8
O(1)	8d	0.17407	0.17407		0.18517	0.18517	0	0.1880(20)	0.1880(20)	
O(2)	8c	Ω	Ω	0.19412	Ω	θ	0.18747	Ω		0.1896(14)
O(3)	8e	0.20635	0.79365	0	0.20572	0.79428	0	0.1970(20)	0.8030(20)	
O(4)	4b	θ		1/2			1/2	O		1/2
		δx	δy	δz	δx	δy	δz	δx	δy	δz
$\overline{\text{Cd}}$	8f	$+0.01311$	Ω	Ω	$+0.01036$	Ω		$+0.0041(6)$		
Re	8 f	-0.00162	Ω	θ	-0.00089	Ω	0	$-0.0033(3)$	Ω	
O(1)	8d	-0.01809	-0.01809	Ω	-0.00699	-0.00699	Ω	$-0.0042(20)$	$-0.0042(20)$	Ω
O(2)	8c	θ		$+0.00196$	Ω	θ	-0.00469	$\left(\right)$		$-0.0026(14)$
O(3)	8e	$+0.01419$	-0.01419	Ω	$+0.01356$	-0.01356	Ω	$+0.0048(20)$	$-0.0048(20)$	Ω
O(4)	4b			0						

^a Cell parameters are fixed to $a = a_c/\sqrt{2}$, $c = a_c$, where a_c is the optimized lattice constant in phase I (10.2382 Å).

^b Data were measured using neutron diffraction. The cell parameters are $a = 7.239 \text{ Å}$, $c = 10.242 \text{ Å}$. As the reported coordinates are in the opposite chirality relative to ours, we reversed the chirality of their data.

^c Data were measured using X-ray diffraction. The cell parameters are $a = 7.2313(4) \text{ Å}, c = 10.2282(6) \text{ Å}.$

 temperature and ceases at low temperatures. Note that our calculation corresponds to the limit of absolute zero temperature. Although the optimized structural parame- ters do not always agree with the experiments, the differ- ence between the optimized structure and the measured one obtained at 4 K may reflect the evolution of the elec-tronic states even below 4 K.

⁴⁷⁹ 2. Changes in the band structures

 The calculated band structures for phases I and III are shown in Figs. [7\(](#page-11-0)a) and 7(b), respectively. Because phases I and III have the same sizes of the Brillouin zone, for clarity, we used the high-symmetry k-point notation of phase III for phase I, as indicated in Fig. [5.](#page-6-0) We also used the same vacuum levels in the calculations for phases 486 I and III; therefore, the small difference in E_F is essential. We define the zero of energy as the E_F in phase III. The band structure of phase I is almost consistent with those 489 of previous reports [\[57,](#page-21-4) [58\]](#page-21-5): The E_F lies on the Re t_{2g} bands. The spherical hole pocket lies around the S point, whereas two electron pockets are nested around the Γ ⁴⁹² point.

⁴⁹³ In the band structure for phase III, the number of band ⁴⁹⁴ lines is doubled because of the SOI-induced spin splitting $\frac{527}{2}$ the increase in the $B-O(1_I)-B$ angle in pyrochlore oxide 495 associated with inversion symmetry breaking. Besides, 528 $A_2B_2O(1_I)₆O(2_I)$ enhances the overlap between the B 496 the band width becomes broader, and E_F is increased by 529 t_{2g} and $O(1_I)$ 2p orbitals[\[59,](#page-21-6) [60\]](#page-21-7); thus, the orbital over- $497.89 \,\text{meV}$. The calculated carrier number of electrons or 530 lap of the Re–O(1) bond is enhanced in phase III. In 498 holes in phase III is 8.7×10^{20} cm⁻³, which almost agrees $\frac{1}{2}$ san contrast, the Re–O(3)–Re angle decreases to 130.87° in 499 with 8.0×10^{20} cm⁻³ determined by the Hall effect^{[\[19\]](#page-19-16)}. 532 phase III, which diminishes the orbital overlap. In terms

3. Density-of-states broadening

The difference of the electronic states between phases ⁵⁰² I and III is more apparent in the calculated DOS 503 shown in Fig. [7\(](#page-11-0)c). In phase I, E_F lies on a shoul- $_{504}$ der of peak. The DOS at $E_{\rm F}$ is 14.60 states eV⁻¹ and ⁵⁰⁵ per formula unit (f.u.) (spin degeneracy is included), ⁵⁰⁶ which is dominated by heavy hole bands possessing 507 twelvefold degeneracy due to the six Γ – $Z(X)$ lines. In ⁵⁰⁸ phase III, the peak is broadened due to structural dis- 509 tortion. Therefore, the E_F increases, and the DOS $\mu_{\rm B}$ at $E_{\rm F}$ decreases to 7.68 states eV⁻¹ f.u.⁻¹, which corre- $_{511}$ sponds to the bare band specific heat coefficient $\gamma_{\rm b}$ = $_{512}$ 9.05 mJ mol⁻¹K⁻². Compared with the measured value ⁵¹³ of $\gamma = 30.15 \,\mathrm{mJ \, mol}^{-1} \mathrm{K}^{-2}$ [\[12\]](#page-19-7), we obtain a total mass ⁵¹⁴ enhancement factor of $\langle m^* / m_{\rm b} \rangle = \gamma / \gamma_{\rm b} = 3.33$ at the 515 lowest temperature. The decrease in the DOS at E_F ⁵¹⁶ from phases I to III is approximately 50%, which agrees 517 well with the experimental estimation [\[17,](#page-19-15) [19\]](#page-19-16).

 Notably, the DOS broadening results in an increase in $_{519}$ the DOS in the lower energy region (-0.6 to -1.0 eV), which significantly contributes to the stabilization of phase III relative to phase I. The corresponding changes in the Re–O bonding state can be seen in the opti- mized crystal structure [see Fig. $6(b)$ $6(b)$]. The bond an- gles and lengths in the optimized structures are sum- marized in Table [III.](#page-11-1) The Re–O(1)–Re angle rises from $526 \, 138.39^\circ$ in phase I to 148.59° in phase III. Generally,

FIG. 6. (Color online) (a) Atomic displacements (azure arrows) around a Re atom and (b) Re⁴ tetrahedral unit in the optimized crystal structure for phase III. Note that the atomic displacements of Re atoms are antiparallel to the electric dipoles (green arrows), but they are too small to display. (c) Electric dipoles and electric toroidal dipoles (blue arrows) associated with the potential gradient around the Re atom are depicted on a Re pyrochlore lattice. (d) Coordination environment around the CdO⁸ dodecahedron. (e) Electric dipoles and electric toroidal dipoles associated with the Cd displacements are depicted on a Cd–O(4) zincblende network interpenetrating a Re pyrochlore lattice. Note that the electric dipoles are antiparallel to the Cd displacements.

 of bond length, the Re–O(1) becomes shorter, whereas 556 in the crystal structure. the Re–O(3) becomes longer in phase III, both of which 557 are consistent with the enhancement and reduction of the ⁵⁵⁸ trostatic potential associated with the Cd ion. As shown orbital overlap, respectively. As the enhancement (re- 559 in Figs. $6(a)$ $6(a)$ and $6(d)$, the O(3) displacement is in the $\frac{1}{537}$ duction) of the orbital overlap generally results in (de- $\frac{1}{560}$ direction approaching the Cd, whereas the O(1) displace-)stabilization, the changes in the Re–O bonding states 561 ment is in the direction away from the Cd. In addition, broaden the DOS.

⁵⁴¹ the details of DOS broadening, we calculated the pro-⁵⁶⁴ lower the energy of the negatively charged O ions and 542 jected DOS (PDOS) of the Re 5d, $O(1)$ $2p$, $O(2)$ $2p$, and 565 vice versa. Thus, the changes in the $O(1)$ $2p$ and $O(3)$ 543 O(3) 2p states in phase III and the corresponding states 566 2p states in PDOS reflect the changes in the atomic lev- $_{544}$ in phase I, as shown in Fig. [7\(](#page-11-0)d). The states near E_F are $_{567}$ els. It seems that the changes in both the Re–O bonding ⁵⁴⁵ primarily composed of Re 5d states and a small amount ⁵⁶⁸ states and the atomic levels of O 2p states are involved $_{546}$ of $O(1-3)$ 2p states, as expected, whereas the contribu- $_{569}$ in DOS broadening. ⁵⁴⁷ tions from the other states, such as Cd 4d, are negligibly ⁵⁴⁸ small (not shown). In phase III, the contributions of the 549 O(1), O(2), and O(3) states vary in energy: Among the $550 \text{ O } 2p$ states, the O(3) $2p$ states are dominant in the oc- 551 cupied low-energy states, whereas the $O(1)$ 2p states are 571 ⁵⁵² dominant in the unoccupied high-energy states. This in-⁵⁷² stabilization in phase III, we examined the contribution $\frac{553}{100}$ dicates that the O(3) 2p states are stabilized, whereas the $\frac{573}{100}$ of the atomic displacement of each site. We calculated $554 \text{ }O(1)$ 2p states are destabilized in phase III. This appears 574 the evolution of energy starting from phase I along with ⁵⁵⁵ to be inconsistent with the changes in the Re–O bonds ⁵⁷⁵ displacements of the selected crystallographic sites. Fig-

⁵⁴⁰ However, DOS broadening has another aspect. To see ⁵⁶³ Cd ion is positively charged, the closer to the Cd, the This counterintuitive consequence stems from the elec- 562 the Cd itself is displaced toward the O(3). Because the

⁵⁷⁰ 4. Essential atomic displacements on energy gain

To analyze the factors that contribute to the energy

FIG. 7. (Color online) (a) Calculated band dispersions for phase I and (b) phase III. The E_F 's are indicated as horizontal dashed lines. For phase I, the same k-point notations with phase III are used. (c) Total DOS for phases I and III. (d) PDOS of the Re $5d$, $O(1)$ 2p, $O(2)$ 2p, and $O(3)$ 2p states in phase III (right), and the corresponding states in phase I (left). Note that the PDOS corresponding to the O(1) 2p, O(2) 2p, and O(3) 2p states in phase I are equivalent to the O(1₁) 2p states.

