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Topological phases supported by quasi-periodic spin-chain models and their bulk-boundary princi-
ples are investigated by numerical and K-theoretic methods. We show that, for both the un-correlated
and correlated phases, the operator algebras that generate the Hamiltonians are non-commutative
tori, hence the quasi-periodic chains display physics akin to the quantum Hall effect in two and higher
dimensions. The robust topological edge modes are found to be strongly shaped by the interaction
and, generically, they have hybrid edge-localized and chain-delocalized structures. Our findings lay
the foundations for topological spin pumping using the phason of a quasi-periodic pattern as an adi-
abatic parameter, where selectively chosen quantized bits of magnetization can be transferred from
one edge of the chain to the other.

I. INTRODUCTION

Engineering topological gaps that host robust edge
modes based on aperiodic principles is an extremely ac-
tive area of research, spreading over several research
fields such as condensed matter [1–20], photonics [21–
36], acoustics [37–39] and mechanics [40–50]. The basic
working principles for all these studies rest on the ex-
istence of an intrinsic degree of freedom, the phason of
the aperiodic pattern, which in many instances is experi-
mentally accessible and, as such, it can be used as an adi-
abatic parameter in practical applications. For example,
the first experimental demonstration of un-assisted dy-
namical edge-to-edge Thouless pumping [39] has been
achieved with such principles. In general, the phason
space augments the physical space and supplies addi-
tional virtual dimensions [3], hence enabling physical
phenomena beyond what can be ordinarily observed in
our physical space. In particular, it can enable two and
higher dimensional quantum Hall physics without the
need of breaking the time-reversal and this has spurred
the vigorous experimental progress mentioned above
on the investigation of topological un-correlated phases
from class A of classification table [51–54].

An interesting and important ongoing research is char-
acterizing the interplay between the aperiodicity, many-
body correlations and topology in quantum systems or
between aperiodicity, non-linear effects and topology in
classical systems [55–71]. Quantum spin chains have
been successfully used in the past to shed some light on
this question, especially because they can be simulated
with modest computational resources. In particular, a
quasi-periodic spin-system with tunned first and sec-
ond nearest neighbor interactions has been used in [57]
to stabilized a fractional quantum Hall state. In [67],
it was shown that some correlated topological phases
emerged under aperiodicity can be adiabatically con-
nected to un-correlated phases, hence proving certain
topological stability against correlations. The stability of
the topological phases against many-body disorder was
investigated in [68]. The main tool deployed in all these
works is the first Chern number. However, as we shall
see, quasi-periodic spin-chain systems host a plethora of

higher Chern topological phases.

Operator algebras and their K-theories emerged as
natural frameworks for analyzing aperiodic systems [72–
74] and these are the tools we adopt in our study. The
first task of such general program consists in the identifi-
cation of the algebra that generates the quantum Hamil-
tonians. If this is successfully completed, then the K-
theory of this algebra classifies the spectral projections
of the Hamiltonians into classes that are invariant to con-
tinuous deformations of the models. In particular, every
single spectral gap of the Hamiltonian receives a set of
K-theoretic labels, which represent all topological invari-
ants, both strong and weak, that can be associated to a
gap. As it was pointed out in [75], this K-theoretic labels
can be read off from certain maps of the integrated den-
sity of states (IDS). Such maps can be used to confirm that
the algebra of the Hamiltonians was computed correctly
or, in the cases when the algebras are unknown, the IDS
maps can give hints on what the algebra might be. This
general program has been carried out for several impor-
tant classes of aperiodic un-correlated systems such as
quasi-periodic [42], quasi-crystalline [14], incommensu-
rate [75] and twisted [50] bilayers. The progress with the
correlated systems has been, however, very slow.

Working with quasi-periodic spin chains, where the
z-component of the magnetization is conserved by the
dynamics, we demonstrate first that the un-correlated
Hamiltonians restricted to a magnetization sector M = d,
where d = 1, 2, 3, . . ., belong to the non-commutative d-
torus. This is confirmed by the numerically computed
IDS maps and by the counts of the edge modes which
conform with the bulk-boundary correspondence prin-
ciples for these algebras. When a nearest neighbor in-
teraction potential is turned on, in the regime of strong
interaction, we observe a separation of the bulk energy
spectrum in d spectral islands [76] and, for d up to three,
we compute numerically the corresponding IDS maps.
Surprisingly, every single feature seen in these maps can
be explained by non-commutative tori. To explain the
origins of these findings, we compute explicitly the gen-
erators of some of these algebras in the presence of strong
interaction, which reveal the strongly correlated nature
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of the new topological phases. The topological edge
modes are also found to be strongly shaped by the in-
teraction. The analysis represents an important example
where K-theory combined with numerical simulations
are used to produce an extremely refined and complete
picture of the topological phases supported by strongly
interacting models and to establish quantitative bulk-
boundary correspondence principles.

The paper is organized as it follows. In Sec. II, we
introduce the aperiodic pattern which is populated by
1
2 -spins and discuss the associated phason and phason
space. In particular, we explain the special and gen-
eral mechanism that allows one to use the phason as an
adiabatic parameter and generate topological Thouless
pumps. Also in Sec. II, we describe the quantum spin
models studied in our work. As we already mentioned,
the non-commutative tori will play a central role in our
analysis and, for this reason, we dedicate Sec. III to a re-
view of these operators algebras and their K-theories. We
discuss the K-theoretic gap labels, their relations to the
standard topological invariants, their quantized range
and how to compute them from the IDS maps. Sec-
tions IV and IV are dedicated to the topological analysis
of the un-correlated and strongly correlated spin chains,
respectively. The last section summarizes the main con-
clusions of our work.

II. APERIODIC SPIN CHAINS

Any aperiodic pattern has an intrinsic degree of free-
dom, the phason, which lives on a smooth manifold
when the pattern is quasiperiodic. Our spin chain mod-
els are defined over quasi-periodic patterns where the
phason lives on a circle. In this section, we describe
these patterns as well as the quantum spin models de-
fined over them. Special attention is paid to the covariant
property of the spin Hamiltonians and its implications.

A. The aperiodic lattice

We consider a spin- 1
2 chain over a 1-dimensional lattice

of points:

L = {pn}n=−L,L ⊂ R, (1)

whose points are labeled in their increasing order. We
always center the lattice such that p0 sits at the origin
of the real axis. The number of points, i.e. the cardinal
of L, will be denoted by |L| and this number will be as-
sumed infinite in our theoretical analysis but, of course,
it will be finite in the numerical simulations. The cen-
tral assumption of our work is that the points pn of the
lattice are not rendered periodically. Instead, they are
generated with the algorithm

pn = n + r
(

sin[2π(nθ + ϕ)] − sin(2πϕ)
)
, n ∈ Z, (2)

FIG. 1. A sample of a pattern generated with the algorithm (2),
using r = 0.45, θ =

√
2 and ϕ = 0. The dots were given a finite

size for visualization and some appear as overlapping, but this
is not the actual case for the point pattern.

where the parameters belong to the circle, θ, ϕ ∈ R/Z.
Our main focus is on the cases when θ is fixed at ir-
rational values and the lattice is truly aperiodic. The
parameter ϕ plays the role of the phason for this pat-
tern. The amplitude r will be fixed at r = 0.45, such that
the points remain ordered with respect to n, pn < pn+1.
In fact, the pattern of points should be seen as a locally
distorted perfect lattice. To fulfill our previous conven-
tion, the expression was carefully tailored such that the
point p0 corresponding to n = 0 sits at the origin for all
allowed values of the coefficients. A sample of such pat-
tern is shown in Fig. 1. As one can see, with the value
r = 0.45, the pattern is quite far from being periodic.

As it is the case with any aperiodic point pattern [77],
the analytic analysis rests on a certain natural dynamical
system, which we now describe. First, note that, for an
infinite chain, there exists a natural action of the group
Z on L on the point patterns given by

Z 3 a 7→ τaL = {p′n}n∈Z, p′n = pn+a − pa. (3)

Translated in words, this action shifts the lattice rigidly
until the point with the old index a sits at the origin. Note
that after the shift, all points are relabeled and the point
labeled by n = 0 sits again at the origin. From (2), one can
see that this action is equivalent to the transformation

ϕ 7→ ϕ + aθ, a ∈ Z. (4)

Since the phason ϕ leaves on the circle S = R/Z, we can
see that the rigid shifts of L translate into rotations by
θ of the phason space S. Let us point out that all the
above conclusions remain the same if the sine function
in (2) is replaced with any other continuous function on
S. In fact, as we shall see, our entire analysis rests on the
dynamical system (S, τ) indentified as the phason space,
hence it applies to an extremely large family of patterns.

Another important observation is that, ifθ is irrational,
then the orbit {(ϕ+ aθ) mod 1, a ∈ Z} of any ϕ under the
action of Z fills the circle densely. In other words, the
dynamical system (S, τ) is topologically ergodic or min-
imal. This observation plays an important role for the
following reason. Let f , g : S → C be any two continu-
ous complex functions over the circle and consider the
Hilbert space `2(Z) of square-summable sequences over
Z. We associate to f the following diagonal operator
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over `2(Z):

W f 7→ πϕ( f ) =
∑
n∈Z

f (ϕ + nθ) |n〉〈n|, (5)

where {|n〉}n∈Z is the canonical basis of `2(Z). If we repeat
the same construction for g as well as for the point-wise
product f g, then it is straightforward to verify that

W f Wg = W f g ↔ πϕ( f )πϕ(g) = πϕ( f g). (6)

In other words, πϕ is a representation of the algebra
C(S) of continuous functions over C. If θ is irrational,
and only in this case, the representation is faithful and,
as such, the algebra generated by the operators (5) is
isomorphic to the algebra C(S). Furthermore, up to iso-
morphisms, the πϕ representations are independent of
the parameter ϕ. As we shall see, this has important
consequences for the spectra of physical operators, par-
ticularly, for their independence on ϕ. Let us stress that
none of these would be true if θ were rational.

