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Abstract
The two-dimensional kagome lattice hosts Dirac fermions at its Brillouin zone

corners K and K’, analogous to the honeycomb lattice. In the density functional

theory electronic structure of ferromagnetic kagome metal Fe3Sn2, without spin-orbit

coupling we identify two energetically split helical nodal lines winding along z in the

vicinity of K and K’ resulting from the trigonal stacking of the kagome layers. We

find that hopping across A-A stacking introduces a layer splitting in energy while

that across A-B stacking controls the momentum space amplitude of the helical nodal

lines. We identify the latter to be one order of magnitude weaker than the former

owing to the underlying d-orbital degrees of freedom. The effect of spin-orbit coupling

is found to resemble that of a Kane-Mele term, where the nodal lines can either be

fully gapped to quasi-two-dimensional massive Dirac fermions, or remain gapless at

discrete Weyl points depending on the ferromagnetic moment orientation. Aside from

numerically establishing Fe3Sn2 as a model Dirac kagome metal by clarifying the roles

played by interplane coupling, our results provide insights into materials design of

topological phases from the lattice point of view, where paradigmatic low dimensional

lattice models often find realizations in crystalline materials with three-dimensional

stacking.

I. Introduction

Topological nodal lines are one-dimensional manifolds of band degeneracies in momen-

tum space first introduced conceptually by Burkov et al. in 2011 as a higher dimensional

generalization of point-like band touching [1]. Such line nodes have in recent years found

realizations in various forms in crystalline materials, including infinite lines extending over

Brillouin zones [2], closed loops [3], along with intricate three dimensional networks of chains,

knots, and nexuses [4–9]. Interest in electronic line nodes are partly motivated by the pe-

culiar emergent condensed matter quasiparticles they support, which do not possess funda-
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mental particle analogues [4]. Furthermore, due to bulk-boundary correspondence, nodal

lines in three dimensional bulk materials generate surface states enclosed in their surface

projection; these signature surface states under certain circumstances bear little momentum-

space dispersion over a finite region in the surface Brillouin zone [1] and are therefore termed

“drumhead surface states”. The enhanced density of states of drumhead surface states is

expected to provide a route towards high-temperature correlated phases including ferromag-

netism and superconductivity [10].

Viewed in the context of band topology, nodal lines in three-dimensional materials are

necessarily protected by symmetries [8] and therefore serve as progenitors for a large number

of distinct topological electronic states when the corresponding symmetry is relieved. For

instance, broken mirror symmetry is suggested to separate intersecting nodal lines and serve

to manipulate an embedded non-Abelian topology [7]. The prototype inversion symmetry-

breaking Weyl semimetal TaAs [11] and time-reversal symmetry breaking Weyl semimetal

Co3Sn2S2 [12] can both be viewed as generated by adding spin-orbit coupling–which breaks

the SU(2) spin-rotation symmetry–to nodal loops on mirror planes. In addition, nodal

lines in certain cases can be fully gapped and further give rise to topological insulating

phases [9]. From the materials perspective, elucidating mechanisms of generating topological

nodal lines and their interplay with different types of symmetries–including crystallographic

symmetries, spin-rotation symmetry, and time-reversal symmetry–are expected to afford

key clues in discovering novel topological electronic states and allow the study of emergent

electromagnetic responses in such systems.

Motivated by the experimental discovery of quasi-two-dimensional Dirac electronic dis-

persions in the vicinity of the Fermi level in the ferromagnetic kagome metal Fe3Sn2 [13], we

here examine the density functional theory (DFT) electronic structure of the system in the

context of three-dimensional (3D) topological nodal lines. In the following, we use the con-

vention of Dirac fermions referring to linearly dispersing two-dimensional bands as in topo-

logical insulator surface states [14] or the two-dimensional graphene [15] and kagome models

[16]. For the case of the considered 3D material, this convention includes crossing states

with linear dispersion in two dimensions and preserved degeneracy in the third dimension

(nodal lines), regardless of their degeneracy. This should be contrasted with the convention

associated with the four-fold degeneracy of 3D Dirac semimetals that are described by the

3D Dirac equation [17]. The two-dimensional kagome lattice is composed of corner-shared
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triangles (see Fig. 1(a)) and is known theoretically to host Dirac fermions at its Brillouin

zone corners K and K’ in the electronic spectrum as illustrated in Fig. 1(b) – analogous

to the honeycomb lattice [16]. In contrast to the honeycomb lattice whose experimental

realization primarily falls into p-electron materials such as graphene and other main group