TABLE III. Bond angles and lengths in the optimized crystal structures of phases I and III

	Angle		Length $(\AA)^a$
Phase I			
\angle Re-O(1 ₁)-Re ^b 138.39°		$\text{Re}-O(1_I)^b$	1.9361
Phase III			
\angle Re-O(1)-Re	148.59°	$Re-O(1)$	1.8867
\angle Re-O(2)-Re	137.29°	$Re-O(2)$	1.9433
\angle Re-O(3)-Re	130.87°	$Re-O(3)$	1.9836

^a Cell parameters in phase III are fixed to $a = a_c/\sqrt{2}$, $c = a_c$, where a_c is the optimized lattice constant in phase I (10.2382 Å) .

 $\overline{O(1)}$, $O(2)$, and $O(3)$ sites in phase III are equivalent to $O(1)$ site in phase I.

 576 ure [8](#page-11-4) shows the energy difference (ΔE) as a function of \mathfrak{so}_7 the normalized displacement magnitude $[d(X)]$. Here, X ⁵⁷⁸ is a subset of crystallographic sites in phase III, {Cd, 579 Re, O(1), O(2), O(3). In a structure corresponding to $_{580}$ $d(X)$, only the selected sites X are displaced with a mag- \mathfrak{so}_1 nitude multiplied by $d(X)$ which is relative to those in ⁵⁸² the optimized structure of phase III, with the displace-583 ments of other sites fixed to zero; *i.e.*, $d(X) = 0$ corre- \mathfrak{so}_4 sponds to the structure of phase I and $d(X) = 0.4$ with $585 X = \{O(1), O(3)\}\)$ corresponds to a structure in which 586 only O(1) and O(3) are displaced by a factor of 0.4.

 First, the contributions of Re and $O(2)$ to the energy change are small because their magnitudes of displace- ment are tiny. Next, the displacement of any single crys- tallographic site does not achieve any energetic benefit. This can be interpreted as follows: Even if only the $O(3)$ approaches the Cd and gains electrostatic stabilization, destabilization caused by the elongated Re–O(3) bond may be even larger.

595 Subsequently, considering the combination of displace- ω significantly enhances the energetic benefit and increases 596 ments, we find that the subset $X = \{O(1), O(3)\}\$ pro- 608 the magnitude of displacements at the minimum energy

FIG. 8. (Color online) Total energy change ΔE as a function of the normalized atomic displacement magnitude $d(X)$ for the selected crystallographic sites X . Here, X is a subset of the crystallographic sites in phase III: {Cd, Re, O(1), $O(2), O(3)$. In a structure corresponding to $d(X)$, only the selected sites X are displaced, from the optimized structure of phase I. The magnitude of displacements is multiplied by $d(X)$ relative to those in the optimized structure of phase III. The displacements in the other sites are fixed to zero.

 597 duces an energy gain, whereas $X = \{Cd, O(1)\}\$ and $598 X = \{Cd, O(3)\}\$ do not. This indicates that the com- $\frac{599}{2}$ bination of the O(1) and O(3) displacements plays an ⁶⁰⁰ essential role in the stability of phase III. These displace- ω_1 ments result in shortened Re–O(1) and elongated Re– 602 O(3) bonds, which is the bond-ordered state correspond-⁶⁰³ ing to the $3z^2 - r^2$ -type ETQ order proposed in Ref. [6.](#page-19-4)

⁶⁰⁴ Finally, adding Cd displacement here provides an en-⁶⁰⁵ ergy stabilization to the same extent as when all sites ⁶⁰⁶ are displaced. Notably, the additional Cd displacement

FIG. 9. (Color online) (a) Charge density difference between structures of phases I and III through the plane containing the O(1) and O(3) sites with $d(X) = 0$, surrounding a Re. [For $d(X) \neq 0$, they are not exactly on the same plane.] Note that the charge density drops around the core owing to the use of pseudopotentials. (b) Total potential map calculated for the optimized crystal structure for phase III in the same plane as in (a). The interval of contour levels is 25 eV.

609 compared with the case of $X = \{O(1), O(3)\}\.$ It seems that the Cd displacement enhances the Re–O bond order $_{611}$ by electrostatically attracting O(3), reducing the elec- ϵ_{612} trostatic repulsion between $O(3)$ and $O(1)$, and then al- ϵ_{67} a microscopic picture of the order in the real and momen- ϵ_{613} lowing the even shorter Re–O(1) bond. In this sense, ϵ_{668} tum spaces of $\text{Cd}_2\text{Re}_2\text{O}_7$ at the lowest temperature. the Cd displacement can be interpreted as an assistive process of the bond-ordered state to produce additional stabilization.

5. ETQ order in the crystal structure

 It is instructive to visualize the ETQ moments in the optimized crystal structure appearing because of the bond-ordered state. For this purpose, we depicted the charge density difference between phases I and III within ϵ_{22} the plane containing the Re, O(1), and O(3) sites in Fig. $9(a)$ $9(a)$ [see the three-dimensional coordination envi- ronment around the Re site shown in Fig. $6(a)$ $6(a)$. The O(3) and Cd displacements cause a relative increase in the charge density within the region surrounded by the Cd and $O(3)$ sites. In addition, at the opposite location of the Re, the $O(1)$ and Cd displacements cause a relative decrease in charge density. Therefore, there is a charge density gradient around the Re site.

 dipole" is not screened by conduction electrons. This is because the scale of the Thomas–Fermi screening is the ⁶³⁴ order of an inverse of the Fermi wavenumber $\sim k_{\rm F}^{-1}$ [\[61\]](#page-21-8), which is comparable to several angstroms $[62]$. Hence, a local potential gradient exists around Re, as shown in Fig. [9\(](#page-12-0)b). Thus, Re 5d electrons experience a large an- tisymmetric SOI (ASOI), as demonstrated by the giant spin splitting in the hole FSs.

 The directions of the electric dipoles at the Re sites are represented in Fig. [6.](#page-10-0) The electric dipoles in a Re₄ tetra- hedral unit form two opposing uniaxial electric toroidal ⁶⁴³ dipole moments, which is equivalent to a $3z^2 - r^2$ -type ETQ moment in total [see Fig. [2](#page-2-1) and the notation in $_{645}$ Fig. $6(c)$ $6(c)$. In the entire Re pyrochlore network, the ETQ moments align in the same orientation on each Re_4 tetra- hedral unit. Note that in the opposite chirarity domain, the direction of the ETQ moment is the opposite. Be- cause this ETQ order occurs in the metallic state, we will call this the metallic ETQ order.

 It is worth pointing out that we can find another ETQ moment in the Cd–O(4) zincblende network by consider- ing the displacement of the Cd as an electric dipole, as depicted in Fig. $6(e)$ $6(e)$. This is because Re and Cd are lo- $655 \text{ cated at the same Wyckoff position } 8f$. Interestingly, the sign of the ETQ moment is the same as the former one in the Re⁴ tetrahedra. However, the former is more essen- tial than the latter because the Re $5d$ electrons dominate ϵ_{659} the electronic states near the $E_{\rm F}$.

 We would like to emphasize that the metallic ETQ order found in the optimized crystal structure (in real space) and spin-split FSs shown in Fig. [5](#page-6-0) (in momen- tum space) correspond to each other through our calcu- lation. Thus, the agreement of the FSs between the ex- periments and the calculation provides indirect evidence of the metallic ETQ order. Therefore, our results provide

IV. DISCUSSION

A. Electronphonon and electronelectron interactions

 The mass enhancement, compared with the elec- tronic structure calculation using the conventional DFT method, is caused by the many-body interactions not in- cluded in the calculation. It is empirically known that even the DFT + U calculation hardly includes the mass ϵ_{677} enhancement $[63]$. Thus, we can approximately evaluate the mass enhancement factor by comparing the experi- ϵ_{679} mentally obtained m^* with m_b calculated by DFT + U \sim method. The $\langle m^* / m_{\rm b} \rangle$ represents the FS-averaged en-hancement factor, which can be expressed as

$$
\langle m^*/m_{\rm b} \rangle = (1 + \lambda_{\rm ep})(1 + \lambda_{\rm ee}), \tag{2}
$$

 Although Cd₂Re₂O₇ is metal, this local "electric 683 electron-electron coupling parameters, respectively. 682 where the λ_{ep} and λ_{ee} are the electron–phonon and

⁶⁸⁵ electron interactions in $Cd_2Re_2O_7$ have been controver- 736 to reproduce the observed FSs in our calculation. ⁶⁸⁶ sial. The low-temperature coefficient of the T^2 term (A) ⁷³⁷ By comparing the λ_{ep} , λ_{ee} , and R_W values with re- ϵ_{687} in electrical resistivity is one of the indicators of the τ_{38} lated compounds, it is clear that a small $R_{\rm W}$ value does ⁶⁸⁸ electron–electron interaction as it reflects the electron– ⁷³⁹ not necessarily indicate a small electron–electron inter- $\frac{689}{100}$ electron scattering. The value of A was evaluated as $\frac{740}{100}$ action and/or a large electron–phonon interaction and ⁶⁹⁰ $9(4) \times 10^{-3} \mu \Omega$ cm K⁻²[\[12\]](#page-19-7) after subtracting the Koshino–₇₄₁ that there is a hidden factor making R_W small (see Ap- ϵ_{91} Taylor contribution due to the nonmagnetic impurity τ_{42} pendix [E\)](#page-18-0). 692 scattering[\[64,](#page-21-11) [65\]](#page-21-12). The Kadowaki–Woods ratio $R_{\text{KW}}=$ ⁶⁹³ A/γ^2 using A is 10(5) $\mu\Omega$ cm mol² K² J⁻², which is com-694 parable to the universal value \sim 10 μΩ cm mol² K² J⁻²[\[66\]](#page-21-13) f_{695} for the heavy Fermion system, even though $\langle m^*/m_b \rangle$ of 696 Cd_{2} Re₂O₇ is considerably smaller than those observed in ⁶⁹⁷ heavy Fermion materials (100–1000). Thus, the electron– ϵ_{008} electron interaction in Cd₂Re₂O₇ is presumably strong.

 For the electron–phonon coupling, all experiments on the superconducting properties provide evidences of the τ ⁰¹ weak-coupling nature: The superconducting gap $\Delta(0)$ and the magnitude of the specific heat jump $\Delta C_{\rm e}$ at $T_{\rm c}$ τ_{03} were evaluated as $\Delta(0)/k_BT_c = 1.84-2.5$ [\[17,](#page-19-15) [31,](#page-20-7) [67,](#page-21-14) [68\]](#page-21-15) $_{704}$ and $\Delta C_{\rm e}/\gamma T_{\rm c} = 1.15$ –1.29 [\[30,](#page-20-6) [31\]](#page-20-7), respectively, both of which are comparable to the weak-coupling Bardeen- Cooper-Schrieffer (BCS) values (1.76 and 1.43, respec- tively). Therefore, the electron–phonon coupling should be small.