B. The spin system defined

We will consider a quantum system where one 1
2 -spin

sits on each point of the pattern L. Hence, the Hilbert
space for the spin systems over L is

HS =
⊗
x∈LL

C2
'MD×D(C2), D = 22L+1. (7)

For aperiodic patterns like the one shown in Fig. 1, it is
natural to assume that the spin-spin interaction depends
on the separation distance dn = pn+1 − pn between the
spins. As such, we consider spin Hamiltonians of the
form

HS =

L∑
n=−L

[
J(dn)

(
Sx

nSx
n+1 + Sy

nSy
n+1

)
+ Jz(dn)Sz

nSz
n+1

]
, (8)

where

Sαn = I ⊗ . . . ⊗ I ⊗ 1
2σ

α
⊗ I . . . ⊗ I, α = x, y, z, (9)

with the Pauli matrixσα sitting at position n ∈ {−L, . . . ,L}.
Both, closed and open boundary conditions will be con-
sidered and, to make a clear distinction, we will use Ĥ
to indicate the open boundary conditions.

Our methods can handle any functional form of J that
is asymptotically decaying and continuous. However,
for concreteness, we made the choice

J(s) = e−|s|, s ∈ R, (10)

which is uniformly used in our numerical simulations.
Let us point out that, if we introduce the function

f (ϕ) = J
(∣∣∣1 + r(sin[2π(ϕ + θ)] − sin[2πϕ])

∣∣∣), (11)

defined over the unit circle, then

J(dn) = f (ϕ + nθ). (12)

This supplies one connection with the discussion at the
end of previous sub-section. As for the Ising interac-
tion strength Jz, we chose them to be independent of dn
in order to clearly separate aperiodic from correlation
effects.

To fix the notation, let us recall the following relevant
operators

S±n = Sx
n ± ıS

y
n, n = −L, . . . ,L, (13)

and the operator of z-component of magnetization

M =

L∑
n=−L

(
Sz

n + 1
2

)
, (14)

which commutes with the Hamiltonian (8). Also, we re-
call that the algebra of spin operators accepts the unique
trace

TS

(⊗
x∈L

Ax

)
=

∏
x∈L

1
2 Tr(Ax), (15)

where Tr is the ordinary trace on the 2× 2 matrices. This
trace is normalized, TS(1 ⊗ . . . ⊗ 1) = 1.

We now focus on the covariant property of the Hamil-
tonians and its consequences. With parameter θ fixed,
the Hamiltonians have a functional dependency on ϕ,
which is now written out explicitly as H(ϕ). Then, if Ta
with a ∈ Z represent the usual translations of the spins,
we have the obvious covariance relation

TaH(ϕ)T†a = H(ϕ + aθ). (16)

Since the spectra are invariant under unitary transforma-
tions, it follows that Spec(H(ϕ + aθ)) are all the same for
all a ∈ Z. Recall that, if θ takes an irrational value, then
the orbit {ϕ+ aθ, a ∈ Z} fills the phason space S densely.
These facts together with the continuity of the spectrum
w.r.t. the phason for the aperiodic patterns [78] tells us
that the spectrum of H(ϕ) is completely independent of
ϕ. We warn the reader that this remarkable conclusion
dose not hold if θ is rational, a fact that can be easily
verified numerically. Furthermore, the covariance rela-
tion breaks down in the presence of a boundary, hence
the boundary spectrum becomes dispersive w.r.t. the
phason.

The characteristics described above are ideal for topo-
logical Thouless pumping. Let us recall that, in general,
it is quite difficult to design Hamiltonians that depend
on a parameter in such a way that at least one bulk gap
does not close as the parameter is cycled. The above
discussion tells us that all the bulk spectral gaps of H(ϕ)
remain unchanged, hence open, when the phason is var-
ied. This is a remarkable property unmatched by any
other design method and this is why the quasi-periodic
systems are so valuable for practical applications.
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C. Connections with fermionic models

We will use the Jordan-Wigner mapping [80, Sec. 5.1]
to make connections with fermionic aperiodic physi-
cal systems already studied in the literature. We want
to make clear from the beginning, however, that the
fermionic models will only be used in the theoretical
analysis. The numerical analysis is always performed
with the spin Hamiltonian (8).

For the reader’s convenience, we recall that the Jordan-
Wigner mapping is supplied by the operators

an = S−n
n−1∏
j=−L

2Sz
j , a∗n = S+

n

n−1∏
j=−L

2Sz
n, (17)

with n running from −L to L. These operators satisfy the
canonical anti-commutation relations

aman + anam = 0, a∗man + ana∗m = δm,n. (18)

Together with the inverse formulas

S−n = an

n−1∏
j=−L

(2a∗ja j − 1), S+
n = a∗n

n−1∏
j=−L

(2a∗ja j − 1), (19)

these relations establish an isomorphism between the
algebra of spin operators and the algebra of fermionic
creation and annihilation operators over the lattice L. In
particular, the magnetization operator is mapped into
the particle number

M→ N =

L∑
n=−L

a∗nan, (20)

and the model Hamiltonian (8) into [80, p. 74]

HF =

L∑
n=−L

[
1
2 J(dn)(a∗nan+1 + a∗n+1an) (21)

+ Jz

L∑
n=−L

(a∗nan −
1
2 )(a∗n+1an+1 −

1
2 )
]
,

The algebra of fermion operators also accepts a unique
normalized trace, to be denoted by TF. The Jordan-
Wigner transformation preserves the unique traces of
the two algebras.

III. THE NON-COMMUTATIVE d-TORUS

There is a natural link between the point pattern in
(2) and the algebra called non-commutative torus [75].
In dimensions d = 2 and d = 3, this algebra coincides
with the algebra of magnetic translations and this fact
has been used to fabricate patterned meta-materials that
mimic the physics of the integer quantum Hall effect [42].

As we shall see, when we restrict the spin model to the
invariant subspace of the magnetization operator, the re-
duced algebra of physical observables can be computed
explicitly and it coincides with the non-commutative d-
torus, where the dimension d is determined by the value
of the magnetization. In this section, we review the basic
facts about this algebra.

A. The non-commutative d-torus defined

Let Θ = {θi j}i, j=1,d be a d × d antisymmetric matrix
with entries from R/Z. The non-commutative d-torus
associated to Θ is the universal C∗-algebra

AΘ = C∗(u1, . . . ,ud), (22)

generated by d-unitary elements satisfying the relations

uiu j = eı2πθi j u jui, i, j = 1, . . . , d. (23)

A generic element of the algebra can be presented in the
following form

a =
∑
q∈Zd

aq uq , uq = uq1

1 . . . u
qd

d , aq ∈ C, (24)

but other conventions are possible. When all entries of
Θ are irrational and rationally independent, the non-
commutative torus accepts a unique trace

T
( ∑
q∈Zd

aq uq

)
= a0. (25)

The monomials un are orthonormal with respect to the
scalar product induced by the trace

〈un,un′〉 := T
(
u∗nun′

)
= δn,n′ , n,n′ ∈ Zd, (26)

and
(
AΘ,+, 〈, 〉

)
becomes a Hilbert space on which the

elements of the algebra act as

π(a)|a′〉 = |aa′〉, a, a′ ∈ AΘ. (27)

If we use the shorthand |n〉 for |un〉, then it is straight-
forward to see that this Hilbert space is just `2(Zd), the
space of square summable sequences labeled byZd. Fur-
thermore,

π(uq)|n〉 = |uqun〉 = e2πı〈q|Θ+ |n〉|uq+n〉, (28)

where Θ+ is the upper diagonal part of Θ. Eq. (28) is just
the magnetic translation by q in ordinary tight-binding
solid state models, written in the Landau gauge. In this
representation, the entries θi j of Θ correspond to the
flux of the magnetic field through the facet {i, j} of the
primitive cell, expressed in half the quantum of flux unit
h/2e.
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The above representation, which is just the stan-
dard Gelfand-Naimark-Segal representation[81] of AΘ

induced by the trace T, connects this algebra with the
algebra of magnetic translations. In this work, how-
ever, we will encounter different representations of AΘ.
Nevertheless, being the same algebra, the spectra of the
Hamiltonians, at least for d = 2, resemble quite closely
the Hofstadter butterfly [82] seen in the spectrum of 2-
dimensional electrons in magnetic fields.

B. Elements of K-theory

In this work, we use the complex K-theory of oper-
ator algebras [83], which is a natural extension of the
K-theory of vector bundles [84]. This theory supplies
all independent topological invariants that can be asso-
ciated to projections and unitary elements of an algebra.

The complex K-theory of the algebra AΘ contains two
K-groups, which can be described as follows. The first
one is the K0(AΘ) group, which classifies the projections

p ∈M∞ ⊗AΘ, p2 = p∗ = p, (29)

with respect to the von Neumann equivalence relation

p ∼ p′ iff p = vv′ and p′ = v′v, (30)

for some partial isometries v and v′ from M∞ ⊗ AΘ.
Above, MN is the algebra of N × N matrices with com-
plex entries and M∞ is the direct limit of these algebras.
For any projection p from M∞ ⊗ AΘ, there exists N ∈ N
such that p ∈ MN ⊗ AΘ, hence we do not really need to
work with infinite matrices. However, MN can be canon-
ically embedded into M∞ and this convenient, because
it enables N to take flexible values.

We need to answer two questions: 1) How does the
equivalence relation (30) supply topological informa-
tion? 2) Why do we need the tensoring by M∞? Both
questions find their answers in the following remark.
There are two additional equivalence relations for pro-
jections [84, p. 18]:

• Similarity equivalence:

p ∼u p′ iff p′ = upu∗ (31)

for some unitary element u from M∞ ⊗AΘ;

• Homotopy equivalence:

p ∼h p′ iff p(0) = p and p(1) = p′ (32)

for some continuous functionp : [0, 1]→M∞⊗AΘ,
which always returns a projection.

The homotopy equivalence is certainly the topological
equivalence as understood by condensed matter physi-
cists. Now, in general, the three equivalence relations are
different, but tensoring AΘ by M∞ makes them entirely

equivalent. For topological classification, ∼h is the most
interesting relation, but, as we shall see, the relation ∼
is essential for understanding the spectral properties of
Hamiltonians.