X-enes [18], the kagome lattice has found extensive presence in a class of transition metal in-

termetallic compounds termed “kagome metals”, where the kagome bands are composed by

d electrons [12, 13, 19–24]. As these compounds crystallize in three-dimensional structures,

a natural question is how the notion of the point nodes in the two-dimensional limit can be

extended to the third dimension. The subject of this study – binary ferromagnetic kagome

metal Fe3Sn2 has been experimentally identified as host of bulk quasi-two-dimensional Dirac

fermions in transport and photoemission spectroscopy [13], as well as in de Haas-van Alphen

quantum oscillations [25] and optical conductivity [26]. Scanning tunneling microscopy has

revealed a strongly anisotropic response of the electronic structure of Fe3Sn2 due to spin-

orbit coupling [27], and more recently a large number of Weyl points are also proposed to be

present in the system [28]. In view of the successful application of DFT to related topological

kagome metals [20, 22], a comprehensive DFT study of the electronic structure of Fe3Sn2 is

expected to address the nature of its electronic topology and offer insights into the origin of

experimentally observed Dirac fermions.

In this study we first identify two sets of ferromagnetic helical nodal lines in Fe3Sn2 near K

and K’ of the hexagonal Brillouin zone in the limit of vanishing spin-orbit coupling. We also

found that with the introduction of spin-orbit coupling, these nodal lines are gapped into a

three-dimensional quantum anomalous Hall insulating phase with out-of-plane ferromagnetic

moments while with in-plane moments, point Weyl nodes remain gapless along the helices.

The helical nodal lines are found to originate from the rhombohedral stacking of the bilayer

kagome lattices and also subject to a layer splitting between upper and lower branches.

We propose that these ferromagnetic helical nodal lines are the key to describe the observed

topological electronic structure in Fe3Sn2 and insights obtained herein can be broadly applied

to various three dimensional constructions of two-dimensional lattice models.
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II. Ferromagnetic helical nodal line in Fe3Sn2

We start from the two-dimensional (2D) nearest neighbor tight-binding model of the

kagome lattice as shown in Fig. 1(a), where we highlight the Dirac fermions located at

K and K′, with opposite chirality shown in red and blue, respectively in Fig. 1(b). In

Fig. 1(c-g) we illustrate the effects of three-dimensional (3D) stacking with a moderate

interplane hopping on these Dirac fermions. For clarity in Fig. 1(c,e) we introduce only

the in-plane nearest neighbor hopping t0 (solid lines) and the nearest out-of-plane hopping

t1 (dashed lines). The location of band crossing points in the 3D Brillouin zone (BZ) with

t0 = 1, t1 = 0.1 are shown in Fig. 1(d,f,g). In the simpler A-A stacking the hopping along

the z direction extends the Dirac points at K and K′ to vertical nodal lines along the K− H

(K′ − H′) directions (Fig. 1(d)). A-B-C stacking instead results in helical nodal lines where

at each kz plane the Dirac points are shifted away from K and K′ (Fig. 1(f,g)). Here we

show the BZ of the rhombohedral unit cell of the A-B-C stacking in Fig. 1(f,g) along with

a hexagonal prism extended vertically from the original 2D hexagonal BZ; the projected

helical nodal lines wind around the corresponding K and K′ points of the latter. We show

in Fig. 1(g) a top view of the helices, where within the projection onto the top surface, a

weakly dispersive drumhead surface state (DSS) can be found in the surface spectral function

using a large finite slab calculation (Fig. 1(h)), as is expected for prototypical topological

nodal line semimetals [8]. We note that similar helical nodal lines have been discussed in the

context of A-B-C stacked rhombohedral graphite [10, 29–31]; there the associated drumhead

surface states are theoretically anticipated to drive correlated magnetic and superconducting

states [10, 32] and have been observed in photoemission spectroscopy in multi-layer A-B-C

stacked graphite flakes [33]. In the context of the kagome lattice, it is intriguing to note that

the three-dimensional stacking allows access to a surface flat band and potential correlated

states it entails, in addition to the in-plane destructive interference-induced flat band of bulk

nature [23, 34].

Having illustrated the generation of helical nodal lines in a simple A-B-C stacked kagome

lattice model, in the following we turn to the DFT electronic structure of Fe3Sn2 in the

absence of spin-orbit coupling – to test the relevance of the above picture in describing the

system. The crystalline structure of Fe3Sn2 (Space group No.166 R3̄m) is illustrated in Fig.

2(a) in the conventional hexagonal unit cell, while the rhombohedral unit cell is highlighted
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in gray. Each unit cell contains a bilayer kagome structure that are further stacked in the

A-B-C fashion. In Fig. 2(b) we show the rhombohedral BZ of Fe3Sn2 along with selected

high symmetry points. We note that in addition to Z, Γ, B, L, F of the rhombohedral

convention, we also include M and K of the hexagonal convention to better describe the

Dirac electronic structure observed experimentally in the proximity of K̄ of the surface BZ

[13]. The calculated electronic structure is shown in Fig. 2(c) along the high symmetry lines

highlighted in Fig. 2(b). The majority spin states (illustrated in red) feature electron pockets

centered near Γ and a hole pocket close to K, while the minority spin states (illustrated in

blue) show a double Dirac structure displaced in energy in the vicinity of K, as previously

observed in angle-resolved photoemission experiments [13, 28, 35]. This suggests that DFT

reasonably account for the electronic structure in Fe3Sn2. Hereafter we refer to the Dirac

structure near -0.1 eV (-0.4 eV) as upper (lower) Dirac fermions, respectively.