 τ ⁷⁰⁹ In contrast, the small spin magnetic susceptibility χ _s = $_{710}$ 1.38 × 10⁻⁴ cm³ mol⁻¹ and large γ yield an anomalously $_{711}$ small Wilson ratio $R_{\rm W} = 0.34\overline{17}$, 19, which is generally ⁷¹² unity for free electrons and two for strongly correlated $_{713}$ electrons [\[69\]](#page-21-16). Such a small value of R_W typically indicate ⁷¹⁴ that the electron–electron coupling is small and/or the τ ¹⁵ strong electron–phonon coupling mostly enhances γ , but 716 not $\chi_{\rm s}$.

 717 To overcome these discrepancies, we evaluated the λ_{ep} $_{718}$ and λ_{ee} to facilitate the quantitative discussion. With the ⁷¹⁹ assumption of a phonon-mediated BCS superconductiv- 720 ity in Cd_2 Re₂O₇, the McMillan equation^{[\[70\]](#page-21-17)} yields the $_{721}$ λ_{ep} as

$$
\lambda_{ep} = \frac{\mu^* \ln \left(1.45 T_c / \Theta_D \right) - 1.04}{\left(1 - 0.62 \mu^* \right) \ln \left(1.45 T_c / \Theta_D \right) + 1.04} \tag{3}
$$

⁷²² for $\mu^* \leq \lambda_{ep} \leq 1.5$, where Θ_{D} is the Debye temperature μ^* is the Coulomb pseudopo-⁷²⁴ tential parameter. Using the Benneman and Garland τ ²⁵ empirical formula^{[\[71\]](#page-21-18)}, μ^* can be estimated as

$$
\mu^* = \frac{0.26N(E_F)}{1 + N(E_F)},\tag{4}
$$

 726 where $N(E_F)$ is the DOS at E_F in units of σ_{Z77} states eV⁻¹ atom⁻¹. Because $N(E_{\text{F}}) = 0.698$ from our τ_{28} calculation, μ^* is calculated as 0.107, which is slightly 729 lower than the standard value of 0.13. Therefore, λ_{ep} τ_{30} τ_{30} τ_{30} is obtained from Eq. 3 as 0.380. This value is consis- τ_{82} ⁷³¹ tent with the weak-coupling scenario. Subsequently, us-⁷⁸³ lowest temperature by combining quantum oscillations ⁷³² ing $\langle m^*/m_{\rm b}\rangle$ and $\lambda_{\rm ep}$ values, we obtain $\lambda_{\rm ee}=1.41$; this ₇₈₄ and electronic structure calculations. Based on the opti- τ ₇₃₃ indicates that m^* is mainly enhanced by the electron– τ ₇₈₅ mized crystal structure obtained by the DFT + U calcu-

⁶⁸⁴ The strengths of the electron–phonon and electron– τ ³⁵ large λ_{ee} is in line with the fact that we need $U = 4.5 \text{ eV}$

B. Driving force of the metallic ETQ order

 In the early study, the mechanism of the phase tran- sition from phase I to the noncentrosymmetric phases was speculated as being similar to a band Jahn–Teller $_{747}$ effect [\[19\]](#page-19-16), where the energy of the occupied (unoccupied) band decreases (increases) owing to symmetry reduction. Indeed, according to our study, half of the spin-split hole FS (FS7) almost disappears, and the other part of the spin-split hole FS (FS8) becomes significantly large in phase III (see Fig. [5\)](#page-6-0); this situation is similar to the spin-split version of the band Jahn–Teller effect associ- ated with an inversion-symmetry breaking. In addition, in terms of the DOS, the band Jahn–Teller effect is char- acterized by large DOS in a high symmetry phase [\[21\]](#page-19-13), which is also the case with $Cd_2Re_2O_7$ where E_F lies on 758 the shoulder of the DOS peak in phase I [see Fig. [7\(](#page-11-0)c)]. However, our calculation revealed that this is only par- tially true and is not likely the total picture of the phase τ ⁶¹ transition. This is because E_F rises from phase I to III owing to DOS broadening; therefore, the energy gain by $_{763}$ spin splitting near $E_{\rm F}$ is limited.

 Another mechanism recently theoretically proposed in Ref. [3](#page-19-2) is the odd-parity electronic nematic state driven by Pomeranchuk-type Fermi-liquid instability in the p-wave spin interaction channel. This instability arises when metals with inversion symmetry have both a strong SOI and electron–electron interaction. Indeed, we confirmed the large spin splitting of the FSs owing to the strong SOI and obtained a λ_{ee} of 1.41, which highlights the strong electron–electron interaction. The theory predicts the formation of the odd-parity multipolar order as a conse- quence of a Fermi-liquid instability, which is consistent with the metallic ETQ order in our optimized crystal structure. Importantly, the bond order of Re–O(1) and $777 \text{ Re}-\text{O}(3)$ associated with the metallic ETQ order plays an essential role in the energy stabilization in phase III. In this respect, it is plausible that the metallic ETQ order in phase III is driven by a Fermi-liquid instability.

⁷⁸¹ V. CONCLUSION

 $_{734}$ electron interaction, as expected from the R_{KW} . The $_{786}$ lation with the symmetry constrained to the $I4_122$ space We studied the electronic states of $Cd₂Re₂O₇$ at the

⁷⁸⁸ satisfactorily reproduced complex spectra of the observed ⁸⁴³ a function of U. At $U = 0$ eV, $n_e = 6.0 \times 10^{20}$ cm⁻³, quantum oscillations. The determined FSs highlight the ⁸⁴⁴ which is slightly smaller than the experimental value ⁷⁹⁰ giant spin splitting in the hole FSs, demonstrating the ⁸⁴⁵ 8.0 × 10²⁰ cm⁻³[\[19\]](#page-19-16). As U increases, n_e increases and ap- τ_{291} strong influence of the ASOI. In addition, we confirmed μ_{846} proaches the experimental value at approximately $U =$ ⁷⁹² the strong electronic correlation by evaluating the λ_{ee} 847 4.0–4.5 eV. as 1.41. In the optimized crystal structure, we visualized $_{848}$ the $3z^2-r^2$ -type metallic ETQ order characterized by the 849 lated Fourier-transformed spectra as a function of field potential gradient around the Re sites owing to the Re– O bond order. Our results demonstrate the microscopic picture of the metallic ETQ order in real and momentum spaces, which is presumably driven by a Fermi-liquid in- stability associated with the strong SOI and electronic correlation.

801 As future prospects, we expect the quantitative predic- tion of the various properties anticipated in the metallic ETQ state in phase III based on the electronic states obtained in this study. In addition, to observe the off- diagonal responses in experiments, it is inevitable to align not only the tetragonal domains[\[20\]](#page-19-12) but also the chirality domains observed in Ref. [35.](#page-20-27) Thus, a method to produce an energy difference between the opposite chirality do- mains is required. If one can quantitatively estimate the possible ways to achieve this based on the calculated elec- tronic states, it will significantly promote the realization of experiments. In addition, we expect that the param- eters and techniques used in this study will be applied to elucidate the electronic states of phase II and high- pressure phases. Furthermore, in our study, we were un- able to clarify how the strengths of the electronic corre-817 lation and SOI are involved in determining the ordering $\frac{872}{127}$ fore, we conclude that the calculated electronic structure ϵ ⁸¹⁸ manner. Thus, it would be interesting to investigate the ϵ ₈₇₃ with $U = 4.5 \text{ eV}$ best describes the real electronic struc-819 hypothetical stable structures by varying these parame- $_{874}$ ture. ters using the technique demonstrated in Ref. [72.](#page-21-19)

 821 Appendix A: U and J dependences of the optimized ⁸²² structure and their electronic states

 824 placements in the optimized structure of phase III with J 822 in QUANTUM ESPRESSO[\[74\]](#page-21-21). This value is consistent 825 fixed to 0.3 eV. Displacements δx or δz of Cd, Re, O(1), 883 with $U = 4.5$ eV determined by the quantum oscillation $826 \text{ }O(2)$, and $O(3)$ are measured from the phase I struc- 884 spectra. Therefore, our conclusion of $U = 4.5 \text{ eV}$ is rea-⁸²⁷ ture optimized with $U = 4.5 \text{ eV}$ and $J = 0.3 \text{ eV}$ and are ⁸⁸⁵ sonable from a computational viewpoint. 828 plotted against U. The vertical axes are oriented such 886 829 that the upper part of the graph corresponds to larger 887 structural parameters and their corresponding electronic ⁸³⁰ displacements. At $U = 0$ eV, the magnitudes of all dis-⁸⁸⁸ states on J with U fixed at 4.5 eV. Figure $10(c)$ $10(c)$ shows the 831 placements are considerably larger than the experimental 889 dependence on J of the atomic displacements in the opti-⁸³² values obtained at $4K$ (see Table. [II\)](#page-9-0). As U increases, the $\frac{890}{20}$ mized structure of phase III. It is apparent that the vari- $\frac{1}{833}$ relatively large displacements of Cd, O(1), and O(3) de- $\frac{1}{891}$ ation in the structural parameter is minimal in the range s_{34} crease at accelerated rates and approach the experimen- s_{92} of $J = 0.1-0.5$ eV. Figure [12](#page-17-0) compares the simulated 835 tal values. For atoms with relatively small displacements, ⁸⁹³ Fourier-transformed spectra corresponding to the calcu-⁸³⁶ the Re displacement exhibits a monotonic increase with ⁸⁹⁴ lation conditions and the structural parameters given in $\frac{1}{837}$ increasing U, whereas the O(2) displacement has a mini- $\frac{1}{895}$ Fig. [10\(](#page-15-2)c). The differences in the quantum oscillation $\frac{1}{838}$ mum at approximately $U = 4$ eV and increases for higher $\frac{1}{896}$ spectra are almost negligible. Therefore, it is difficult to 839 U values.

 $_{841}$ ous U values, the carrier number of electrons (n_e) or holes $_{899}$ value of $J = 0.3 \,\text{eV}$ does not affect on our results.