The equivalence class of a projection p will be denoted
by [p]0, hence, [p]0 is the set

[p]0 =
{
p′ ∈M∞ ⊗AΘ , p′ ∼ p

}
. (33)

If p ∈ MN ⊗ AΘ and p′ ∈ MM ⊗ AΘ are two projections,

then
(
p 0
0 p′

)
is a projection from MN+M ⊗AΘ and one can

define the addition

[p]0 ⊕ [p′]0 =

[
p 0
0 p′

]
0
, (34)

which provides a semigroup structure on the set of
equivalence classes. Then K0(AΘ) is its enveloping group
[83] and, for the non-commutative d-torus,

K0(AΘ) = Z2d−1
, (35)

regardless of Θ. As such, there are 2d−1 generators [eJ]0,
which can be uniquely labeled by the subsets of indices
J ⊆ {1, . . . , d} of even cardinality [85]. Throughout, the
cardinality of a set will be indicated by | · |. Eq. (35)
assures us that, for any projection p from M∞ ⊗AΘ, one
has

[p]0 =

|J|=even∑
J⊆{1,...,d}

nJ [eJ]0, (36)

where the coefficients nJ are integer numbers that do
not change as long as p is deformed inside its K0-class.
Specifically, two homotopically equivalent projections
will display the same coefficients, hence {nJ}|J|=even repre-
sent the complete set of topological invariants associated
to the projection p. Furthermore, two projections that
display the same set of coefficients are necessarily in the
same K0-class. Let us point out that the coefficient nJ cor-
responding to J = {1, 2, . . . , d} is called the top coefficient
and is equal to the strong Chern number associated to
the projection p [85, Sec. 5.7].

The second group of the complex K-theory is K1(AΘ),
which classifies the unitary elements

u ∈M∞ ⊗AΘ, uu∗ = u∗u = 1, (37)

with respect to the homotopy equivalence relation. The
class of u ∈ M∞ ⊗ AΘ will be denoted by [u]1. For the
non-commutative d-torus,

K1(AΘ) = Z2d−1
, (38)

regardless of Θ. Again, there are 2d−1 generators [uJ]1,
which can be uniquely labeled by the subsets of indices
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J ⊆ {1, . . . , d} of odd cardinality [85]. This assures us that,
for any unitary u from M∞ ⊗AΘ, one has

[u]1 =

|J|=odd∑
J⊆{1,...,d}

nJ [uJ]1, (39)

and the coefficients nJ are again integer numbers that
do not change as long as u is deformed inside its class.
Specifically, two homotopic unitaries will display the
same coefficients, hence {nJ}|J|=odd represent the complete
set of topological invariants associated to u.

C. Relation to Chern numbers

We will use the uniform notation from [85] for the
weak and the strong Chern numbers of a gap projec-
tion, namely, ChJ(PG), where J ⊂ {1, . . . , d} is a subset
of directions. The values of the Chern numbers on the
K0-generators can be found in [85][p. 141]:

ChJ′ [eJ]0 =

 0 if J′ * J,
1 if J′ = J,
Pf(ΦJ\J′ ) if J′ ⊂ J,

J, J′ ⊂ {1, . . . , d}. (40)

Since the Chern numbers are also linear maps, their
values on the gap projection [PG]0 =

∑
J nJ [eJ]0 can be

straightforwardly computed from (40):

ChJ′ [PG]0 = nJ′ +
∑
J′(J

nJ Pf(ΦJ\J′ ). (41)

Let us point out that the top Chern number correspond-
ing to J′ = {1, . . . , d} is always an integer, but the lower
Chern numbers may not be.

D. Spectral gap labeling

Let h ∈M∞ ⊗AΘ be a Hermitian element and G a gap
in its spectrum. Depending on the context, the symbol G
will stand for the energy interval or for the center of this
interval. Let χ(s) be the step function which drops from
1 to 0 at s = 0. Using functional calculus, we can define
the gap projection pG ≡ χ(h−G). Being a projection from
M∞ ⊗AΘ, it defines an equivalence class in K0(AΘ) and,
per previous discussion, we have the decomposition

[pG]0 =

|J|=even∑
J⊆{1,...,d}

nJ(G) [eJ]0. (42)

If G′ is another spectral gap of h, then pG and pG′ can-
not be homotopically connected, hence they belong to
different K0-classes and, as such, the two projectors will
display different sets of integer coefficients {nJ}. The
conclusion is that the spectral gaps are uniquely labeled
by the K0-group itself. This principle was discovered

by Jean Bellisssard in his pioneering applications of K-
theory to solid state physics [72, 73].

To add more clarity to the above statement, let us re-
call that, when one enumerates the elements of a set, one
actually assigns labels using elements from the groupZ.
For the set of spectral gaps in the Hofstadter butterfly
(see Fig. 2), if one tries to count, say, starting from the
bottom of the spectrum, one will soon realize that it is
impossible, because between any two spectral gaps there
are an infinite number of additional spectral gaps. What
we were asserting in the previous paragraph was that
one needs to count the spectral gaps not byZ but by the
K0-group. Furthermore, when looking at the Hofstadter
butterfly, what really jumps to ones eyes is the structure
and the pattern of the spectral gaps and not the quanti-
tative details. It is fair to say that, when looking at the
spectrum of a class of Hamiltonians, more precisely at the
structure of the gaps, we literally see a representation of
the K0-group of the algebra which contains those Hamil-
tonians. By diagonalizing more and more Hamiltonians,
we can look at the K0-group from “different angles” and
ultimately we can identify it entirely.

The gap labels can be detected numerically by a variety
of methods. For example, there are precise relations
between the strong and weak Chern numbers and the
gap labels [85, Sec. 5.7], which generalize the well known
Streda formula [86]. However, one of the most effective
tools is supplied by the integrated density of states (IDS)
of the Hamiltonians over `2(Zd)

IDS(E) = lim
V→Rd

∣∣∣Spec
(
ΠV H ΠV

)
∩ (−∞,E]

∣∣∣∣∣∣V ∩Zd
∣∣∣ , (43)

where | · | denotes the cardinal of a set and ΠV represents
the projection onto the sites q ∈ V. Translated in words,
IDS(E) is the number of eigenvalues below E of any finite-
volume representation of the Hamiltonian, divided by
the number of sites inside that volume, for large enough
volumes. Note that ΠVHΠV is just the bulk Hamiltonian
restricted on V via Dirichlet boundary condition, but any
other boundary condition will do.

Definition (43) is very convenient for numerical eval-
uations. However, the topological information encoded
by IDS is revealed by another expression. Indeed, when
E belongs to a spectral gap G, then IDS can be equiva-
lently computed as

IDS(G) = TrV(PG), (44)

where PG is the gap projector and TrV is the trace per
volume over the Hilbert space `2(Zd),

TrV(PG) = lim
V→Rd

Tr(PG)∣∣∣V ∩Zd
∣∣∣ . (45)

Now, if H is a physical representation of an element
h ∈ AΘ, H = π(h), then

TrV(PG) = T(pG), PG = π(pG), (46)



7

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

1

-1

0

E
n
e
rg

y

θ

0 0.50.25 0.75 1

FIG. 2. Energy spectrum of Hamiltonian (8) inside the M = 1
sector as function of θ. The simulations were performed with
for Jz = 0, |L| = 501 and the range of parameter θ has been
sampled at rational values θn = n

|L|
to accommodate closed

boundary conditions. Eight gaps are identified and color coded
for future references.

where T is the trace introduced in Eq. (25). The above
relation is well known and is a direct consequence of
Birkhoff ergodic theorem [87]. Consider now a topolog-
ical deformation p′G of pG, which can be induced by a
deformation of the Hamiltonian itself. Definitely, these
two projections belong to the same K0 classes, hence
they are connected by two partial isometries pG = vv′
and p′G = v′v. Since any trace is invariant to cyclic per-
mutations of the entries, one finds that T(pG) = T(p′G).
Hence, T is constant over the K0 classes. Furthermore,
being a linear map,

T
(
[pG]0

)
=

|J|=even∑
J⊆{1,...,d}

nJ(G)T
(
[eJ]0

)
. (47)

The values of the trace on the generators eJ were com-
puted in [88] (see also [85, Sec. 5.7]):

T
(
[eJ]0

)
= Pfaff(ΘJ), (48)

where on the right we have the Pfaffian of the matrix
obtained from Θ by restricting to the indices contained
in the subset J. The conclusion is that we can predict the
range of the IDS when evaluated inside the spectral gaps

IDS(G) = T
(
[pG]0

)
=

|J|=even∑
J⊆{1,...,d}

nJ(G) Pfaff(ΘJ). (49)
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FIG. 3. Energy spectrum of Hamiltonian (8) with open bound-
ary condition inside the M = 1 sector, plotted as function of
parameter ϕ from (2). The topological boundary spectrum
is highlighted in red and the spectrum with closed boundary
conditions is overlaid in black color. The computation was
performed with Jz = 0, θ = 1+

√
3

5 and |L| = 473. The colored
dots mark the same gaps as in Fig. 2.

When the entries of Θ are rationally independent, all co-
efficients nJ(G) can be detected from the values of the
IDS. In fact, in such situations, the IDS supplies a group
isomorphism between K0(AΘ) and a dense but neverthe-
less countable subgroup of R.

IV. TOPOLOGICAL GAPS: THE NON-CORRELATED
CASE

In this section, we set Jz = 0 and investigate the mag-
netization sectors separately for up to M = 3. As we
shall see, for all cases, the energy spectrum of the spin
Hamiltonian (8) displays fractality and one of the goals
is to label the spectral gaps of the fractal butterfly by
appropriate K-groups. Another goal is to demonstrate
the emergence of topological edge modes when the pa-
rameter ϕ in Eq. (2) is varied.