Focusing on the upper Dirac dispersion, although we observe an apparent gap at K similar

to the DFT band structure reported in Ref. [35], via searching in the proximity of K we find

the gap closing and reopening through a single point at each constant kz cross-section (Band

landscapes at selected kz planes for the upper nodal line are shown in Fig. 2(d-f)). A search

near the lower Dirac dispersion yields similar results. Connecting the point nodes at each kz

plane we obtain two sets of helical nodal lines as depicted in Fig. 2(g), where the nodal line

for the upper Dirac fermion is shown in red, and lower Dirac fermions in blue. Both nodal

lines wind around K vertical in a helical fashion, similar to that of the simple tight-binding

model as shown in Fig. 1(f,g), suggesting that the trigonal A-B-C stacking plays a key role

in generating the helical nodal lines. A magnified view of the top projection of the helical

nodal lines at K and K’ can be found in Fig. 2(h) and (i) in the shape of hypotrochoids,

where we use gradient scales as shown in Fig. 2(h) to sketch the evolution along kz. Near

K both nodal lines may be approximately described by the following functional form:

∆kx + i∆ky = iλ1e
−ikzc + iλ2e

2ikzc (1)

Here the band touching point is shifted to (∆kx,∆ky) with respect to K point at given

kz. For the upper (lower) nodal line, the parameters are λu
1 = 0.00928 (λl

1 = 0.0136)

and λu
2 = 0.0087 (λl

2 = −0.0214) in units of Å−1, respectively. Here c stands for the

vertical distance between the kagome bilayer units; superscripts u and l stand for upper and

lower nodal lines, respectively. The kz-evolution near K’ can be obtained by performing an
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inversion operation to that near K (Fig. 2(i)).

The presence of sinusoidal components of both kzc and 2kzc implies the presence of

both nearest layer and next nearest layer hopping terms in Fe3Sn2 (see Supplementary

Materials [36]), the latter not included in the simple nearest layer model discussed above in

Fig. 1(f-h). We further examine the energy evolution of both the upper and lower nodal

lines in Fig. 2(j). The closer confinement of the upper nodal lines to the verticals of K

and K’ is accompanied by a weaker out-of-plane dispersion illustrated in Fig. 2(j): the

energy variation of the upper nodal line is on the order of 1.5 meV while for the lower is

on the order of 11 meV, while both are significantly weaker as compared to the in-plane

Dirac bandwidth ∼ 2 eV. This corroborates the bulk quasi-2D nature and the absence of

photon-energy dependence of the double Dirac structure observed in Fe3Sn2 [13].

To further elucidate the nature of the identified helical nodal lines, we have computed

the Berry phase ΦB =
∮
ΓB

Ak · dk on loops ΓB around the nodal lines where Ak is the

Berry connection Ak = −i〈uk|∇k|uk〉 [37], with |uk〉 denoting the wave function at k.

Without spin-orbit coupling, a combined inversion and effective time-reversal symmetry

dictates the quantization of the Berry phase as a binary Z2 invariant that takes either 0 or

π [8]. We have verified that both upper and lower nodal lines support a π-Berry phase to

the path integrals enclosing the nodal lines, suggesting that it is the the non-trivial Berry

phase that protects the nodal lines in the present case. The π-Berry phase here may be

naturally connected to that of Dirac fermions in the 2D limit [38] and that more recently

demonstrated in photoemission intensity analysis for bulk quasi-2D Dirac fermions derived

from the kagome lattice in FeSn [22]. In the present system, due to a reduction of the

symmetry from hexagonal to trigonal, the positions of the nodal lines are displaced from

high symmetry lines; nevertheless their presence is robust and protected by the π-Berry

phase inherited from the 2D limit. In Fig. S1 [36] we show that nodal lines centered at K

and K′ are robust with increasing interplane hopping strength, as long as the two lines do not

touch and hybridize with each other. We note that due to broken time reversal symmetry,

each band touching point here in Fe3Sn2 is ferromagnetic and two-fold degenerate, which

belongs to a similar class with the ferromagnetic nodal lines discussed in Co2MnGa [5],

Co3Sn2S2 [12] and Fe3GeTe2 [45] in the absence of spin-orbit coupling.

Additionally, we examine the surface states which originate from the hypotrochoid wind-

ing pattern of the lower nodal line in Fig. 2(k,l) (see Methods). The existence of a drumhead
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surface state in a nodal line semimetal may be illustrated in the following picture: for a given

(kx, ky) one may define a Zak phase ΦZ =
∫ π/c

−π/c
A · dkz along kz, and ΦZ(kx, ky) = π corre-

sponds to a 1D topological insulator with zero energy edge states (here we restrict ourselves

in the spinless case) and defines the (kx, ky) region where surface states reside [3]. In Fig.