⁷⁸⁷ group, we successfully obtained the electronic states that ⁸⁴² (n_h) varies with U. Figure [10\(](#page-15-2)b) shows the n_e (= n_h) as

Figures [11\(](#page-16-1)b), 11(c), 11(d), and 11(e) show the simu-⁸⁵⁰ direction based on the crystal structures optimized with $851 \, U = 0, 4.0, 4.5, \text{ and } 5.0 \, \text{eV}, \text{ respectively.}$ A typical ⁸⁵² $f_q = B^{1/2}/m^*$ is used in the simulation. As indicated 853 by the same color scales as those shown in Fig. [4\(](#page-5-0)e), ⁸⁵⁴ shown at the bottom, the deeper color corresponds to ⁸⁵⁵ a larger amplitude, and we used different colors for the $\frac{856}{11(a)}$ $\frac{856}{11(a)}$ $\frac{856}{11(a)}$ branches derived from each FS. Figure $\frac{11(a)}{2}$ is the angu-⁸⁵⁷ lar dependency of the observed fundamental frequencies ⁸⁵⁸ shown for the ease of comparison. At $U = 0$ eV, the ⁸⁵⁹ spectra are completely different from those of the exper-⁸⁶⁰ iments; the sizes of FS11 and FS12 are too small, and ⁸⁶¹ the ε_{3-7} branches of FS9 are absent. At $U = 4.0 \text{ eV}$, ⁸⁶² the spectra are similar to the experimental results, but 863 still have insufficient parts; the γ_1 , γ_2 , γ_{4-7} , γ_{11} , and $864 \gamma_{12}$ branches derived from the large hole pocket of FS8 ⁸⁶⁵ around point Z are completely absent. At $U = 4.5 \text{ eV}$, 866 we obtained the simulation closest to the experimental re- 867 sults as described in the main text. This U value agrees ⁸⁶⁸ with the range in which the carrier number coincides with 869 the experiment. At $U = 5.0 \text{ eV}$, the spectra become dif-⁸⁷⁰ ferent from the experimental results; the $ε_6$, $γ_5$, and $γ_{12}$ ϵ_{871} branches become larger than those at $U = 4.5 \text{ eV}$. There-

 s_{23} Figure [10\(](#page-15-2)a) shows the U dependence of the atomic dis- s_{81} and using the linear-response method as implemented 875 This U value is slightly larger than $U = 3.0 \text{ eV}$ used in 876 a previous study $[38]$. However, the value used in the pre-⁸⁷⁷ vious study was calculated for impurity states in Rb[\[73\]](#page-21-20). 878 In general, U is not transferable from one material to an-879 other. For reference, we obtained $U = 4.2$ eV from the 880 calculation based on the phase I structure of $\text{Cd}_2\text{Re}_2\text{O}_7$

⁸⁴⁰ Corresponding to the optimized structures with vari-⁸⁹⁸ ulated and observed spectra, and thus the use of a typical Next, we present the dependence of the optimized $\frac{897}{2}$ determine a reasonable value of J by comparing the sim-

FIG. 10. (Color online) (a) Atomic displacement coordinates δx or δz for Cd, Re, O(1), O(2), and O(3) in the optimized structure of phase III as a function of the screened Coulomb parameter U used in the optimization procedure. Five left axes represent the vertical axis ranges for each plot. Note that the displacement is larger in the upper part of the graph. The screened exchange parameter J is fixed to 0.3 eV. All displacement coordinates are measured from the optimized phase I structure obtained using $U = 4.5 \text{ eV}$ and $J = 0.3 \text{ eV}$. (b) Carrier number of electrons (n_e) or holes (n_h) as a function of U. The carrier numbers correspond to the optimized crystal structures in (a). (c) Atomic displacement coordinates δx or δz for Cd, Re, $O(1)$, $O(2)$, and $O(3)$ in the optimized structure of phase III as a function of J used in the optimization procedure. The value of U is fixed to 4.5 eV . The configuration of the vertical axes and the definition of the displacement coordinates are the same as in (a).

900 Appendix B: Simulated Fourier-transformed spectra ω_2 possibility of the tiny orthorhombic distortion.

 F_{901} Figures [13\(](#page-18-1)a), 13(b), and 13(c) show the color image of ⁹⁰² the Fourier transformed spectra as a function of the field 903 direction calculated using f_v , f_σ , and f_τ , respectively.

904 Appendix C: Low temperature symmetry

906 produced well using electronic states calculated based on 931 symmetry of the low-temperature phase is $I4_122$. It is ⁹⁰⁷ the $I4_122$ space group. Therefore, the symmetry of the ⁹³² possible that the fluctuation of the T_{1u} soft phonon mode 908 crystal at the lowest temperature seems to be "almost" 933 freezes and appears as a tiny distortion to the F222 sym- $_{999}$ $I4_122$. However, a four-fold split structure was observed $_{934}$ metry. As far as we infer from the size of the splitting of 910 around the γ_{15} branches, suggesting the possibility that 935 the γ_{15} branch, this distortion to the orthorhombic struc- $_{911}$ the X and Y domains of the $I4_122$ phase may split into $_{936}$ ture is so small that it may be difficult to observe, even ⁹¹² four types because of the tiny orthorhombic distortion. ⁹³⁷ using methods such as X-ray diffraction. The presence of 913 Actually, there are two other possibilities: Twinning in 938 this small distortion to the F222 phase should be verified ⁹¹⁴ the crystal and the magnetic breakdown between adja-⁹³⁹ using high-precision measurements such as NMR. ⁹¹⁵ cent orbits. The former is unlikely because similar splits ⁹¹⁶ have not been observed in other branches originating ⁹⁴¹ tural optimization with the symmetry constrained to the \mathfrak{g}_{917} from the X and Y domains. The latter is also unlikely \mathfrak{g}_{92} F222 space group, which is mentioned in the main text. 918 because the four-fold split structure is visible over a wide $\frac{943}{12}$ Because the symmetry breaking to the F222 phase, if

⁹⁰⁵ Most of the observed quantum oscillations can be re-⁹³⁰ be related to the emergence of superconductivity if the 921 The energies of phases II $(I\overline{4}m2)$ and III $(I4_122)$ are ⁹²² suspected to be very close[\[56\]](#page-21-3). In addition, a linear com-923 bination of distortions in the $I\bar{4}m2$ and $I4_122$ phases re- 924 sults in the orthorhombic phase of the $F222$ space group. ⁹²⁵ Therefore, if a quantum fluctuation occurred from the 926 $I4_122$ phase to the $I\overline{4}m2$ phase, it would possibly appear ⁹²⁷ as a small distortion to the orthorhombic F222 phase. 928 Reference [56](#page-21-3) pointed out that the T_{1u} soft phonon mode $\frac{929}{2}$ corresponding to the distortion in the $I4m2$ phase may

919 angular range of $\pm\theta = 0$ -30°. Hence, we focus on the 944 present, would be expected to be very small, a calcula-We also need to supplement our results on struc-

FIG. 11. (Color online) (a) Angular dependence of the observed frequencies without higher harmonics. This is the same as Fig. [4\(](#page-5-0)d). (b) Angular dependence of the Fourier-transformed spectra simulated based on calculated electronic states optimized with $U = 0.0$ eV, (c) $U = 4.0$ eV, (d) $U = 4.5$ eV, and (e) $U = 5.0$ eV. J is fixed to 0.3 eV. In all calculations, Eq. [1](#page-3-0) with $f_q = B^{1/2}/m^*$, $T_D = 0.1$ K, and $T = 50$ mK were used for the simulations of quantum oscillations, and a field range of 5–17.5 T was used for the Fourier transformation. Higher harmonics are neglected. The colors indicate the corresponding FSs for each branch, and a deeper color corresponds to a larger amplitude (A) , as shown in the color scales at the bottom. (d) is the same as Fig. $4(e)$ $4(e)$.

946 stability of the F222 phase. Thus, a calculation method $\sin \frac{\langle m^*/m_b \rangle}{\sinh^2}$; this is slightly different from the cases ⁹⁴⁷ superior to the one we have used would, possibly enable ⁹⁶² of KOs₂O₆[\[75\]](#page-21-22) and CsOs₂O₆[\[76\]](#page-21-23), where the $m^*/m_{\rm b}$'s are ⁹⁴⁸ the F222 structure to be stabilized in the calculation. ⁹⁶³ uniformly distributed above and below $\langle m^*/m_{\rm b} \rangle$. Recall-⁹⁴⁹ This point would have to be verified in future studies.

950 Appendix D: Distribution of cycrotron effective ⁹⁵¹ mass on each orbit

 $Here$, we focus on the m^*/m_b for each orbit of FSs. ⁹⁵³ Figure [14](#page-18-2) shows the m^*/m_b of each orbit as a function ⁹⁵⁴ of F. The observed m^*/m_b 's are distributed near the ⁹⁵⁵ $\langle m^*/m_{\rm b} \rangle$. A closer look shows that the small F's vary ⁹⁵⁶ relatively widely around $\langle m^* / m_{\rm b} \rangle$. This is generally be- 957 cause the smaller the F , which is proportional to the ⁹⁵⁸ cross-section of the FS, the more susceptible to effective ⁹⁵⁹ mass distribution on FSs. In contrast, large F values

⁹⁴⁵ tion with insufficient accuracy may easily diminish the ⁹⁶⁰ are concentrated at approximately 2.5, which is smaller ⁹⁶⁴ ing that we anticipate a large m^*/m_b in FS10, where no ⁹⁶⁵ oscillation was observed despite the large simulated am-⁹⁶⁶ plitude, we might suspect that only m^*/m _b in FS10 is ⁹⁶⁷ exceptionally large among the FSs [\[77\]](#page-21-24). This was com- $\frac{1}{268}$ pletely unexpected because the FSs of $Cd_2Re_2O_7$ consist ⁹⁶⁹ of intricately hybridized and spin-split bands; thus, there ⁹⁷⁰ may be no reason for the mass enhancement to be large 971 only at a particular FS [\[78\]](#page-21-25). This remains a mystery and ⁹⁷² should be revisited in future studies.

FIG. 12. (Color online) (a) Angular dependence of the Fourier-transformed spectra simulated on the basis of the calculated electronic states optimized with $J = 0.1$ $J = 0.1$ eV, (b) $J = 0.3$ eV, and (c) $J = 0.5$ eV. U is fixed to 4.5 eV. In all calculations, Eq. 1 with $f_q = B^{1/2}/m^*$, $T_D = 0.1$ K, and $T = 50$ mK were used for the simulations of quantum oscillations, and a field range of 5–17.5 T was used for the Fourier transformation. Higher harmonics are neglected. The colors indicate the corresponding FSs for each branch, and a deeper color corresponds to a larger amplitude (A) , as shown in the color scales at the bottom. (b) is the same as in Fig. $4(e)$ $4(e)$.