A. The M = 1 Sector

In Fig. 2, we report the spectrum of the Hamiltonian
defined in Eq. (8) as a function of the parameter θ from
Eq. (2), computed inside the M = 1 sector with closed
boundary conditions. The resemblance between that
spectrum and the Hofstadter spectrum of the electrons
in a magnetic field [82] is evident, which may appear
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FIG. 4. Numerical IDS as computed from the spectral butterfly reported in Fig. 2 for the M = 1 sector and Jz = 0. The K-theoretic
IDS values from Eq. (61), shown as light colored lines, are matched with the numerical IDS values inside the gaps marked in
Fig. 2, identified here by the abrupt changes in the color plot. The matching progresses in the order of the gap sizes. The tables
list the gap labels (n,m) from Eq. (61) as well as the corresponding gaps.

strange at first sight given the fact that no fine tunning
was performed. Figure 3 reports the spectrum of the
same Hamiltonian computed with open boundary con-
ditions at a fixed θ, but a variable parameter ϕ from
Eq. (2). The observed chiral bands is an indication that
the spectral gaps are topological. This subsection sup-
plies an explanation of both observations based on an ex-
plicit computation of the algebra of physical observables
and of its K-theory. In the process, we exemplify how the
IDS can be used to identify the topological labels of the
spectral gaps and how to work out the bulk-boundary
correspondence.

The M = 1 sector of the spin system is very simple.
A basis for this sector consists of states with all spins
down and only one spin up. We denote such state as |n〉
if the up-spin is located at site n and the Hilbert space
generated by these states by H1. Obviously, H1 ' `2(Z).
The operators Sx

nSx
n+1 + Sy

nSy
n+1 act as simple hopping op-

erators on `2(Z) and the spin Hamiltonian reduces to the
ordinary tight-binding Hamiltonian

H1 = 1
2

∑
n∈Z

J(dn)
(
|n〉〈n + 1| + |n + 1〉〈n|

)
. (50)

This expression, which also follows from the Jordan-
Wigner transformation, can be re-written in the follow-

ing form:

H1 = 1
2 T

∑
n∈Z

f (ϕ + nθ) |n〉〈n| (51)

+ 1
2 T∗

∑
n∈Z

f (ϕ + (n − 1)θ) |n〉〈n|, (52)

where T is the lattice shift operator T|n〉 = |n + 1〉 and the
function f was supplied in Eq. (11). Without imposing
constraints on the functional dependence J, one can see
that H1 is generated by the translation operator T and by
diagonal operators of the form:

Wg =
∑
n∈Z

g(ϕ + nθ) |n〉〈n|, g ∈ C(S), (53)

already introduced in Eq. (5). Furthermore, we have the
following commutation relation:(∑

n∈Z

g(ϕ + nθ) |n〉〈n|
)
T (54)

= T
(∑

n∈Z

g(ϕ + (n + 1)θ) |n〉〈n|
)
,

or, more compactly:

Wg T = T Wg◦τθ , (55)

where τθ is the rotation of the circle by θ.
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FIG. 5. Energy spectrum of the Hamiltonian (8) as a function of
θ for M = 2 sector and Jz = 0. The simulations were performed
for a chain with |L| = 201 and the range of parameterθhas been
sampled at rational values θn = n

|L|
to accommodate closed

boundary conditions. Eight prominent gaps are identified and
color-coded for future references.

Per discussion in Sec. II A, the algebra generated by
the operators (53) is isomorphic to the algebra C(S) of
continuous functions over the circle. Furthermore, any
function f over the circle can be Fourier decomposed.
As such, the algebra of continuous functions over S is
generated by a single function:

u : R/Z→ C, u(x) = eı2πx. (56)

Hence all the diagonal operators from Eq. (53) can be
obtained as linear combinations of powers of a single
diagonal operator:

U = e−ı2πϕ
∑
n∈Z

u(ϕ + nθ) |n〉〈n| =
∑
n∈Z

eı2πnθ
|n〉〈n|. (57)

The conclusion is that, regardless of the functional de-
pendence on dn of the coupling coefficients, the Hamilto-
nian H1 is drawn from the algebra C∗(T,U) generated by
T and U and one can check from Eq. (54) the following
commutation relation:

UT = eı2πθTU. (58)

Hence, the algebra of observables coincides with the
non-commutative 2-torus AΘ1 , with a θ-matrix:

Θ1 =

(
0 θ
−θ 0

)
. (59)
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FIG. 6. Energy spectrum of the Hamiltonian (8) inside the
M = 2 sector and with open boundary condition, plotted as a
function of parameter ϕ from (2). The topological boundary
spectrum is highlighted in red and the spectrum with closed
boundary condition is overlaid in black color. The computation
was performed with Jz = 0, θ = 1+

√
2

4 and |L| = 169. The colored
dots mark the same gaps as in Fig. 5.

In Fig. 4, we report the IDS for Hamiltonian H1, which
has been directly computed from the spectrum Spec(H1)
reported in Fig. 2, using the formula:

IDS(E) =

∣∣∣Spec(H1) ∩ (−∞,E]
∣∣∣

|L|
. (60)

For lattice sizes large enough, this expression is equiv-
alent to Eq. (43) for d = 1. The IDS is represented as
a function of θ and energy, with the latter on the axis
coming out of page. For visualization, the energy values
are encoded in the color map and the striking features
seen throughout this color map are the sudden changes
in color, which occur along straight lines. These sud-
den changes in color correspond to the spectral gaps.
Indeed, since the IDS remains constant as the energy is
varied inside a spectral gap, the 3-dimensional graph in
Fig. 4 must be aligned with the axis coming out of the
page. When viewed from the top, this variation of the
graph is hidden to the eye and the only thing we see
is a sudden change of color. Let us point out that the
larger the gap the stronger the sudden change in color.
This simple phenomenon enables us to determine the
numerical values of the IDS inside the prominent spec-
tral gaps marked in Fig. 2. Indeed, Eq. (49) predicts the
following IDS values inside the gaps:

IDS(G) ∈
{
n + mθ, n,m ∈ Z

}
∩ [0, 1], (61)
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FIG. 7. Numerical IDS as computed from the spectral butterfly reported in Fig.5 for the M = 2 sector and Jz = 0. The K-theoretic
IDS values from Eq. (71), shown as light colored curves, are matched with the numerical IDS values inside the gaps marked in
Fig.5, identified here by the abrupt changes in the color map. The matching progresses in the order of the gap sizes. The tables
list the gap labels (n,m, k) from Eq. (71) as well as the corresponding gaps.

which are all linear dependencies w.r.t. θ with integer
coefficients. In Fig. 4, we show how the features seen
in the numerically computed IDS align with these pre-
dictions. For this, the pair IDS = θ and IDS = 1 − θ of
predicted values are laid in the second panel over the
numerically computed IDS and the strongest features
are identified. Additional predicted IDS values are laid
in the next panel and the remaining strongest features
are again identified, and similarly for the last panel. Our
conclusion is that every single feature seen in the numer-
ically computed IDS can be explained and matched by
the prediction in Eq. (61) derived from the K-theory of
the non-commutative 2-torus.

The process explained in Fig. 4 enabled us to deter-
mined the K-theoretic labels attached to the spectral
gaps. They are reported in the tables in Fig. 4 for the
gaps marked in Fig. 2. Since the m-coefficient coincides
with the first Chern number, any gap carrying a non-
zero m-label should display m topological edge modes.
This bulk-boundary correspondence is well understood
and it is indeed confirmed by Fig. 3 and the gap labels
mapped in Fig. 4. The simulations in Fig. 3 were car-
ried with open boundary conditions, hence, the chain
displays two edges and this is why the number of topo-
logical edge bands are doubled in Fig. 3.

It will be useful for the following section to explain the
ϕ-dependence of the spectra in the algebraic framework

advocated here. For this, let H1(0) be the spin Hamilto-
nian corresponding toϕ = 0, as projected onto the M = 1
sector. It has an expansion:

H1(0) =
∑
q∈Z2

aq Uq1 Tq2 , (62)

where, for the sake of the argument, we included further
neighbor couplings (i.e. q2 is not restricted to just ±1).
Now, to obtain the expansion of H1(ϕ) forϕ , 0, we need
to insert the factor eı2πϕ, which was taken out in (57):

U 7→ eı2πϕU, (63)

leading to:

H1(ϕ) =
∑
q∈Z2

aq eı2q1πϕUq1 Tq2 . (64)

When θ is irrational, all H1(ϕ), ϕ ∈ R/Z, are unitarily
equivalent. For example, this is why the bulk spectrum
in Fig. 3 lacks any dependence on ϕ. One can also con-
vince oneself that the situation is quite different whenθ is
rational. On the other hand, the Hamiltonians Ĥ1(ϕ) for
a semi-infinite spin-chain are no longer unitarily equiv-
alent, regardless of the rational or irrational character of
θ. This is why the boundary spectrum, highlighted in
red in Fig. 3, displays a dispersion with ϕ.
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FIG. 8. Energy spectrum of the Hamiltonian (8) as a function
of θ, for the M = 3 sector and Jz = 0. The simulation was
completed for a chain with |L| = 81 and range of the parameter
θ has been sampled at rational values θn = n

|L|
to facilitate the

closed boundary conditions. Twelve spectral gaps are identi-
fied and color-coded for future references.

B. The M = 2 Sector

In Fig. 5, we report the spectrum of the spin Hamilto-
nian (8) as a function of parameter θ from Eq. (2), com-
puted inside the sector M = 2 and with closed boundary
conditions. Figure 6 reports the spectrum of the same
Hamiltonian as function of parameter ϕ from Eq. (2),
computed at fixed θ and with open boundary condi-
tions. As one can see in Fig. 5, the fractal nature of
the bulk spectrum is still apparent and the chiral edge
bands are still present in Fig. 6. This subsection is de-
voted to resolving the structure of the bulk spectrum,
determining the K-theoretic labels associated with the
spectral gaps and formulating the bulk-boundary corre-
spondence principle, which quantitatively explains the
observations in Fig. 6.

We will work directly with the fermionic representa-
tion (21) of the model, which needs to be projected on
the 2-particle anti-symmetric Fock space F

(−)
2 = H1 ∧H1

spanned by vectors of the form

1
√

2
(|n〉 ⊗ |m〉 − |m〉 ⊗ |n〉)

)
, n,m ∈ Z. (65)

Since the Hamiltonian is quadratic, this restriction is sim-
ply given by

H2 = H1 ⊗ I + I ⊗H1. (66)
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FIG. 9. Energy spectrum of Hamiltonian (8) inside the M = 3
sector and with open boundary condition, plotted as a func-
tion of parameter ϕ from Eq. (2). The topological boundary
spectrum is highlighted in red and the spectrum with closed
boundary conditions is overlaid in black color. The computa-
tion was performed with Jz = 0, θ = 1+

√
2

3 and a chain size of
41. The colored dots mark the same gaps as in Fig. 8.