2(k), we find that in the present case ferromagnetic drumhead surface states appear once

within the three side lobes (blue region labeled DSS1 in Fig. 2(l)) with ΦZ(kx, ky) = π and

twice within the center surface momentum regime (purple region labeled DSS2 in Fig. 2(l))

ΦZ(kx, ky) = 2π(0). We expect the surface states in the DSS2 region to be more fragile and

dependent on the surface potential than that within DSS1, as has been discussed for systems

with multiple nodal loops [39]. The lobe structure of the flat surface bands adds new op-

portunties for potential correlated phenomena; moreover, with the sensitivity of the helical

nodal line to interplane hopping, one may manipulate the connectivity and drive Lifshitz

transitions of these lobe-wise drumhead surface states by hydrostatic, uniaxial pressure or

alternatively epitaxial strain (see Fig. S12 [36]).

III. Kane-Mele spin-orbit coupling in Fe3Sn2

Having located the helical nodal lines in the proximity of K and K’ in the absence of

spin-orbit coupling, in the following we examine the fully relativistic electronic structure of

Fe3Sn2. As Fe3Sn2 is known to be a soft ferromagnet [40, 41], we consider both cases of

moments in and out of the kagome lattice plane. With an out-of-plane magnetic moment, we

find that both the upper and lower nodal lines are fully gapped with spin-orbit coupling, with

the upper (43.3± 0.5) meV and lower Dirac gap (27± 4) meV as shown in Fig. 3(a,b). The

in-plane magnetic moment induces a smaller gap, and the nodal lines remain gapless at two

kz positions for both the upper and lower branches (Fig. 3(a,b)). This anisotropic coupling

of M with the Dirac electrons is consistent with a Kane-Mele type spin-orbit coupling in

Fe3Sn2 as suggested in Refs. [13, 25]. These discrete remnant touching points correspond

to Weyl points; we show Weyl points with the opposite chirality as blue and red circles in

Fig. 3(c) for the case of the lower nodal line.

Next we elaborate on the out-of-plane ferromagnetic case where spin-orbit coupling intro-

duces a full gap to the helical nodal lines. We have computed the resultant Berry curvature

Ω = ∇×Ak and its distribution along high symmetry lines K’-Γ-K in kz = 0 plane is shown
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in Fig. 3(d). We observe concentrated Berry curvature Ωz at the gapped nodes as expected

for massive Dirac fermions [42], together with additional distribution of Berry curvatures

from potential Weyl points (see also Fig. S10 [36]) [28]. Ωz near K and K’ are found to be

additive, which can be contrasted to the cancelling Ωz pattern at K and K’ valleys in the

inversion-symmetry-breaking and time-reversal-symmetric graphene [42]. The Berry curva-

ture structure at both upper and lower Dirac gaps also exhibit the same sign. We further

illustrate the distribution of integrated Berry curvature
∫
ε<E

Ωε
z (here ε represents all states

with energy below E) in the 3D BZ in Fig. 3(e,f) up to the upper Dirac gap (E = −0.1 eV),

where columns of Berry curvature hot spots are confined along the stacked massive Dirac

fermions. These massive Dirac fermions descend naturally from their 2D limit as kagome

realizations of the Haldane model [43] and therefore in isolation form a 3D quantum anoma-

lous Hall insulating phase [44]. In this context, we propose that chiral boundary modes can

be detected at step edges of the kagome cleavage of Fe3Sn2 crystals at energies within the

Dirac gap, similar to those recently demonstrated in a Mn-based kagome metal TbMn6Sn6

[24]. Near Γ we also observe less extended patches of Berry curvature intensities, the 3D

nature of which suggests that they may originate from underlying Weyl fermions in the sys-

tem [28]. The difference in momentum-space dimensionality leads to a response dominated

by the extended kz features associated with the massive quasi-2D Dirac states (Fig. 3(e)).

Having demonstrated that nodal lines gapped by the interplay of ferromagnetic order

and spin-orbit coupling in Fe3Sn2 serve as a strong source of Berry curvature and therefore

contribute significantly to the intrinsic anomalous Hall conductivity σxy (see Fig. S9 [36])[13],

it is instructive to compare the helical nodal lines identified here in Fe3Sn2 with the nodal

lines discussed in the van der Waals ferromagnet Fe3GeTe2 [45]. In both cases, topological

nodal lines are rendered strong sources of Ωz. We note that as compared with Fe3GeTe2,

where contribution to σxy is concentrated in the momentum space near the gapped nodal

line along K− H over its energy dispersion of 0.25 eV [45], such contributions in Fe3Sn2