^a The λ_{ep} value is evaluated using the McMillan formula refined by Allen and Dynes[\[82\]](#page-21-29) with strong-coupling correction[\[83\]](#page-21-30). The λ_{ee} value is evaluated as the residual enhancement of γ .

 $^{\rm b}$ Probably, $\lambda_{\rm ep}$ is slightly overestimated.

^c The λ_{ee} value is evaluated using the cyclotron resonance spectra, where only the electron–phonon interaction affects electrons.

^d The value is 1.8×10^7 $\mu\Omega$ cm mol² K² J⁻², which is not appropriate for comparison with the others because dimensionality has a significant effect [\[84\]](#page-21-31).

^e Evaluated from χ _s and γ from Refs. [85](#page-21-32) and [86,](#page-21-33) respectively.

FIG. 13. (Color online) (a) Angular dependence of the Fourier-transformed spectra calculated for the AC magnetic susceptibility using the modulation method, (b) electrical conductivity, and (c) magnetic torque. A field range of $5-17.5$ T, $T_D = 0.1$ K, and $T = 50$ mK were used. Higher harmonics are neglected.

FIG. 14. (Color online) Orbit-resolved mass enhancement factors $m^*/m_{\rm b}$ from quantum oscillations as a function of frequency F. Data for $KOs₂O₆[75]$ $KOs₂O₆[75]$ and $CsOs₂O₆[76]$ $CsOs₂O₆[76]$ are shown for comparison. Different symbols are used for different FSs of $Cd₂Re₂O₇$, as indicated by the legend in the figure. The horizontal dashed lines indicate the $\langle m^*/m_{\rm b} \rangle$ evaluated by γ and $\gamma_{\rm b}$.

973 Appendix E: Comparison of λ_{ep} and λ_{ee}

It is instructive to compare the obtained values 975 with the related compounds; the T_c , $\langle m^*/m_{\rm b} \rangle$, $\lambda_{\rm ep}$, 976 λ_{ee} , R_{KW} , and R_W values are compared in Ta-977 ble [IV](#page-17-6) with $AOS₂O₆$ (A = K, Rb, Cs), Th₇Co₃, 978 and κ -(BEDT-TTF)₂Cu(NCS)₂. The β-pyrochlores, 979 $A\text{Os}_2\text{O}_6$, show rattling-induced superconductivity[\[79\]](#page-21-26) 980 and share a similarity with $Cd₂Re₂O₇$ in terms of the 981 5d pyrochlore metallic system. The λ_{ee} and R_{KW} val-982 ues of $Cd_2Re_2O_7$ and AOs_2O_6 are comparable. Thus, ⁹⁸³ the strong electron–electron coupling may have an in-984 trinsic origin in the pyrochlore lattice of the 5d system. 985 In contrast, λ_{ep} of $Cd_2Re_2O_7$ is smaller than any of the 986 $A\text{Os}_2\text{O}_6$. This is because $A\text{Os}_2\text{O}_6$ exhibits enhanced ⁹⁸⁷ electron–phonon interaction due to the rattling, whereas 988 $Cd_2Re_2O_7$ does not. In AOs_2O_6 , the electron-phonon ⁹⁸⁹ coupling enhanced by the rattling increases in the order 990 of $A = \text{Cs}$, Rb, and K, as evidenced in λ_{ep} . Hence, the $_{991}$ small R_W values are understood because of the enhanced $\frac{992}{2}$ electron–phonon coupling because the R_W decreases in 993 that order^{[\[79\]](#page-21-26)}. However, the R_W values of $RbOs₂O₆$ and $994 \text{ CsOs}_2\text{O}_6$ are smaller than unity, although they are rela-⁹⁹⁵ tively close to the weak-coupling superconductors. In ad- $\frac{996}{100}$ dition, in Th₇Co₃, a weak-coupling noncentrosymmetric

998 $\text{Cd}_2\text{Re}_2\text{O}_7$ has been observed[\[80\]](#page-21-27). Even in organic super- 1012 Nos. 17H01144, JP17H07349, 18H04308, and 20H01858). oso conductors, in which electronic structures are relatively 1013 A portion of this work was performed at the National 1000 simple, κ -(BEDT-TTF)2Cu(NCS)₂ has the $R_{\rm W}$ close to 1014 High Magnetic Field Laboratory, which is supported by 1001 unity [\[85,](#page-21-32) [86\]](#page-21-33) despite having λ_{ep} and λ_{ee} comparable to 1015 the National Science Foundation Cooperative Agreement $_{1002}$ and greater than those of $\text{Cd}_2\text{Re}_2\text{O}_7$, respectively[\[81\]](#page-21-28). $_{1016}$ No. DMR-1157490 and the State of Florida. We would ¹⁰⁰³ Therefore, from these examples, we can reasonably con-¹⁰¹⁷ like to thank Editage (www.editage.com) for English lan- $_{1004}$ clude that a small value of $R_{\rm W}$ does not necessarily indi- $_{1018}$ guage editing. ¹⁰⁰⁵ cate a small electron–electron interaction and/or a large ¹⁰⁰⁶ electron–phonon interaction; another factor that makes 1007 $R_{\rm W}$ small is hidden.

1008 ACKNOWLEDGMENTS

¹⁰⁰⁹ We would like to thank Assoc. Prof. Takumi Hasegawa ¹⁰¹⁰ for his valuable comments. This work was supported by

- ¹⁰¹⁹ [1] C. Wu and S.-C. Zhang, "Dynamic Generation of Spin-¹⁰²⁰ Orbit Coupling," [Phys. Rev. Lett.](http://dx.doi.org/10.1103/PhysRevLett.93.036403) 93, 036403 (2004).
- ¹⁰²¹ [2] C. Wu, K. Sun, E. Fradkin, and S.-C. Zhang, "Fermi 1022 liquid instabilities in the spin channel," [Phys. Rev. B](http://dx.doi.org/10.1103/PhysRevB.75.115103) 75, 1062 [14] J. Yamaura and Z. Hiroi, "Low Temperature Symmetry 1023 [115103 \(2007\).](http://dx.doi.org/10.1103/PhysRevB.75.115103)
- ¹⁰²⁴ [3] L. Fu, "Parity-Breaking Phases of Spin-Orbit-Coupled ¹⁰²⁵ Metals with Gyrotropic, Ferroelectric, and Multipolar 1026 Orders," [Phys. Rev. Lett.](http://dx.doi.org/10.1103/PhysRevLett.115.026401) **115**, 026401 (2015).
- ¹⁰²⁷ [4] S. Hayami, M. Yatsushiro, Y. Yanagi, and H. Kusunose, ¹⁰²⁸ "Classification of atomic-scale multipoles under crystal-¹⁰²⁹ lographic point groups and application to linear response 1030 tensors," Phys. Rev. B **98**[, 165110 \(2018\).](http://dx.doi.org/10.1103/PhysRevB.98.165110)
- ¹⁰³¹ [5] H. Watanabe and Y. Yanase, "Group-theoretical classifi-¹⁰³² cation of multipole order: Emergent responses and can-¹⁰³³ didate materials," Phys. Rev. B 98[, 245129 \(2018\).](http://dx.doi.org/10.1103/PhysRevB.98.245129)
- ¹⁰³⁴ [6] S. Hayami, Y. Yanagi, H. Kusunose, and Y. Mo-¹⁰³⁵ tome, "Electric Toroidal Quadrupoles in the Spin-Orbit-1036 Coupled Metal $Cd_2Re_2O_7$," [Phys. Rev. Lett.](http://dx.doi.org/10.1103/PhysRevLett.122.147602) **122**, 147602 1076 1037 (2019) .
- ¹⁰³⁸ [7] V. Kozii and L. Fu, "Odd-Parity Superconductivity in ¹⁰³⁹ the Vicinity of Inversion Symmetry Breaking in Spin-1040 Orbit-Coupled Systems," [Phys. Rev. Lett.](http://dx.doi.org/10.1103/PhysRevLett.115.207002) 115, 207002 1080 1041 [\(2015\).](http://dx.doi.org/10.1103/PhysRevLett.115.207002)
- ¹⁰⁴² [8] Y. Wang, G. Y. Cho, T. L. Hughes, and E. Frad-¹⁰⁴³ kin, "Topological superconducting phases from inversion ¹⁰⁴⁴ symmetry breaking order in spin-orbit-coupled systems," 1045 Phys. Rev. B **93**[, 134512 \(2016\).](http://dx.doi.org/10.1103/PhysRevB.93.134512)
- ¹⁰⁴⁶ [9] F. Wu and I. Martin, "Nematic and chiral superconduc-¹⁰⁴⁷ tivity induced by odd-parity fluctuations," [Phys. Rev. B](http://dx.doi.org/10.1103/PhysRevB.96.144504) 1048 **96**[, 144504 \(2017\).](http://dx.doi.org/10.1103/PhysRevB.96.144504)
- ¹⁰⁴⁹ [10] S. Sumita, T. Nomoto, and Y. Yanase, "Multipole Su-1050 perconductivity in Nonsymmorphic $Sr_2IrO₄$," [Phys. Rev.](http://dx.doi.org/10.1103/PhysRevLett.119.027001) 1090 1051 Lett. **119**[, 027001 \(2017\).](http://dx.doi.org/10.1103/PhysRevLett.119.027001)
- ¹⁰⁵² [11] S. Sumita and Y. Yanase, "Superconductivity induced by ¹⁰⁵³ fluctuations of momentum-based multipoles," [Phys. Rev.](http://dx.doi.org/10.1103/PhysRevResearch.2.033225) ¹⁰⁵⁴ Research 2[, 033225 \(2020\).](http://dx.doi.org/10.1103/PhysRevResearch.2.033225)
- ¹⁰⁵⁵ [12] Z. Hiroi, J. Yamaura, T. C. Kobayashi, Y. Matsub-¹⁰⁵⁶ ayashi, and D. Hirai, "Pyrochlore Oxide Superconduc-1057 tor $Cd_2Re_2O_7$ Revisited," [J. Phys. Soc. Jpn.](https://dx.doi.org/10.7566/JPSJ.87.024702) 87, 024702 1097 1058 (2018) .