A key point in our strategy is to view this Hamiltonian
as acting on the full 2-particle Fock space F2 spanned by
|n〉 ⊗ |m〉, n,m ∈ Z. If we do so, then H2 belongs to the
algebra generated by just four elements

C∗(U ⊗ I,T ⊗ I, I ⊗U, I ⊗ T), (67)

which can be straightforwardly shown to be the non-
commutative 4-torus. Indeed, let Vi, i = 1, 4, be the
operators appearing in Eq. (67), respecting that order.
Then the following commutation relations descend di-
rectly from Eq. (58):

V1V2 = eı2πθV2V1, V3V4 = eı2πθV4V3, (68)

and for all the remaining cases, ViV j = V jVi. As such,
we are dealing with the non-commutative 4-torus AΘ2 ,
with the θ-matrix:

Θ2 =


0 θ 0 0
−θ 0 0 0
0 0 0 θ
0 0 −θ 0

 . (69)

Let us specify that the Vi generators do not preserve the
anti-symmetric Fock space, while H2 obviously does. So
H2 is generated from the symmetrized version of A2 but,
unfortunately, that algebra does not accept a finite num-
ber of generators and relations. This is the main reason
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FIG. 10. Numerical IDS as computed from the spectral butterfly reported in Fig.8 for the M = 3 sector and Jz = 0. The K-theoretic
IDS values from Eq. (83), shown as light colored curves, are matched with the numerical IDS values inside the gaps marked in
Fig.8, identified by the abrupt changes in the color map. The matching progresses in the order of the gap sizes. The tables list the
values of the integer parameters (n,m, k, l) from Eq. (83) as well as the corresponding gaps.

we worked with a larger algebra that, nevertheless, gen-
erates all possible H2 Hamiltonians over the pattern L.

We computed the IDS corresponding to the spectrum
Spec(H2) reported in Fig. 5 using the following formula:

IDS(E) =

∣∣∣Spec(H2) ∩ (−∞,E]
∣∣∣

|L|2
, (70)

and the results are reported in Fig. 7. As one can see, the
lines where the color changes abruptly are now curved
instead of being linear. Using the same argument as
before, these lines are identified with the values of the
IDS inside the spectral gaps. For those cases, Eq. 70 can
be shown to be equivalent to T(pG) and the predictions
spelled in (49) apply. With the Θ from (69), these predic-
tions translate to

IDS(G) ∈
{
n + mθ + kθ2, n,m, k ∈ Z

}
∩ [0, 1]. (71)

Using the same strategy as for the case of M = 1, we
demonstrate in Fig. 7 that the curves mentioned above
match most of the features seen in the numerically com-
puted IDS. In fact, further investigations, which are not
reported here, convinced us that we can match all the
features seen in the numerical IDS. The process used in

Fig. 7 enabled us to identify the K-theoretic labels for
the spectral gaps, which are reported in the tables of
Fig. 7. As one can see, the top index k is non-zero for all
identified spectral gaps.

We now turn our attention to the bulk-boundary prin-
ciple. In Fig. 6, one can see bundles of chiral bands
of both positive and negative slope. Our next goal is
to explain, quantitatively, the structure of these chiral
bands. The standard bulk-boundary correspondence for
the non-commutative 4-torus was worked out in details
in [85]. However, for the spin system, the bulk-boundary
correspondence is more complicated but also more inter-
esting. Indeed, note that:

H2(ϕ) = H1(ϕ) ⊗ I + I ⊗H1(ϕ). (72)

If we could engineer the Hamiltonian

H2(ϕ1, ϕ2) = H1(ϕ1) ⊗ I + I ⊗H1(ϕ2), (73)

with independent control on ϕ1 and ϕ2, then Eq. (72)
would have been entirely equivalent to a topological in-
sulator from class A in d = 4. Indeed, ϕ1,2 will represent
two virtual momenta and the fermionic system will have
2 physical and 2 virtual dimensions. However, the two
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FIG. 11. Energy spectrum of the Hamiltonian (8) with closed boundary conditions, plotted as a function of parameter θ from
Eq. (2) and for the specified values of interaction strength Jz. The top row corresponds to the M = 2 sector and for these simulations
|L| = 101. The bottom row corresponds to the M = 3 sector and for these simulations |L| = 31. In all panels, the energies are
referenced from |L|

4 Jz.

identical fermions experience the same underlying pat-
tern so the two virtual momenta are bound to be the
same. The consequence is that we will not be able to
explore the full dispersion of the boundary states but
only the diagonal sector ϕ1 = ϕ2. Furthermore, when a
physical edge is imposed on the spin chain, both virtual
fermions experience the boundary. In other words, the
Hamiltonian with a boundary becomes

Ĥ2(ϕ) = Ĥ1(ϕ) ⊗ I + I ⊗ Ĥ1(ϕ), (74)

where Ĥ1(ϕ) is the Hamiltonian mentioned in Sec. IV A,
and the physical edge of the 1-dimensional spin-chain
becomes a hinge for the virtual 4-dimensional system.
The boundary states seen in Fig. 6 are not related to
the hinge states studied in [89], which are stabilized by
a point symmetry, neither to the ones studied in [90],
which require gapped boundaries. Corner-following
states in a hinged geometry were studied in [91], but
the boundary states observed in Fig. 6 are not related
to such states either, because Fig. 6 is about the disper-
sion of the boundary modes with respect to momenta in
planes perpendicular to the boundaries.

In the following, we adapt the bulk-boundary formal-
ism from [85] to the new setting, with the goal of deriving
a quantitatively precise bulk-boundary principle for the
spin chain. First, we will establish the bulk-boundary
correspondence for the pair (H2, Ĥ2) on the full Fock
space F2 and we will project onto the anti-symmetrized

sector F
(−1)
2 at the end. We start by noticing that, topo-

logically, the diagonal path inside the (ϕ1, ϕ2)-torus of
Eq. (73) is equivalent to the concatenation of two paths

{(ϕ,ϕ), ϕ ∈ [0, 1]} '{(ϕ1, 0), ϕ1 ∈ [0, 1]} (75)
∪ {(1, ϕ2), ϕ2 ∈ [0, 1]}.

Since, the net number N [93] of chiral bands traversing
the bulk gap G does not change under such deforma-
tions, we reduced the problem to counting the chiral
modes of Ĥ(ϕ1, ϕ2) emerged when varying ϕ1 with ϕ2
kept constant plus the ones emerged when varying ϕ2
with ϕ1 kept constant. Due to the particular form of the
Hamiltonian (73), this count is given by

N/|L| = Ch{1,2}(PG) + Ch{3,4}(PG), (76)

which is expected to hold for large |L|. Note that we
excluded Ch{2,3}(PG) from the count, on the basis that an
edge in the third direction (i.e. on the second fermion)
will produce disperseless boundary modes with respect
to ϕ1. For similar reasons, we have also excluded
Ch{1,4}(PG) from the count. Finally, the projection onto
F

(−1)
2 should reduce this count by a factor of 2.

Using (41), we now can state a quantitative bulk-
boundary principle:

lim
|L|→∞

N
|L|

= 1
2

[
n{1,2} + n{3,4}+ (77)

n{1,2,3,4}
(
Pf(Θ{1,2}) + Pf(Θ{3,4})

)]
,
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FIG. 12. Energy spectrum of Hamiltonian (8) with closed/open boundary conditions, plotted as a function of parameter ϕ from
Eq. (2) and for specified values of interaction strength Jz. The top row corresponds to the M = 2 sector and for these simulations
θ = 1+

√
2

4 and |LL| = 59, while the bottom row corresponds to the M = 3 sector and for these simulations θ = 1+
√

2
7 and |LL| = 29.

To facilitate comparisons, the energies are referenced from the bottom of the spectra in all panels.

which further simplifies if we use the relation between
the (n,m) gap labels and the coefficients nJ in Sec. III B:

lim
|L|→∞

N
|L|

= 1
2 (m + 2kθ). (78)

In Table I, we supply a comparison between the left
side of Eq. (78), as computed by a direct count of the edge
modes, and the righ side of Eq. (78), as computed from
the gap labels listed in Fig. 7. The matching between the
two is remarkable, given the relatively small size of the

Gap N/|L| by direct count Prediction from Eq. (78)
• 0.3548 0.3964
• -0.193548 -0.18934
• 0.193548 0.18934
• -0.3548 -0.3964

TABLE I. Bulk-boundary principle for M = 2 sector and Jz = 0,
tested for a chain with open boundary conditions, |L| = 31 and
θ = 1 − 1+

√
2

4 .

system [94].

C. The M = 3 Sector

The spectrum of the spin Hamiltonian (8) inside the
M = 3 sector and with closed boundary conditions is
reported in Fig. 8 as a function of θ. As one can see,
there is still strong evidence of fractality, but the number
of open gaps is much reduced when compared with the
previous cases. Furthermore, when we open the bound-
ary conditions, chiral edge modes are again observed in
Fig. 9 and clear features in the numerical IDS reported in
Fig. 10 can be again identified. By following closely the
analysis for the M = 2, we show again that the spectral
features can be completely explained by the K-theory.
Furthermore, it will be shown that the gaps seen in the
spectrum carry strong topological numbers and that they
display non-trivial boundary spectrum.