is further concentrated energetically due to the weak energy variation of the massive Dirac

fermions along the z direction. Intriguingly, in Fe3GeTe2, it is also found that an out-of-plane

moment maximizes the spin-orbit gap along the nodal line. Despite this similar sensitivity

with the ferromagnetic moment orientation, we note that the spin-orbit coupling in Fe3Sn2

that opens the gaps at the Dirac nodes is different at the effective model level than that

discussed for Fe3GeTe2 [45]. In the latter, an on-site spin-orbit coupling of the L · S form
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lifts the degeneracy at K that originates from orbital degrees of freedom of Fe d-orbitals;

this mechanism also applies to the px, py models on the triangular lattices [46] and the d

orbitals on hexagonal closed packing cobalt layers [47], where an orbital degree of freedom

is preserved for three-(or six-)fold rotation centers. In the context of the kagome lattice,

the degeneracies of all d orbitals are in principle lifted due to the low site symmetry. An

onsite spin-orbit coupling term is therefore ineffective in opening a gap for the band crossing

at the effective model level, rather the intersite form of spin-orbit coupling – introduced

by Kane-Mele for the graphene lattice model based on pz orbitals [48], where the orbital

degrees of freedom is quenched – is responsible for the gap opening at K. The kagome lattice

therefore provides a model platform for studying the Kane-Mele type spin-orbit coupling and

its interplay with massive Dirac fermions. Clarifying the underlying microscopic mechanisms

for such spin-orbit coupling terms will provide insights in future design of topological phases

from the lattice point of view.

IV. Interplane hopping and layer degrees of freedom of Dirac fermions in Fe3Sn2

Having demonstrated that both upper and lower helical nodal lines in Fe3Sn2 can be

captured by quasi-2D Dirac fermions subject to a Kane-Mele type spin-orbit coupling, in

the following we examine the origin of the pair of Dirac fermions in the system. Expanding

from the A-B-C stacked kagome model described above, we build a tight-binding model of

an AA-BB-CC stacked kagome lattice illustrated in Fig. 4(a) to more accurately capture the

iron sublattice of Fe3Sn2. A fundamental rhombohedral unit cell of this model includes six

atoms, forming a pair of A-A stacked kagome bilayer. This pair provides a layer degree of

freedom whose role we elucidate hereafter. Aside from the in-plane nearest neighbor hopping

t0, we introduce two inequivalent inter-plane hopping integrals taa and tab. taa represents

vertical hopping processes between aligned A-A (B-B, C-C) stacked sublattices, while tab

denotes the nearest neighbor hopping between layers that are rotated by 60◦ with each other

(i.e., through A-B, B-C and C-A stacking).

First we find that parameter sets satisfying tab < taa � t0 reproduces the experimental

and numerical double Dirac structure in Fe3Sn2: bands obtained from several such taa and

tab are shown in Fig. 4(b-e) and the corresponding nodal lines are shown as insets. The

momentum line is highlighted in Fig. 4(b) inset. We note that setting tab > taa considerably
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deforms the Dirac bands (Supplementary Materials Fig. S4 [36]) and yields band features

inconsistent with either ARPES [13] or the DFT spectrum shown in Fig. 2(c). Hereon we

focus on the evolution of the double Dirac structure with respect to taa and tab. In Fig.

4(b,d,e) a progressively increasing tab displaces the nodal lines farther from K, consistent

with the simpler A-B-C model (see Supplementary Materials Fig. S1 [36]); meanwhile the

energy splitting between upper and lower nodal lines stays constant. In contrast, by varying

taa while keeping tab constant (Fig. 4(b,c)), the location of the nodal lines are unchanged

while the energy splitting between upper and lower branches increases in proportion to

taa. The respective dependence on taa and tab of the energy splitting ∆E and momentum

displacement ∆k (both schematically illustrated in Fig. 4(e)) is also clear in the contour plots

of ∆E and ∆k in the taa − tab phase space (Fig. 4(f,g)). Further analysis of the eigenstates

of the tight-binding Dirac states reveals that the upper/lower branches are predominately

composed of bonding/antibonding superpositions of states residing respectively in layers L+

and L− in Fig. 4(a), which are connected via taa, reminiscent of the layer splitting of Dirac

states in AA-stacked bilayer graphene [49].