997 superconductor without rattling, a R_W as small as that of 1011 Grants-in-Aid from the MEXT/JSPS of Japan (Grant

- [13] M. Subramanian, G. Aravamudan, and G. Subba Rao, ¹⁰⁶⁰ "Oxide pyrochlores A review," [Prog. Solid. State Ch.](http://dx.doi.org/10.1016/0079-6786(83)90001-8) 15[, 55 \(1983\).](http://dx.doi.org/10.1016/0079-6786(83)90001-8)
- $_{1063}$ of Pyrochlore Oxide Cd₂Re₂O₇," [J. Phys. Soc. Jpn.](https://dx.doi.org/10.1143/JPSJ.71.2598) **71**, ¹⁰⁶⁴ [2598 \(2002\).](https://dx.doi.org/10.1143/JPSJ.71.2598)
- J. P. Castellan, B. D. Gaulin, J. van Duijn, M. J. Lewis, ¹⁰⁶⁶ M. D. Lumsden, R. Jin, J. He, S. E. Nagler, and D. Mandrus, "Structural ordering and symmetry breaking in $Cd_2Re_2O_7$," Phys. Rev. B 66[, 134528 \(2002\).](http://dx.doi.org/10.1103/PhysRevB.66.134528)
- [16] H. Sakai, H. Kato, S. Kambe, R. E. Walstedt, H. Ohno, ¹⁰⁷⁰ M. Kato, K. Yoshimura, and H. Matsuhata, "Lowtemperature structural change and magnetic anomaly in superconducting $Cd_2Re_2O_7$," [Phys. Rev. B](http://dx.doi.org/10.1103/PhysRevB.66.100509) 66, 1073 [100509\(R\) \(2002\).](http://dx.doi.org/10.1103/PhysRevB.66.100509)
- ¹⁰⁷⁴ [17] O. Vyaselev, K. Arai, K. Kobayashi, J. Yamazaki, K. Kodama, M. Takigawa, M. Hanawa, and Z. Hiroi, "Superconductivity and Magnetic Fluctuations in $Cd_2Re_2O_7$ ¹⁰⁷⁷ via Cd Nuclear Magnetic Resonance and Re Nuclear Quadrupole Resonance," [Phys. Rev. Lett.](http://dx.doi.org/10.1103/PhysRevLett.89.017001) 89, 017001 (2002) .
- [18] R. Jin, J. He, J. R. Thompson, M. F. Chisholm, B. C. ¹⁰⁸¹ Sales, and D. Mandrus, "Fluctuation effects on the physical properties of $Cd₂Re₂O₇$ near 200 K," [J. Phys. Con-](http://dx.doi.org/10.1088/0953-8984/14/5/102)dens. Matter 14[, L117 \(2002\).](http://dx.doi.org/10.1088/0953-8984/14/5/102)
- [19] Z. Hiroi, M. Hanawa, Y. Muraoka, and H. Harima, "Cor-¹⁰⁸⁵ relations and Semimetallic Behaviors in Pyrochlore Oxide $Cd_2Re_2O_7$," [J. Phys. Soc. Jpn.](http://dx.doi.org/10.1143/JPSJ.72.21) **72**, 21 (2003).
- [20] S. Tajima, D. Hirai, Y. Kinoshita, M. Tokunaga, K. Ak-¹⁰⁸⁸ iba, T. C. Kobayashi, H. T. Hirose, and Z. Hiroi, "Domain Control by Adjusting Anisotropic Stress in Pyrochlore Oxide $Cd_2Re_2O_7$," [J. Phys. Soc. Jpn.](http://dx.doi.org/10.7566/JPSJ.89.114711) 89, 114711 (2020)
- [21] Labbé, J. and Friedel, J., "Electron instability and crystalline phase transformations of V_3S type compounds at ¹⁰⁹⁴ low temperatures," [J. Phys. France](http://dx.doi.org/10.1051/jphys:01966002703-4015300) 27, 153 (1966).
- [22] E. Fradkin, S. A. Kivelson, M. J. Lawler, J. P. Eisenstein, and A. P. Mackenzie, "Nematic Fermi Fluids in Condensed Matter Physics," [Annu. Rev. Condens. Mat-](http://dx.doi.org/10.1146/annurev-conmatphys-070909-103925)1098 ter Phys 1[, 153 \(2010\).](http://dx.doi.org/10.1146/annurev-conmatphys-070909-103925)
- ¹⁰⁹⁹ [23] In fact, by definition, phases II and III can be regarded 1100 as kinds of electronic nematic order phases in that they 1164 [39] D. Shoenberg, *[Magnetic Oscillations in Metals](http://dx.doi.org/10.1017/CBO9780511897870)*, Cam-¹¹⁰¹ break the three-fold symmetry of phase I while keeping
- $_{1102}$ the translational invariance and metallic state[\[22\]](#page-19-14). ¹¹⁰³ [24] Z. Hiroi, J.-I. Yamaura, Y. Muraoka, and M. Hanawa,
- ¹¹⁰⁴ "Second Phase Transition in Pyrochlore Oxide 1105 $Cd_2Re_2O_7$," [J. Phys. Soc. Jpn.](http://dx.doi.org/10.1143/JPSJ.71.1634) **71**, 1634 (2002).
- ¹¹⁰⁶ [25] I. A. Sergienko and S. H. Curnoe, "Structural Order Pa-1107 rameter in the Pyrochlore Superconductor $Cd_2Re_2O_7$," 1171 [41] 1108 [J. Phys. Soc. Jpn.](http://dx.doi.org/10.1143/JPSJ.72.1607) **72**, 1607 (2003).
- ¹¹⁰⁹ [26] K. J. Kapcia, M. Reedyk, M. Hajialamdari, A. Ptok,
- ¹¹¹⁰ P. Piekarz, A. Schulz, F. S. Razavi, R. K. Kremer, and 1111 A. M. Oleś, "Discovery of a low-temperature orthorhom- 1175 $_{1112}$ bic phase of the $Cd₂Re₂O₇$ superconductor," [Phys. Rev.](http://dx.doi.org/10.1103/PhysRevResearch.2.033108) 1176 ¹¹¹³ Research 2[, 033108 \(2020\).](http://dx.doi.org/10.1103/PhysRevResearch.2.033108)
- ¹¹¹⁴ [27] J.-i. Yamaura, K. Takeda, Y. Ikeda, N. Hirao, Y. Ohishi, ¹¹¹⁵ T. C. Kobayashi, and Z. Hiroi, "Successive spatial sym-¹¹¹⁶ metry breaking under high pressure in the spin-orbit-1117 coupled metal $Cd_2Re_2O_7$," [Phys. Rev. B](http://dx.doi.org/10.1103/PhysRevB.95.020102) $95, 020102(R)$ 1181 ¹¹¹⁸ [\(2017\).](http://dx.doi.org/10.1103/PhysRevB.95.020102)
- ¹¹¹⁹ [28] Y. Matsubayashi, D. Hirai, M. Tokunaga, and Z. Hi-¹¹²⁰ roi, "Formation and Control of Twin Domains in the Py-1121 rochlore Oxide Cd₂Re₂O₇," [J. Phys. Soc. Jpn.](http://dx.doi.org/10.7566/JPSJ.87.104604) 87, 104604 1185 [\[](https://github.com/oncvpsp/oncvpsp)42] D. R. Hamann, (2020), [https://github.com/oncvpsp/](https://github.com/oncvpsp/oncvpsp) $1122 \quad (2018).$ $1122 \quad (2018).$
- ¹¹²³ [29] Y. Matsubayashi, K. Sugii, D. Hirai, Z. Hiroi, ¹¹²⁴ T. Hasegawa, S. Sugiura, H. T. Hirose, T. Terashima, ¹¹²⁵ and S. Uji, "Coexistence of odd-parity and even-parity ¹¹²⁶ order parameters in the multipole order phase of the 1127 spin-orbit coupled metal $Cd_2Re_2O_7$," [Phys. Rev. B](http://dx.doi.org/10.1103/PhysRevB.101.205133) 101, 1191 1128 [205133 \(2020\).](http://dx.doi.org/10.1103/PhysRevB.101.205133)
- ¹¹²⁹ [30] R. Jin, J. He, S. McCall, C. S. Alexander, F. Drymiotis, ¹¹³⁰ and D. Mandrus, "Superconductivity in the correlated 1131 pyrochlore $Cd_2Re_2O_7$," [Phys. Rev. B](http://dx.doi.org/10.1103/PhysRevB.64.180503) 64, 180503(R) 1195 1132 (2001) .
- ¹¹³³ [31] Z. Hiroi and M. Hanawa, "Superconducting properties of ¹¹⁹⁷ [46] J. P. Perdew, K. Burke, and M. Ernzerhof, "Generalized 1134 the pyrochlore oxide $Cd_2Re_2O_7$," [J. Phys. Chem. Solids.](http://dx.doi.org/10.1016/S0022-3697(02)00131-2) 1198 ¹¹³⁵ 63[, 1021 \(2002\),](http://dx.doi.org/10.1016/S0022-3697(02)00131-2) proceedings of the 8th ISSP Interna-¹¹³⁶ tional Symposium.
- $_{1137}$ [32] K. Momma and F. Izumi, "VESTA3 for three- $_{1201}$ ¹¹³⁸ dimensional visualization of crystal, volumetric and mor-¹¹³⁹ phology data," [J. Appl. Cryst.](http://dx.doi.org/10.1107/S0021889811038970) 44, 1272 (2011).
- ¹¹⁴⁰ [33] S. Uji, S. Sugiura, H. T. Hirose, T. Terashima, Y. Mat-¹¹⁴¹ subayashi, D. Hirai, Z. Hiroi, and T. Hasegawa, "Anoma-¹¹⁴² lous changes of electric quadrupole order at low temper-1143 atures in the spin-orbit coupled metal $Cd_2Re_2O_7$," [Phys.](http://dx.doi.org/10.1103/PhysRevB.102.155131) 1207 1144 Rev. B **102**[, 155131 \(2020\).](http://dx.doi.org/10.1103/PhysRevB.102.155131)
- ¹¹⁴⁵ [34] J. C. Petersen, M. D. Caswell, J. S. Dodge, I. A. ¹¹⁴⁶ Sergienko, J. He, R. Jin, and D. Mandrus, "Nonlinear 1147 optical signatures of the tensor order in $Cd_2Re_2O_7$," Na-1211 1148 ture Phys. **2**[, 605 \(2006\).](https://dx.doi.org/10.1038/nphys392)
- ¹¹⁴⁹ [35] J. W. Harter, Z. Y. Zhao, J.-Q. Yan, D. G. Mandrus, and ¹¹⁵⁰ D. Hsieh, "A parity-breaking electronic nematic phase 1151 transition in the spin-orbit coupled metal $Cd_2Re_2O_7$," 1215 1152 Science **356**[, 295 \(2017\).](http://dx.doi.org/10.1126/science.aad1188)
- ¹¹⁵³ [36] S. Di Matteo and M. R. Norman, "Nature of the tensor 1154 order in Cd₂Re₂O₇," Phys. Rev. B **96**[, 115156 \(2017\).](http://dx.doi.org/10.1103/PhysRevB.96.115156) 1218
- ¹¹⁵⁵ [37] Y. Matsubayashi, K. Sugii, H. T. Hirose, D. Hirai, S. Sug-¹¹⁵⁶ iura, T. Terashima, S. Uji, and Z. Hiroi, "Split Fermi 1157 Surfaces of the SpinOrbit-Coupled Metal $Cd_2Re_2O_7$ 1221 ¹¹⁵⁸ Probed by de Haas-van Alphen Effect," [J. Phys. Soc.](https://dx.doi.org/10.7566/JPSJ.87.053702) 1159 Jpn. **87**[, 053702 \(2018\).](https://dx.doi.org/10.7566/JPSJ.87.053702)
- ¹¹⁶⁰ [38] S.-W. Huang, H.-T. Jeng, J.-Y. Lin, W. J. Chang, J. M. ¹¹⁶¹ Chen, G. H. Lee, H. Berger, H. D. Yang, and K. S. $_{1162}$ Liang, "Electron structure of pyrochlore $Cd_2Re_2O_7$," [J.](https://dx.doi.org/10.1088/0953-8984/21/19/195602) 1226