Working directly with the fermionic representation
and restricting HF from Eq. (21) to the 3-particle anti-
symmetric Fock space F

(−)
3 = H1 ∧H1 ∧H1, the Hamil-
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FIG. 13. A refined representation of the top spectral butterfly
identified in Fig. 11 for the M = 2 sector. The simulation
parameters are r = 0.45, Jz = 2.1 and |L| = 151. The red vertical
line indicates the value of θ = 2+

√
5

5 where the bulk-boundary
correspondence will be probed. The spectral gaps are labeled
by colored dots for future reference.

tonian becomes

H3 = H1 ⊗ I ⊗ I + I ⊗H1 ⊗ I + I ⊗ I ⊗H1. (79)

Each of the terms in H3 can be generated from the fol-
lowing set of operators:

V1 = U ⊗ I ⊗ I, V2 = T ⊗ I ⊗ I,
V3 = I ⊗U ⊗ I, V4 = I ⊗ T ⊗ I, (80)
V5 = I ⊗ I ⊗U, V6 = I ⊗ I ⊗ T,

acting on the full 3-particle Fock space F3. Hence, the
Hamiltonian belongs to the algebra C∗

(
Vi, i = 1, 6

)
gener-

ated by the Vi’s, which can be straightforwardly shown
to be the non-commutative 6-torus AΘ3 , with the θ-
matrix:

Θ3 =



0 θ 0 0 0 0
−θ 0 0 0 0 0
0 0 0 θ 0 0
0 0 −θ 0 0 0
0 0 0 0 0 θ
0 0 0 0 −θ 0


. (81)

The IDS reported in Fig. 10 was computed from the
spectrum Spec(H3) reported in Fig. 8 using the formula

IDS(E) =

∣∣∣Spec(H3) ∩ (−∞,E]
∣∣∣

|L|3
, (82)

which can be shown again to coincide with T(pG) when
the energy takes values inside the spectral gap G. As

Jz = 3, M = 2 Jz = 4, M = 2

j j
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FIG. 14. Top spectral island of Hamiltonian (8) computed with
open boundary condition as function ofϕ at fixedθ = 2+

√
5

5 (see
vertical line in Fig. 13), and chain length |L| = 61. The colored
dots labeling the gaps are correlated with the ones in Fig. 13.
The spectra were computed in two ways, with (red lines) and
without (black lines) a defect potential on the left edge of the
chain. This enabled us to identify the chiral bands located at
the left edge of the chain, which are the ones for which the black
and the red simulations do not overlap. Specifically, the gaps
•/•/• display 1/2/3 positively sloped chiral bands localized
at the left edge, respectively, while the gaps •/• display 1/2
negatively sloped chiral bands localized at the left edge. This
is in perfect agreement with the gap labels derived in Fig. 15.

such, the prediction from Eq. (49) applies, which together
with the Θ reported above, lead to the prediction

IDS(G) ∈ {n + mθ+ kθ2 + lθ3, n,m, k, l ∈ Z} ∩ [0, 1]. (83)

In Fig. 10 we demonstrate that these predictions match
most of the features seen in the numerical IDS. In the pro-
cess, we were able again to identify the K-theoretic labels
of the spectral gaps. Interestingly, we find again that all
gaps carry a non-zero top index l, which is equal to the
top Chern number in dimension 6. As such, topologi-
cal boundary spectrum is expected when the boundary
conditions are opened.

Our next goal is to explain, quantitatively, the struc-
ture of the chiral bands in Fig. 9. Writing out the ϕ-
dependency, we have

H3(ϕ) = H1(ϕ)⊗ I ⊗ I + I ⊗H1(ϕ)⊗ I + I ⊗ I ⊗H1(ϕ). (84)

As before, because the virtual fermions experience the
same potential, we can only explore the diagonal sector
of the fully general Hamiltonian

H3(ϕ1, ϕ2, ϕ3) = H1(ϕ1) ⊗ I ⊗ I (85)
+ I ⊗H1(ϕ2) ⊗ I + I ⊗ I ⊗H1(ϕ3).

Nevertheless, we observe again that, topologically, the
diagonal path inside the (ϕ1, ϕ2, ϕ3) torus is equivalent
to the concatenation of three paths

{(ϕ,ϕ, ϕ), ϕ ∈ [0, 1]} ' {(ϕ1, 0, 0), ϕ1 ∈ [0, 1]} (86)
∪ {(1, ϕ2, 0), ϕ2 ∈ [0, 1]} ∪ {(1, 1, ϕ3), ϕ3 ∈ [0, 1]}.
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FIG. 15. Numerical IDS as computed from the spectral butterfly reported in Fig. 13 for the M = 2 sector and Jz = 2.1. The
K-theoretic IDS values from Eq. (61), shown as light colored lines, are matched with the numerical IDS values inside the gaps
marked in Fig. 13, identified by the abrupt changes in the color plot. The matching progresses in the order of the gap sizes. The
tables list the values of the two integer parameters (n,m) from Eq. (61) as well as the corresponding gaps.

As for the case M = 2, since the net number of chiral
edge bands do not change under such deformations, we
can use these three simpler paths to conclude that

N/|L|2 = Ch1,2(PG) + Ch3,4(PG) + Ch5,6(PG). (87)

Projection onto the anti-symmetric Fock space F
(−)
3

should reduce the count by a factor of 3!. Then, using
(41), we can state a quantitative bulk-boundary principle

lim
|L|→∞

N
|L|2

= 1
6

[
n{1,2} + n{3,4} + n{5,6} + (n{1,2,3,4} (88)

+ n{1,2,5,6} + n{3,4,5,6})2θ + n{1,2,3,4,5,6}3θ2
]
.

which further simplifies if we use the relation between
the (m, k, l) gap labels and the coefficients nJ in Sec. III B:

lim
|L|→∞

N
|L|2

= 1
6 (m + 2kθ + 3lθ2). (89)

In Table II, we supply a comparison between the left
side of Eq. (89), as computed by a direct count of the edge

Gap N/|L| by direct count Prediction from Eq. (89)
• 0.1249 0.1906
• -0.1249 -0.1906

TABLE II. Bulk-boundary principle for M = 3 sector and Jz = 0,
tested for a chain with open boundary conditions, |L| = 41 and
θ = 1+

√
2

3 .

modes, and the righ side of Eq. (89), as computed from
the gap labels listed in Fig. 10. We atribute the slight dif-
ference on the slow convergence to the thermodynamic
limit, which we plan to further investigate in the future.

V. TOPOLOGICAL GAPS: THE CORRELATED CASE

The evolution of the spectral butterflies with the
strength Jz of the interaction is reported in Fig. 11 for
both sectors M = 2 and 3. As one can see, the fractal na-
ture of the spectrum persists and interesting islands of
spectrum separate at strong Jz. Furthermore, as shown
in Fig. 12, when computed with open boundary con-
ditions at a fixed θ, the spectra continue to display a
rich structure of chiral edge bands as the parameter ϕ is
varied. This section is devoted to understanding these
spectra through the prism of generating algebras and
their K-theories.

A. The M = 2 sector

We will take first a closer look at the case Jz = 2.1,
which is the interaction strength where the spectral is-
lands are already separated in Fig. 11. The top spectral
butterfly, computed with closed boundary conditions,
is shown in more details in Fig. 13, with the energy
referenced from the bottom of this top spectral island.
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FIG. 16. Visualization of the chiral edge modes associated to the top spectral island of the Hamiltonian (8) in the M = 2 sector.
The eigenvalues and the corresponding wave-functions are color-coded. The simulation parameters are r = 0.45, θ = 2+

√
5

5 , Jz = 3
and |L| = 41. The intensity maps represent the probabilities for two spins at locations n and m along the chain to be flipped. The
numbers seen in some of the panels represent the coordinates (n,m) where the probabilities take significant values. The colored
dots labeling the gaps are correlated with the ones in Fig. 13.

When the boundary condition is opened and the spec-
trum is computed as function of ϕ at fixed θ, clear chiral
bands develop as shown in Fig. 14. Furthermore, the IDS
corresponding to spectral butterfly in Fig. 13, shown in
Fig. 15, displays the same straight lines seen in the non-
correlated (Jz = 0) M = 1 case. It becomes evident that
in Fig. 13 we are seeing a highly distorted but neverthe-
less a Hofstadter butterfly, hence, we are dealing again
with the non-commutative 2-torus. The first part of the
section is devoted to understanding this empirical ob-
servation.

When restricted to the M = 2 sector, the interaction
potential in (8), reduces to:

Jz

∑
n

Sz
nSz

n+1 7→ Λ1P1 + Λ2(I − P1), (90)

where P1 is the projection onto the sub-space spanned
by the states

|ψn〉 = 1
√

2

(
|n〉 ⊗ |n + 1〉 − |n + 1〉 ⊗ |n〉

)
∈ F

(−)
2 , (91)

with n running over all integer values, and

Λ1 = −Jz, Λ2 = −2Jz, (92)

when the energy is referenced from |L|

4 Jz, as it was al-
ready done in Fig. 11. In the limit of strong interaction,

the potential (90) dominates and, as such, it dictates the
global structure of the spectrum. In particular, it sep-
arates the energy spectrum in two spectral islands, as
already seen in Fig. 11. For example, we have verified
that the spectral gap G0 that separates these islands be-
comes assymptotically equal to Jz when Jz →∞.

An immediate consequence of the simple form of
the many-body potential in (90) is that, in the pres-
ence of interaction, the algebra AΘ2 identified in sec-
tion IV B has been enhanced by precisely one projection
and the correlated Hamiltonian belongs to the new al-
gebra C∗(AΘ2 ,P1). For reasons explained shortly, we are
going to investigate first the corner sub-algebra

P1 C∗(AΘ2 ,P1) P1, (93)

and we start by identifying a few special elements. The
first one is the unitary element

W1 = 2
α P1(U ⊗ I)P1 = 2

α P1(I ⊗U)P1, (94)

with α = 1 + eı2πθ. More explicitly, W1 is the unitary
operator [95]

W1 =
∑

n

eı2πnθ
|ψn〉〈ψn|. (95)

Equivalently, W1 can be defined as

W1 = 1
α (U ⊗ I + I ⊗U)P1 = 1

α P1(U ⊗ I + I ⊗U). (96)
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FIG. 17. Bottom spectral island of the Hamiltonian (8) as a
function of θ, for the M = 2 sector and Jz = 2.1. The range of
the parameter θ has been sampled at rational values θn = n

|L|

with |L| = 151. The spectral gaps have been labeled exactly as
in Fig. 5.