An outstanding observation here is that taa and tab appear to play distinct roles to the

Dirac fermions. It is instructive to adopt the following 4× 4 k ·p model in the vicinity of K:

H =ih̄vF (k+σ− − k−σ+) + taa(e
ikzc1τ+ + e−ikzc1τ−)

+ 2tab(e
−ikzc2τ+σ− + eikzc2τ−σ+)

(2)

where σ and τ are Pauli matrices and vF is the Dirac velocity. c1(c2) represents the vertical

distance of taa(tab) hopping. σ represents the Dirac spinor per kagome layer (the basis wave

function of σ within each layer is illustrated in Fig. 4(h)) while τ denotes the layer degree

of freedom where τz|L±〉 = ±1|L±〉. In Fig. 4(i) we illustrate the k · p dispersion (red) as

compared with the AA-BB-CC tight-binding model (blue) for taa = 0.2, tab = 0.05. With

tab < taa, one can treat the last term of Eqn. 2 as a perturbation and project the four states

to two sets; the resulting two eigenstate sub-sectors Du,l (upper (u) and lower (l) Dirac

fermions) can be classified with eikzc1τ++ e−ikzc1τ− = ξu,l (ξu = 1 and ξl = −1 respectively),

which are energetically split as ξu,ltaa. Projecting the tab terms into each sector, we derive a

2×2 effective Hamiltonian as Hu,l
eff = ih̄vF (k+σ−−k−σ+)+ξu,ltab(e

ikzcσ++e−ikzcσ−)+ξu,ltaa,

where the Dirac points are moved to ∆kx + i∆ky = iξu,l tab
vF
e−ikzc (c = c1 + c2 the vertical

distance between the neighboring bilayer units), giving rise to helical nodal lines (see inset of
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TABLE I. The Dirac wave function kz-averaged (0 ≤ kz < 2π/c) density distribution for Fe and

Sn atomic orbitals, at the projected (2D) K point. Sn(s) (Sn(k)) denotes the set of Sn atoms in

spacer unit (kagome layer). The atomic orbitals are defined with the rotated local coordinate as

shown in Fig. 4(j). The density is represented by the percentage projected in atomic orbitals.

Fe dxy Fe dx2−y2 Fe dxz Fe dyz Fe dz2 Fe s Sn(s) pz Sn(s) px/y Sn(k) p Sn s

Lower Dirac cone 33.0 23.8 10.9 9.9 9.1 1.7 0.4 9.2 1.5 0.5

Upper Dirac cone 49.4 9.6 16.6 15.0 4.3 1.3 0.2 1.8 1.6 0.3

Fig. 4(i)). From the k · p formulation, it is clear that tab preserves an underlying sublattice

(chiral) symmetry for the Dirac fermions [50], as a result of which tab terms perturb band

touching points away from K and K′ but cannot generate either a gap or an energy shift to

the degeneracy points. A similar k · p model can be constructed for the DFT structure as

we show in Fig. 4(j,k). The leading parameters are vF = 3.8 × 105 m/s, taa = −0.13 eV,

tab = −0.0028 eV (also see Methods), suggestive of a layer split nature of the two copies of

Dirac fermions in Fe3Sn2 [13]. The layer origin of the upper and lower Dirac states is also

consistent with the similar Berry curvature structure they exhibit as illustrated in Fig. 3(d).

We additionally analyzed the orbital characters of the Wannier function for the upper

and lower Dirac fermions as summarized in Table 1. The predominant in-plane nature of

both upper and lower Dirac fermions dictates reduced strength of taa and tab as compared to

t0 (we may estimate t0 ∼ 0.8 eV from vF via t0 '
√
3h̄vF/a, where a is the in-plane lattice

constant), which further leads to the characteristic double Dirac structure in Fe3Sn2 (see

Supplementary Materials for a more detailed description of the orbital-decomposed hopping

pathways [36]). Moreover, as can be inferred from Eqn. 2, taa and tab are decoupled from

the kz-evolution of the nodal line energies, implying that higher order hopping terms are

required to grant the Dirac fermions a considerable kz dispersion. This is consistent with the

suppressed kz-dispersion and quasi-two-dimensionality of the bulk Dirac fermions suggested

experimentally in Fe3Sn2 [13, 25]. We note that including an asymmetry to account for the

breathing nature of the kagome lattices in Fe3Sn2 does not considerably alter the scenarios

presented here (see Fig. S5 [36]); in particular, the inversion symmetry of the breathing

distortion in the unit cell does not lift the nodal degeneracy (which is protected by a π-

Berry phase as described above). Through the above minimal AA-BB-CC model and k · p
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expansion we establish Fe3Sn2 as an illustrative example of how rich stacking patterns and

associated interplane coupling manifest in quasi-two-dimensional electronic materials. In

Fig. S6 [36] we illustrate that similar results can be obtained for a model of AA-BB-CC

stacked honeycomb layers.

V. Discussion

In summary, from a band theoretical perspective, we have established Fe3Sn2 as a host

of ferromagnetic helical nodal lines derived from a kagome network of iron. The peculiar

presence of mixed A-A and A-B stacking patterns of kagome lattices in Fe3Sn2 causes the

formation of helical nodal lines, gives rise to the layer splitting between upper and lower

branches, and suppresses the kz-dispersion of these nodal lines. With an out-of-plane ferro-

magnetic order, the two sets of helical nodal lines are gapped out by spin-orbit coupling and

serve as strong source of Berry curvatures. Gradually rotating the ferromagnetic moments

from out-of-plane to in-plane orientations one may partially close the Dirac mass gap at dis-

crete points and realize pairs of Weyl nodes located along the original helical nodal lines. In

view of the soft ferromagnetic nature of the system we may anticipate novel electronic states

at domain walls [51]; one especially exciting avenue lies in the skyrmion bubble structures

observed earlier in Fe3Sn2 at room temperature [52], where the real space topological spin

textures may entangle with the nodal lines and give rise to novel electronic responses [53].