[Phys. Condens. Matter](https://dx.doi.org/10.1088/0953-8984/21/19/195602) 21, 195602 (2009).

- bridge Monographs on Physics (Cambridge University ¹¹⁶⁶ Press, 1984).
- A. I. Liechtenstein, V. I. Anisimov, and J. Zaanen, ¹¹⁶⁸ "Density-functional theory and strong interactions: Or-¹¹⁶⁹ bital ordering in Mott-Hubbard insulators," [Phys. Rev.](http://dx.doi.org/10.1103/PhysRevB.52.R5467) B 52[, R5467 \(1995\).](http://dx.doi.org/10.1103/PhysRevB.52.R5467)
- P. Giannozzi, O. Andreussi, T. Brumme, O. Bunau, ¹¹⁷² M. B. Nardelli, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, M. Cococcioni, N. Colonna, I. Carnimeo, A. D. Corso, S. de Gironcoli, P. Delugas, R. A. D. Jr., A. Ferretti, A. Floris, G. Fratesi, G. Fugallo, R. Gebauer, U. Gerstmann, F. Giustino, T. Gorni, J. Jia, M. Kawa-1177 mura, H.-Y. Ko, A. Kokalj, E. Küçükbenli, M. Lazzeri, M. Marsili, N. Marzari, F. Mauri, N. L. Nguyen, H.-V. Nguyen, A. O. de-la Roza, L. Paulatto, S. Poncé, D. Rocca, R. Sabatini, B. Santra, M. Schlipf, A. P. Seitsonen, A. Smogunov, I. Timrov, T. Thonhauser, P. Umari, ¹¹⁸² N. Vast, X. Wu, and S. Baroni, "Advanced capabilities for materials modeling with Quantum ESPRESSO," [J.](https://doi.org/10.1088/1361-648X/aa8f79) [Phys. Condens. Matter](https://doi.org/10.1088/1361-648X/aa8f79) 29, 465901 (2017).
- 1186 **oncypsp.**
	- D. R. Hamann, "Optimized norm-conserving Vanderbilt" pseudopotentials," Phys. Rev. B 88 [, 085117 \(2013\).](https://doi.org/10.1103/PhysRevB.88.085117)
	- M. Schlipf and F. Gygi, "Optimization algorithm for the generation of ONCV pseudopotentials," [Comp. Phys.](https://dx.doi.org/10.1016/j.cpc.2015.05.011) Commun. **196**[, 36 \(2015\).](https://dx.doi.org/10.1016/j.cpc.2015.05.011)
- ¹¹⁹² [45] P. Scherpelz, M. Govoni, I. Hamada, and G. Galli, "Implementation and Validation of Fully Relativistic GW Calculations: Spin–Orbit Coupling in Molecules, Nanocrystals, and Solids," [J. Chem. Theory. Comput.](https://dx.doi.org/10.1021/acs.jctc.6b00114) ¹¹⁹⁶ 12[, 3523 \(2016\).](https://dx.doi.org/10.1021/acs.jctc.6b00114)
	- Gradient Approximation Made Simple," [Phys. Rev. Lett.](https://dx.doi.org/10.1103/PhysRevLett.77.3865) 77[, 3865 \(1996\).](https://dx.doi.org/10.1103/PhysRevLett.77.3865)
- 1200 [47] G. Pizzi, V. Vitale, R. Arita, S. Blügel, F. Freimuth, G. Géranton, M. Gibertini, D. Gresch, C. Johnson, T. Koretsune, J. Ibañez-Azpiroz, H. Lee, J. M. Lihm, ¹²⁰³ D. Marchand, A. Marrazzo, Y. Mokrousov, J. I. Mustafa, Y. Nohara, Y. Nomura, L. Paulatto, S. Poncé, T. Ponweiser, J. Qiao, F. Thöle, S. Tsirkin, M. Wierzbowska, N. Marzari, D. Vanderbilt, I. Souza, A. A. Mostofi, and J. R. Yates, "Wannier90 as a community code: new fea-¹²⁰⁸ tures and applications," [J. Phys. Condens. Matter](https://doi.org/10.1088/1361-648X/ab51ff) 32, ¹²⁰⁹ [165902 \(2020\).](https://doi.org/10.1088/1361-648X/ab51ff)
- P. M. C. Rourke and S. R. Julian, "Numerical extraction ¹²¹¹ of de Haas–van Alphen frequencies from calculated band ¹²¹² energies," [Comput. Phys. Commun.](https://doi.org/10.1016/j.cpc.2011.10.015) 183, 324 (2012).
	- I. Timrov, N. Marzari, and M. Cococcioni, "Hubbard parameters from density-functional perturbation theory," Phys. Rev. B 98[, 085127 \(2018\).](http://dx.doi.org/10.1103/PhysRevB.98.085127)
- ¹²¹⁶ [50] J. He, Metallic Ferroelectricity and Superconductivity in the Transition Metal Oxide Pyrochlore $Cd_2Re_2O_7$, [PhD](https://trace.tennessee.edu/utk_graddiss/2268) [diss.,](https://trace.tennessee.edu/utk_graddiss/2268) University of Tennessee (2004), original paper misprints Wyckoff sites.
	- M. M. Miller and R. Reifenberger, "Magnetic breakdown and the de Haas–van Alphen effect in $Hg_{1-x}Fe_xSe,''$ Phys. Rev. B 38[, 3423 \(1988\).](http://dx.doi.org/10.1103/PhysRevB.38.3423)
- ¹²²³ [52] N. Kimura, H. Sano, M. Shirakawa, A. Ochiai, H. Funashima, and H. Harima, "Orbital Crossing on Split Fermi Surfaces in Noncentrosymmetric Yb_4Sb_3 , ¹²²⁶ Phys. Soc. Jpn. 87[, 114708 \(2018\).](https://dx.doi.org/10.7566/JPSJ.87.114708)
- 1227 [53] The $O(2_1)$ site corresponds to the $O(4)$ site in phase III. 1289 [71] J. W. Garland and K. H. Bennemann, "Theory for the
- ¹²²⁸ [54] M. T. Weller, R. W. Hughes, J. Rooke, C. S. Knee, , and ¹²²⁹ J. Reading, "The pyrochlore family a potential panacea ¹²³⁰ for the frustrated perovskite chemist," [Dalton Trans.](https://dx.doi.org/10.1039/B401787K) 19, ¹²³¹ [3032 \(2004\).](https://dx.doi.org/10.1039/B401787K)
- ¹²³² [55] J. He, R. Jin, B. C. Chakoumakos, J. S. Gardner, ¹²³³ D. Mandrus, and T. M. Tritt, "Crystal Growth, Struc-¹²³⁴ ture, and Stoichiometry of the Superconducting Py-1235 rochlore Cd_2 Re₂O₇," [J. Electron. Mater.](https://dx.doi.org/10.1007/s11664-007-0087-7) **36**, 740 (2007). 1297
- ¹²³⁶ [56] I. A. Sergienko, V. Keppens, M. McGuire, R. Jin, J. He,
- ¹²³⁷ S. H. Curnoe, B. C. Sales, P. Blaha, D. J. Singh, ¹²³⁸ K. Schwarz, and D. Mandrus, "Metallic "Ferroelectric-1239 ity" in the Pyrochlore $Cd_2Re_2O_7$," [Phys. Rev. Lett.](http://dx.doi.org/10.1103/PhysRevLett.92.065501) **92**, 1301 ¹²⁴⁰ [065501 \(2004\).](http://dx.doi.org/10.1103/PhysRevLett.92.065501)
- ¹²⁴¹ [57] D. J. Singh, P. Blaha, K. Schwarz, and J. O. Sofo, "Elec- 1242 tronic structure of the pyrochlore metals $Cd₂O₅₂O₇$ and 1304 1243 Cd₂Re₂O₇," Phys. Rev. B **65**[, 155109 \(2002\).](https://dx.doi.org/10.1103/PhysRevB.65.155109)
- ¹²⁴⁴ [58] H. Harima, "Electronic bandstructures on 5d-transition 1245 metal pyrochlore: $Cd_2Re_2O_7$ and $Cd_2Os_2O_7$," [J. Phys.](https://dx.doi.org/10.1016/S0022-3697(02)00058-6) 1307 1246 Chem. Solids **63**[, 1035 \(2002\).](https://dx.doi.org/10.1016/S0022-3697(02)00058-6)
- ¹²⁴⁷ [59] I. V. Solovyev, "Effects of crystal structure and on-¹²⁴⁸ site Coulomb interactions on the electronic and mag-1249 netic structure of $A_2\text{Mo}_2\text{O}_7$ ($A = Y$, Gd, and Nd) py-1311 ¹²⁵⁰ rochlores," Phys. Rev. B 67[, 174406 \(2003\).](http://dx.doi.org/10.1103/PhysRevB.67.174406)
- 1251 [60] M. Brühwiler, S. M. Kazakov, J. Karpinski, and 1313 ¹²⁵² B. Batlogg, "Mass enhancement, correlations, and 1253 strong-coupling superconductivity in the β -pyrochlore 1315 1254 KOs₂O₆," Phys. Rev. B **73**[, 094518 \(2006\).](http://dx.doi.org/10.1103/PhysRevB.73.094518)
- 1255 [61] N. W. Ashcroft and N. D. Mermin, [Solid State Physics](https://www.cengage.com/c/solid-state-physics-1e-ashcroft/9780030839931/) 1317 [79] ¹²⁵⁶ (Saunders College Publishing, 1976).
- 1257 [62] For instance, $F = 1824$ T of the γ_{10} frequency at $B \parallel$ 1319 ¹²⁵⁸ $\langle 111 \rangle$ corresponds to $k_F^{-1} \simeq 6.0 \text{ Å}$ if we assume a circular ¹²⁵⁹ orbit shape.