Let us point out that the projections of the following
elementary operators cancel out:

P1(Un
⊗Um

−Um
⊗Un)P1 = 0. (97)

The second element is

W2 = P1(T ⊗ T)P1 = P1(T ⊗ T) = (T ⊗ T)P1. (98)

Note that W2 can be equivalently expressed as

W2 = P1(T ⊗ T) = (T ⊗ T)P1, (99)

because P1 and T ⊗ T commute. Furthermore, the pro-
jection of the following elementary operators cancel out:

P1(Tn
⊗ Tm)P1 = 0, m , n, (100)

hence, they don’t contribute with any useful elements to
the corner sub-algebra. Now, by using Eqs. 96 and 99, it
is straightforward to verify that

W1W2 = eı2πθW2W1. (101)

The conclusion is that the non-commutative 2-torus is
embedded in the corner sub-algebra

C∗(W1,W2) ↪→ P1C∗(AΘ2 ,P1)P1. (102)

We now establish the connection between the corner
sub-algebra investigated above and the top spectral but-
terfly reported in Fig. 13. For this, let PTop = I − PG0 be
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FIG. 18. Numerical IDS as computed with Eq. (70) using the
spectrum reported in Fig. 17, as a function of θ and energy. The
details of the simulation are the same as in Fig. 17. The features
associtated to the abrupt changes in collors are correlated with
the gaps marked in Fig. 17. They give the IDS values inside
the spectral gaps, which can be fit exactly as in Fig. 7.

the spectral projection onto the whole top island of the
spectrum. Then, all the projections associated with the
gaps seen in the spectrum reported in Fig. 13 belong to
the corner sub-algebra

PTopC∗(AΘ2 ,P1)PTop. (103)

By re-scaling the Hamiltonian (8) by Jz, one sees that,
in the limit Jz → ∞, the non-interacting part becomes a
small perturbation and, as such,

PTop → P1 as Jz →∞. (104)

This means that, for Jz large enough, ‖PTop − P1‖ ≤ 1, in
which case there exists a unitary operator Γ ∈ C∗(AΘ2 ,P1)
such that PTop = ΓP1Γ

∗ [84, p. 18]. As a consequence,

PTop C∗(AΘ2 ,P1) PTop = (ΓP1Γ
∗)C∗(AΘ2 ,P1)(ΓP1Γ

∗). (105)

Since Γ is a unitary operator from the algebra C∗(AΘ2 ,P1),
we automatically have

Γ∗ C∗(AΘ2 ,P1) Γ = C∗(AΘ2 ,P1) (106)

as sets and algebras, and

PTop C∗(AΘ2 ,P1) PTop = Γ
(
P1C∗(AΘ2 ,P1)P1

)
Γ∗. (107)

The conclusion is that the corner sub-algebra
P1C∗(AΘ2 ,P1)P1 analyzed above and the sub-algebra
PTop C∗(AΘ2 ,P1) PTop which supplies the gap projection
for the spectrum in Fig. 13 are isomorphic.

At this point, we established that the non-
commutative 2-torus sits inside PTop C∗(AΘ,P1) PTop but
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FIG. 19. Visualization of the chiral edge modes associated to the bottom spectral island of the Hamiltonian (8) in the M = 2
sector. The eigenvalues picked from different values of ϕ and the corresponding wave-functions are color-coded. The simulation
parameters are r = 0.45, θ = 2+

√
5

5 , Jz = 3 and |L| = 41. The intensity maps represent the probabilities for two spins at locations n
and m to be flipped along the chain. The colored dot label of the gap is correlated with the one in Fig. 17.

is there anything else inside this algebra? The cancela-
tions stated in Eqs. (97) and (100) suggest that there is
nothing else. For confirmation, we turn our attention on
the IDS data reported in Fig. 15. To generate this plot,
we used the spectra Spec from Fig. 13 and the formula

IDS(E) =

∣∣∣Spec ∩ [0,E]
∣∣∣

|Spec|
. (108)

The results in Fig. 15 demonstrate that the IDS values
inside every visible gap in Fig. 13 can be explained by
the K-theoretic predictions (61) derived from the non-
commutative 2-torus. Furthermore, the K-Theoretic in-
dices derived in Fig. 15 are in perfect agreement with the
count and the slopes of the chiral edge bands reported
in Fig. 14. As such, we can state with confidence that
the sub-algebra PTopC∗(AΘ2 ,P1)PTop is in fact the non-
commutative 2-torus.

Representations of the wave-functions corresponding
to the chiral edge modes emerged in the top spectral is-
land are supplied in Fig. 16. The intensity maps seen
there render the probabilties |αn,m|

2 for two spins to be
flipped at position n and m along the chain as functions
of n,m ∈ {1, . . . ,L}. Equivalently, αn,m are the coefficients
appearing in the expansion |Ψ〉 =

∑
n,m αn,mS+

n S+
m|M = 0〉

of the wave-functions. As expected, the two flipped
spins always occupy neighboring sites and, as a con-
sequence, the wave-functions are concentrated on two
neighboring diagonals. Furthermore, when the eigen-

values are inside a bulk spectral gap, clear localizations
at either the righ or left edges of the chain are observed,
depending on the chirality of the bands.

A refined representation of the bottom spectral butter-
fly separated by the interaction and already identified in
Fig. 11 is shown in Fig. 17. Its corresponding IDS map is
reported in Figs. 18. The resemblance between this data
and the one reported in Figs. 5 and 7 is very strong and
it leaves little doubt that the spectral projections from
the bottom spectral islands are generated from the non-
commutative 4-torus. To confirm, we have verified that,
indeed, the K-theoretic labels derived in Fig. 7 apply
identically to the IDS reported in Fig. 18.

The spectral gaps in the bottom island of the spec-
trum remain topological and the bulk boundary princi-
ple stated in (78) continues to apply. In Fig. 19, we show
the chiral modes that emerge in one of the large bulk
spectral gaps from Fig 17 when open boundary condi-
tions are considered. As expected, we see not just one
but a bundle of chiral bands. For the particular simula-
tion in Fig. 19, there are five bands in this bundle, but, in
general, their will increase proportionally to |L|, which
is a consequence of (78). Fig. 19 also reports the profiles
of the chiral modes and, in contrast to what we have
seen for the top spectral island, this time only one of the
flipped spins is localized at the edge of the chain and the
other one is delocalized throughout the chain.
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FIG. 20. Top spectral island of Hamiltonian (8) as a function of θ, for M = 3 and Jz = 4. The simulation parameters are r = 0.45 and
|L| = 71. The red vertical line indicates the value θ = 1+

√
3

3 , where the bulk-boundary correspondence is probed. Several spectral
gaps have been labeled for future reference.

B. The M = 3 sector

Refined representations of the three spectral islands
observed in Fig. 11 for the M = 3 sector are supplied in
Fig. 20 and their corresponding IDS maps are reported in
Fig. 21. Clear straight lines can be identified in the IDS
maps of the top and middle spectral butterflies, while
the IDS map for the bottom spectral butterfly is identical
to the one in Fig. 10 for the un-correlated case. Further-
more, when the spectral islands are computed with open
boundary conditions as a function of ϕ and at fixed θ,
topological chiral modes emerge. Explaining and quan-
tifying these empirical observations are the main goals
of this section.

The interaction potential in the Hamiltonian (8), when
restricted to the M = 3 sector, reduces to

Jz

∑
n

Sz
nSz

n+1 7→ Λ1P1 + Λ2P2 + Λ3(I − P1 − P2), (109)

where this time P1 is the projection onto the subspace
spanned by the states

|ψn〉 = 1
√

3!

∑
ρ

(−1)ρ|n+ρ1〉⊗|n+ρ2〉⊗|n+ρ3〉 ∈ F
(−)
3 , (110)

with the sum running over the permutations ρ of the
set {0, 1, 2}, and P2 is the projection onto the sub-space
spanned by the states

|ψn,k〉 = 1
√

3!

∑
ρ

(−1)ρ|n+ρ1〉⊗|n+ρ2〉⊗|n+ρ3〉 ∈ F
(−)
3 , (111)

with the sum running over the permutations ρ of the
set {0, 1, k} with k ∈ Z \ {−1, 0, 1, 2}. When the energy is
referenced from |L|

4 Jz, the above eigenvalues are

Λ1 = −Jz, Λ2 = −2Jz, Λ3 = −3Jz. (112)

As one can see, the interaction potential becomes dom-
inant for large Jz and the eigenvalues Λi start to sepa-
rate from each other, which explains why the spectrum

breaks into three islands at large Jz’s, as we have already
seen in Fig. 11.

An immediate consequence of the simple spectral de-
composition (109) is that, in the presence of interaction,
the algebra AΘ3 identified in section IV C has been en-
hanced by precisely two projections. Hence, the inter-
acting Hamiltonian in the M = 3 sector belongs to the
algebra C∗(AΘ3 ,P1,P2). For reasons similar to the ones
stated in Sec. V A, we investigate first the corner sub-
algebra

P1 C∗(AΘ3 ,P1,P2) P1, (113)

and we start again by identifying a few special elements.
The following relations identifies the first element W1:

P1(U ⊗ I ⊗ I)P1 = P1(I ⊗U ⊗ I)P1 (114)
= P1(I ⊗ I ⊗U)P1 = α

3 W1,

withα = 1+eı2πθ+eı4πθ. More explicitly, W1 is the unitary
operator

W1 =
∑

n

eı2πnθ
|ψn〉〈ψn|. (115)

One can also verify that

W1 = 1
α (U ⊗ I ⊗ I + I ⊗U ⊗ I + I ⊗ I ⊗U)P1 (116)

= 1
αP1(U ⊗ I ⊗ I + I ⊗U ⊗ I + I ⊗ I ⊗U).

Note that any antisymmetric combinations of terms like
Um
⊗ Un

⊗ Uk cancel when sandwiched between P1’s,
hence such combinations do not contribute with ele-
ments in the corner algebra.