A direct experimental observation of the drumhead surface states in Fe3Sn2 has remained

elusive due in part to the weak interplane coupling of the tab form and a resulting limited

radial size of the helical nodal lines. Aside from tuning Fe3Sn2 utilizing hydrostatic/uniaxial

pressure and epitaxial strain as we propose in this study, further engineering of the inter-

plane hopping and spin-orbit coupling in related intermetallic compounds that host trigonal

stacking of kagome lattices may lead to experimentally detectable drumhead surface states

[33]. We note that a recent tight-binding study of a dz2 type orbital on an A-B-C kagome

lattice with enhanced out-of-plane hopping assisted by interlayer Sn atoms serves as a min-

imal model to generate vertical nodal rings and the ferromagnetic Weyl semimetallic phase

in Co3Sn2S2 [54]. This comparison suggests that with rational orbital engineering, inter-

metallic compound-based kagome lattices may provide a full spectrum of topological phases

ranging from the 3D quantum anomalous Hall insulating phase [13, 22, 44] to the ferromag-
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netic Weyl semimetallic phase [12]; driving the topological phase transition between the two

classes of phases are of extreme theoretical and experimental interest.

The implications of our study are beyond electronic structures of metallic systems. As

trigonal stacking and rhombohedral symmetry are ubiquitous in naturally occuring kagome

lattice materials [55–58], including, for instance, the spin liquid hosting herbertsmithite

[57], we expect that the helical nodal lines discussed here may be relevant not only in

the electronic sector, but also in the magnonic or spinonic sectors [59], in the context of

considerable inter-plane coupling. In view of the close resemblance of the kagome lattice

with the honeycomb lattice [10, 31, 60], the above picture could be relevant, for example,

in the Dirac-like Majorana fermionic spectrum in α−RuCl3 where the Ru honeycomb layers

are A-B-C stacked [61].
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APPENDIX: METHODS

A. Density functional theory electronic structure calculations

To compute the electronic and related properties of Fe3Sn2 we carry out the Density Func-

tional Theory (DFT) calculations by using the full-potential local-orbital (FPLO) code [62],

version 18.00-52. The exchange-correlation energy functional used is based on the param-

eterization of Perdew, Burke, and Ernzerhof (PBE-96) [63] within the generalized gradient

approximation. A linear tetrahedron method with 15 × 15 × 15 subdivisions in the full

Brillouin zone was used for the momentum space integrations. The lattice parameters used

in the calculation are a = 5.3307 and c = 19.7968 [64]. We consider the ground state in

the ferromagnetic state and converge the self-consistent calculations within the scalar rela-

tivistic mode, and (four-component) fully relativistic mode of FPLO, with a self-consistent

spin density better than 10−6. The total magnetic moments per unit cell (Fe6Sn4) for the

converged ground states are 12.21 µB in scalar relativistic mode, 12.64 µB and 12.65 µB

respectively for the fully relativistic mode with ferromagnetic state along [001] and [100]

orientations. We note that the latter two values include orbital magnetic moments.

To carry out further analysis of the electronic structure, we derive the Wannier tight-

binding Hamiltonian [65] by projecting the Bloch states onto atomic orbital-like Wannier

functions using the PYFPLO module of the FPLO package [62]. These localized Wan-

nier basis states include Fe 4s, 3d, orbitals and Sn 5s, 5p orbitals. The Wannier model is

converged with a 8×8×8 grid sampling in the Brillouin zone. These derived Wannier Hamil-

tonians are then used to investigate the nodal Dirac structure and associated topological

properties such as Berry curvatures [66]. The pressure modification of the helical nodal lines

are simulated via DFT calculations implemented in the Vienna ab initio simulation package

(VASP) [67, 68] based on the Projector Augmented-Wave [69] pseudopotential formalism

(see Supplementary Materials [36]).

B. Fe3Sn2 k · p expansion and calculation of drumhead surface states

Here we give a more detailed k·p expansion for Fe3Sn2 electronic structure near the double

Dirac cones, as performed for the AA-BB-CC model in Eq. 2. The numerical projection is

based on the Wannier construction (see main text and supplementary materials [36]). The
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four-band effective Hamiltonian can be summarized as:

H =ih̄vF (k+σ− − k−σ+) + E0 + (taae
−ikzc1τ− + tabe

−ikzc2τ+σ− + h.c.)