- 1260 [63] For example, the heavy Fermion material YbNi₂ has 1322 ¹²⁶¹ been observed to have a huge specific heat coefficient
- ¹²⁶² $\gamma = 573 \,\mathrm{mJ} \,\mathrm{mol}^{-1} \mathrm{K}^{-2}$ [\[87\]](#page-21-34), but the band specific heat
- 1263 coefficient $\gamma_{\rm b}$ calculated by the DFT and DFT + U 1325 [81] $_{1264}$ methods are reported as 29.937 and 28.270 mJ mol⁻¹K⁻², 1265 respectively 88 .
- ¹²⁶⁶ [64] S. Koshino, "Scattering of Electrons by the Thermal Mo-¹²⁶⁷ tion of Impurity Ions: ," [Prog. Theor. Exp. Phys.](http://dx.doi.org/10.1143/PTP.24.484) 24, 484 1268 (1960) .
- ¹²⁶⁹ [65] P. L. Taylor, "Changes in Electrical Resistance Caused ¹²⁷⁰ by Incoherent Electron-Phonon Scattering," [Phys. Rev.](http://dx.doi.org/10.1103/PhysRev.135.A1333) 1271 **135**[, A1333 \(1964\).](http://dx.doi.org/10.1103/PhysRev.135.A1333)
- ¹²⁷² [66] K. Kadowaki and S. Woods, "Universal relationship of ¹²⁷³ the resistivity and specific heat in heavy-Fermion com-¹²⁷⁴ pounds," [Solid State Commun.](http://dx.doi.org/10.1016/0038-1098(86)90785-4) 58, 507 (1986).
- ¹²⁷⁵ [67] H. Sakai, Y. Tokunaga, S. Kambe, K. Kitagawa, H. Mu-¹²⁷⁶ rakawa, K. Ishida, H. Ohno, M. Kato, K. Yoshimura, $_{1277}$ and R. E. Walstedt, "Decrease in $_{111}$ Cd Knight Shift in 1278 Superconducting $Cd_2Re_2O_7$: Evidence for Spin-Singlet 1340 1279 Pairing," [J. Phys. Soc. Jpn.](http://dx.doi.org/10.1143/JPSJ.73.2940) **73**, 2940 (2004).
- ¹²⁸⁰ [68] F. Razavi, Y. Rohanizadegan, M. Hajialamdari, ¹²⁸¹ M. Reedyk, R. Kremer, and B. Mitrovi, "The effect of 1282 quasiparticle self-energy on $Cd_2Re_2O_7$ superconductor," 1344 1283 [Can. J. Phys.](http://dx.doi.org/10.1139/cjp-2015-0173) **93**, 1646 (2015).
- ¹²⁸⁴ [69] K. G. Wilson, "The renormalization group: Critical phe-1285 nomena and the Kondo problem," [Rev. Mod. Phys.](http://dx.doi.org/10.1103/RevModPhys.47.773) 47, 1347 ¹²⁸⁶ [773 \(1975\).](http://dx.doi.org/10.1103/RevModPhys.47.773)
- ¹²⁸⁷ [70] W. L. McMillan, "Transition Temperature of Strong-1288 Coupled Superconductors," Phys. Rev. 167[, 331 \(1968\).](http://dx.doi.org/10.1103/PhysRev.167.331) 1350
- Pressure Dependence of T_c for Narrow-Band Supercon-ductors," [AIP Conf. Proc.](http://dx.doi.org/10.1063/1.2946192) 4, 255 (1972).
- [72] T. Radzyński and A. Lusakowski, "Influence of Spin-¹²⁹³ Orbit Interaction on Band Structure and Elastic Proper-ties of PbTe," [Acta Phys. Pol. A](https://dx.doi.org/10.12693/APhysPolA.116.954) 116 , 954 (2009).
	- [73] I. V. Solovyev, P. H. Dederichs, and V. I. Anisimov, "Corrected atomic limit in the local-density approximation and the electronic structure of d impurities in Rb," Phys. Rev. B 50[, 16861 \(1994\).](http://dx.doi.org/10.1103/PhysRevB.50.16861)
- M. Cococcioni and S. de Gironcoli, "Linear response approach to the calculation of the effective interaction pa-rameters in the LDA + U method," [Phys. Rev. B](http://dx.doi.org/10.1103/PhysRevB.71.035105) 71, ¹³⁰² [035105 \(2005\).](http://dx.doi.org/10.1103/PhysRevB.71.035105)
- T. Terashima, N. Kurita, A. Kiswandhi, E.-S. Choi, J. S. ¹³⁰⁴ Brooks, K. Sato, J.-i. Yamaura, Z. Hiroi, H. Harima, ¹³⁰⁵ and S. Uji, "Large and homogeneous mass enhancement in the rattling-induced superconductor $KOs₂O₆$," [Phys.](http://dx.doi.org/10.1103/PhysRevB.85.180503) Rev. B 85[, 180503\(R\) \(2012\).](http://dx.doi.org/10.1103/PhysRevB.85.180503)
- ¹³⁰⁸ [76] T. Terashima, S. Uji, Y. Nagao, J. Yamaura, Z. Hiroi, and H. Harima, "Fermi surface in the superconducting β -pyrochlore oxide CsOs₂O₆," [Phys. Rev. B](http://dx.doi.org/10.1103/PhysRevB.77.064509) 77, 064509 $(2008).$
- ¹³¹² [77] Because the carrier number in FS10 is 11.5% of the total, assuming $m^*/m_b = 2.5$ for the other carriers, the upper limit of m^*/m_b for FS10 is estimated to be ∼10.
- 1315 [78] For reference, in KOs_2O_6 and $CsOs_2O_6$, the m^*/m_b distribute within only $\pm 20\%$ around the $\langle m^* / m_{\rm b} \rangle$.
- Y. Nagao, J.-i. Yamaura, H. Ogusu, Y. Okamoto, and 1318 Z. Hiroi, "Rattling-Induced Superconductivity in the β -Pyrochlore Oxides AOS_2O_6 ," [J. Phys. Soc. Jpn.](http://dx.doi.org/10.1143/JPSJ.78.064702) 78, [064702 \(2009\).](http://dx.doi.org/10.1143/JPSJ.78.064702)
- ¹³²¹ [80] M. Sahakyan and V. H. Tran, "Physical properties and α electronic band structure of noncentrosymmetric Th₇Co₃ superconductor," [J. Phys.: Condens. Matter](https://dx.doi.org/10.1088/0953-8984/28/20/205701) 28, 205701 $(2016).$
- T. Kawamoto and T. Mori, "Many-body effect on the su-¹³²⁶ perconducting transition temperature in layered organic 1327 superconductors," Phys. Rev. B **74**[, 212502 \(2006\).](http://dx.doi.org/10.1103/PhysRevB.74.212502)
- P. B. Allen and R. C. Dynes, "Transition temperature of strong-coupled superconductors reanalyzed," [Phys. Rev.](http://dx.doi.org/10.1103/PhysRevB.12.905) $_{1330}$ B 12[, 905 \(1975\).](http://dx.doi.org/10.1103/PhysRevB.12.905)
- [83] F. Marsiglio and J. P. Carbotte, "Strong-coupling correc-tions to Bardeen-Cooper-Schrieffer ratios," [Phys. Rev. B](http://dx.doi.org/10.1103/PhysRevB.33.6141) 1333 **33**[, 6141 \(1986\).](http://dx.doi.org/10.1103/PhysRevB.33.6141)
- [84] A. Jacko, J. Fjærestad, and B. Powell, "A unified explanation of the KadowakiWoods ratio in strongly correlated ¹³³⁶ metals," Nature Phys. 5[, 422425 \(2009\).](https://dx.doi.org/10.1038/nphys1249)
	- [85] K. Kanoda, "Metal–Insulator Transition in κ –(ET)₂X and $(DCNQI)_2M$: Two Contrasting Manifestation of Electron Correlation," [J. Phys. Soc. Jpn.](http://dx.doi.org/10.1143/JPSJ.75.051007) 75, 051007 $(2006).$
- ¹³⁴¹ [86] B. Andraka, J. S. Kim, G. R. Stewart, K. D. Carlson, H. H. Wang, and J. M. ¹³⁴³ Williams, "Specific heat in high magnetic field of κ -di[bis(ethylenedithio)tetrathiafulvalene]-1345 di(thiocyano)cuprate κ -(ET)₂Cu(NCS)₂]: Evidence for strong-coupling superconductivity," [Phys. Rev. B](http://dx.doi.org/10.1103/PhysRevB.40.11345) ¹³⁴⁷ 40[, 11345 \(1989\).](http://dx.doi.org/10.1103/PhysRevB.40.11345)
- 1348 [87] D. Rojas, L. Fernández Barquín, C. Echevarria-Bonet, and J. Rodríguez Fernández, "YbNi₂: A heavy fermion ferromagnet," [Solid State Commun.](http://dx.doi.org/https://doi.org/10.1016/j.ssc.2012.07.001) 152, 1834 (2012).
- ¹³⁵¹ [88] Y. E and B.-N. Wu, "First-Principles Study of the Elec-1352 tronic Structure of Heavy Fermion YbNi₂," [J. Supercond.](https://dx.doi.org/10.1007/s10948-013-2368-0) ¹³⁵³ Nov. Magn. 27[, 735 \(2014\).](https://dx.doi.org/10.1007/s10948-013-2368-0)