The second element is

W2 = P1(T ⊗ T ⊗ T)P1. (117)

One can verify that P1 commutes with T ⊗ T ⊗ T, hence
W2 can be also expressed as

W2 = P1(T ⊗ T ⊗ T) = (T ⊗ T ⊗ T)P1. (118)
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FIG. 21. Numerical IDS maps of the top, middle and bottom spectra displayed in Fig. 20. The IDS values inside the spectral gaps
marked in Fig. 20 are indicated with arrows and colored dots. K-theoretic gap labels are displayed in the first panel.

Note that the projection of the following elementary op-
erators cancel out:

P1(Tn
⊗ Tm

⊗ Tk)P1 = 0, (119)

if n, m k are not all equal. Hence, they do not contribute
with any useful elements for the corner algebra.

Now, using the representations (116) and (118) for W1
and W2, respectively, it is straightforward to verify that

W1W2 = eı2πθW2W1. (120)

The conclusion is that the non-commutative 2-torus
AΘ1 is embedded in the sub-algebra P1C∗(AΘ3 ,P1,P2)P1.
As before, we denote by PTop the spectral projec-
tion onto the top spectral island of the Hamiltonian.
Since PTop → P1 in the limit Jz → ∞, we can
use the same arguments as in Sec. V A to conclude
that the corner algebra PTopC∗(AΘ3 ,P1,P2)PTop is iso-
morphic to P1C∗(AΘ3 ,P1,P2)P1. As such, the algebra
PTopC∗(AΘ3 ,P1,P2)PTop, which supply all spectral projec-
tions for the top island of the spectrum, contains a copy
of the non-commutative 2-torus AΘ1 .

The cancelations mentioned in Eq. (119) and
the ones related to the U operator suggest that
PTopC∗(AΘ3 ,P1,P2)PTop is in fact identical to the 2-torus.
This is further supported by the fact that all features
identified in the IDS map in Fig. 21 can be explained by
the predictions from Eq. 61 based on the K-theory of the
non-commutative 2-torus. Furthermore, the topological
chiral bands emerging in the top spectrum when open
boundary conditions are used, shown in Fig. 22, are in
perfect agreement with the gap labels derived from the
IDS map in Fig. 21.

Representations of the top edge modes emerged in
the top island of the spectrum under open boundary
conditions are reported in the top row of Fig. 23. As

expected, when the eigenvalues are located on the posi-
tively sloped chiral band occuring in the spectral •-gap
with index m = −1, all three flipped spins are localized on
the right edge of the chain and quite the opposite when
the eigenvalue is located on the negatively sloped chiral
band. The transition between the two occurs through a
delocalization of the mode when the eigenvalue dives in
the bulk spectrum.

The IDS map for the middle spectral butterfly in Fig. 21
shows that the dominant gaps seen in the middle panel
of Fig. 20 have linear IDS dependency on θ, which
is characteristic of the non-commutative 2-torus. In
the following, we demonstrate that the corner algebra
PMidC∗(AΘ3 ,P1,P2)PMid, which supplies the spectral pro-
jections for the middle spectral butterfly, contains a copy
of the non-commutative 2-torus AΘ1 . Here, PMid is the
spectral projector onto the full middle spectral island.
Since PMid → P2 in the limit Jz → ∞, it is again enough
to show that the corner algebra P2C∗(AΘ3 ,P1,P2)P2 con-
tains a copy of AΘ1 . We will actually show that each sub-
algebras P2(k)C∗(AΘ3 ,P1,P2)P2(k) contains a copy of AΘ1 ,
where P2(k) is the projection onto the subspace spanned
by |ψn,k〉, with n ∈ Z and fixed k. For this, one observes
that

(U ⊗ I ⊗ I + I ⊗U ⊗ I + I ⊗ I ⊗U)|ψn,k〉 (121)

= (1 + eı2πθ + eı2kπθ) eı2nπθ
|ψn,k〉.

As such, U ⊗ I ⊗ I + I ⊗ U ⊗ I + I ⊗ I ⊗ U is a diagonal
operator in our standard basis, hence it commutes with
P2(k) and we can define

W1(k) =
1
αk

(U ⊗ I ⊗ I + I ⊗U ⊗ I + I ⊗ I ⊗U)P2(k) (122)

with αk = 1 + eı2πθ + eı2kπθ, which is a unitary element
from P2(k)C∗(AΘ3 ,P1,P2)P2(k). Then, if we consider

W2(k) = P2(k)(T ⊗ T ⊗ T)P2(k), (123)
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FIG. 22. Top spectral island of Hamiltonian (8) computed with open boundary condition as function of ϕ at fixed θ = 1+
√

3
3 (see

vertical line in Fig. 20), and chain length |L| = 41. The colored dots labeling the gaps are correlated with the ones in Fig. 20. The
spectra were computed in two ways, with (red lines) and without (black lines) a defect potential on the left edge of the chain.
This enabled us to identify the chiral bands located at the left edge of the chain, which are the ones for which the black and the
red simulations do not overlap. Specifically, the gaps •/•/• display 1/2/3 positively sloped chiral bands localized at the left edge,
respectively, while the •-gap displays one negatively sloped chiral bands localized at the left edge. This is in perfect agreement
with gap labels derived in Fig. 21.

one can easily verify that they obey the commutation
relations

W1(k)W2(k) = eı2πθW2(k)W1(k), (124)

for all allowed k’s.

This finding may be the explanation for the existence
of the dominant spectral gap with linear IDS dependency
on θ. However, further studies are needed to decided
if the algebra associated to the midle states contain ele-
ments that are outside the non-commutative tori found
above. The topological boundary spectrum and the asso-
ciated modes emerged under open boundary conditions
in the middle island of the spectrum are reported in the
middle row of Fig. 23. As one can see, the •-gap with
index m = −1 contains an entire bundle of chiral bands
and the edge modes, whose eigenvalues are located on
a positively sloped chiral band, have one flipped spin
localized on the right edge of the chain while the other
two flipped spins are constraint to neighbouring sites
(x, x + 1) throughout the chain. The situation is quite
the opposite when the eigenvalues are located on a neg-
atively sloped chiral band. These findings are entirely
consistent with the bulk-boundary correpsondence of
the non-commutative 2-tori found above.

The structure of the gaps seen in the bottom spectral
butterfly in Fig. 20 as well as the features seen in the cor-
responding IDS map reported in Fig. 21 are very similar
to the ones for the uncorrelated case. In fact, we can
confirm that the prediction (83) based on the K-theory of
the non-commutative 3-torus explains all the features re-
solved in the numerical IDS map. The chiral bands and

the corresponding modes emerged under open bound-
ary conditions are reported in the last row of Fig. 23.
As one can see, there is a thick bundle of chiral edge
bands, which is consistent with the bulk-boundary prin-
ciple stated in Eq. (89) saying that the count of the chiral
modes should be proportional with |L|. The correspond-
ing wave-functions have one flipped spin localized at
one edge of the chain and the remaining flipped spins
are delocalized over the entire length of the chain.

VI. CONCLUSIONS

Even though the algebras generating the interacting
Hamiltonians were found to be non-commutative tori,
the topological states identified in Sec. V are correlated
and have no equivalent in the non-interacting case. This
is the case because the generators of these algebras con-
tain the spectral projections corresponding to the differ-
ent islands of the spectrum and they are outside of the
algebra that generate the non-interacting Hamiltonians.
As such, it is impossible to generate the gap projection
analyzed in Sec. V using the algebras analyzed in Sec. IV.

Although we have only analyzed the M = 2 and M = 3
sectors in the strongly correlated regime, we can already
conjecture what is going to happen for a generic magne-
tization sector M = d with d finite. While these predic-
tions do not cover yet the case of a finite magnetization
density, they can be of intereset for practical applica-
tions that, perhaps, can be implemented with cold atom
systems.
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FIG. 23. Visualization of the chiral edge modes associated to three spectral islands (top, middle, and bottom island from top to
bottom, respectively) of the Hamiltonian (8) in the M = 3 sector. The eigenvalues and the corresponding wave-functions are
color-coded. The simulation parameters are r = 0.45, θ = 1+

√
2

3 , and |L| = 41. The value of Jz is 4 for top and bottom islands, and
8 for middle one. The size of the points in the 3D renderings represents the probabilities for three spins at locations n, m and l
along the chain to be flipped. The numbers seen in some of the panels represent the coordinates (n,m, l) where the probabilities
take significant values. The colored dots labeling the gaps are correlated with the ones in Fig. 20.

By extrapolating the cases analized in Sec. V A and V B,
we predict that, in such generic magnetization sector, the
spectrum will split into d islands for large enough Jz’s.
The top island will always be characterized by a sin-
gle non-commutative 2-torus whose generators can be
computed explicitly. Under open boundary conditions,
boundary modes will appear with energies inside the
bulk gaps and these modes have d flipped spins local-
ized close to a boundary. These clusters of flipped spins
can be adiabatically transferred from one edge of the
chain to the other by simply changing the phason, more
precisely, the shape of the underlying pattern. Hence, we
have uncovered a simple Thouless pump where, by se-
lecting the magnetization sector, one can transfer quan-
tized amounts of magnetization between the edges of a
system, as we have seen in Figs. 16 and 23. As is the case
with any Thouless pump, this processes will be robust
against moderate disorder.

We conjecture that the bottom spectral island in a
generic M = d sector is characterized topologically by
the non-commutative d-torus. The boundary modes will
have a hybrid character with one flipped spin pinned at
one boundary and the reset of the flipped spins delocal-
ized throughout the chain.

We also conjecture that the intermediate islands will
be all characterized by families of non-commutative 2-
tori, whose generators can be computed explictly as it
was already done in the present study. The boundary
modes will have a hybrid character with one flipped spin
pinned at one boundary and the rest of the flipped spins
delocalized along the chain. The latter, however, will
cluster into tight formations of d − k + 1 of flipped spins
for the k-th spectral island, as we have already seen for
the middle spectral island in Fig. 23.

It remains a completely open question how to apply
the K-theoretic ideas to the case of finite magnetization
density, that is, when the conserved value of the magne-
tization grows linearly with the legth of the chain. The
difficulty is that, in such situations, the algebras we al-
ready identified change as one takes the thermodynamic
limit. As such, one needs to identify the correct relations
between these algebras in order to resolve the limit. This
will definitely be part of our future investigations.
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