+ (t1e
−ikz(c1+c2)σ− + t2e

−ikz(2c1+c2)σ−τ− + t3e
−ikz(c1+2c2)σ+τ+ + t4e

−i2kz(c1+c2)σ+ + h.c.)

(3)

where h̄vF = 2.52eV · (corresponding to vF = 3.8× 105 m/s), E0 = −0.26 eV, taa = −0.13

eV, tab = −0.0028 eV, t1 = 0.0123 eV, t2 = 0.0059 eV, t3 = −0.0339 eV and t4 = −0.008

eV. This effective model captures the helical nodal line structure for both upper and lower

cones. Starting from this, we consider a finite thin-film slab geometry to shed light on the

surface states associated with the helical nodes in Fe3Sn2. We found the drumhead surface

states near K points as illustrated in Fig. 2(k) in the surface spectral function for the lower

Dirac cone (similar drumhead surface states can be obtained for the upper Dirac cone).
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FIG. 1. Nodal lines and three dimensional stacking of the kagome lattice (a) The two

dimensional (2D) kagome lattice and (b) associated Dirac fermions in the hexagonal Brillouin zone

(BZ). Blue and red Dirac fermions at K and K′ possess opposite chiralities. (c) Schematic of a

three dimensional (3D), A-A stacked kagome lattice and (d) the corresponding vertical nodal lines

in the hexagonal prism BZ. (e) Schematic of an A-B-C stacking of the kagome lattice and the

corresponding helical nodal lines are shown in (f) and (g) from both an isometric (f) and a top (g)

perspective. In (c) and (e) the dashed lines represent the interplane hopping t1 while the in-plane

kagome bonds are characterized by an hopping integral t0. In (f) we show the rhombohedral BZ

along with a hexagonal prism extended from the 2D BZ illustrated in (b). (h) Surface spectra weight

of the A-B-C kagome tight-binding model. A drumhead surface state (DSS) can be identified as

the flat and bright intensity within the projection of the helical nodal line to the surface BZ.
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FIG. 2. Scalar-relativistic electronic structure and helical nodal lines in Fe3Sn2 (a)

Crystal structure of Fe3Sn2 with iron atoms shown in red and tin atoms in gray. The primitive

rhombohedral unit cell containing a kagome bilayer is outlined in gray. (b) Schematic of the

rhombohedral BZ of Fe3Sn2 with high symmetry points labeled and high symmetry directions

highlighted in blue. The gray hexagonal prism is extended from the hexagonal BZ in the 2D

limit. (c) Scalar-relativistic generalized gradient approximation (GGA) DFT electronic structure

of Fe3Sn2 where the majority spin is shown in red and minority in blue. (d-f) DFT energy-

momentum dispersion of the upper helical nodal line within a region of 0.16× 0.16−2 close to K at

(d) kz = 0, (e) kz =
2π

3c
, (f) kz =

4π

3c
planes, respectively. The black sphere denotes the K point of

the 2D BZ. (g) The helical nodal lines around K and K’ in Fe3Sn2; the upper nodal line is shown in

red and lower nodal line in blue. (h,i) Magnified top view of the helical nodal lines at K (h) and K’

(i), respectively. The color gradient in (h,i) reflects the value of kz. (j) Energy dispersion of both

the upper and lower nodal lines along kz. (k) Surface spectra weight of the lower nodal line inferred

from the k · p model (see Methods). (l) Schematic of two distinct momentum regions DSS1 (blue)

and DSS2 (purple) that host different number of drumhead surface states. The hypotrochoid curve

represents the projection of lower nodal line to the top surface.
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FIG. 3. Electronic structure of Fe3Sn2 with spin-orbit coupling (a) The gap along the

helical nodal line at each kz with ferromagnetic moment out-of-plane (red) and in-plane along

[100] (blue) for the upper nodal line. (b) A similar analysis for the lower nodal line. (c) Weyl

points originated from the lower helical nodal line with magnetic moment along [100]. The nodal

line itself is shown in magenta. (d) The Berry curvature Ωz distribution with the ferromagnetic

moments pointing out-of-plane along Γ - K - K’ high symmetry line in the band structure. (e,f)

Distribution of integrated Berry curvature (see text) up to the upper Dirac gap in the 3D BZ at

E = −0.1 eV in a 3D view (e) and top view (f), respectively.
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FIG. 4. Layer splitting and interplane hopping in Fe3Sn2 (a) Schematic of AA-BB-CC

kagome lattice model with in-plane hopping t0 (dark solid bonds), interplane hopping taa (light solid

bonds) and tab (dashed bonds). (b-e) Double Dirac structure near K (momentum line illustrated

in (b) inset) at selected taa and tab (t0 = 1): (b) taa = 0.2, tab = 0.03, (c) taa = 0.1, tab = 0.03,

(d) taa = 0.2, tab = 0.05, (e) taa = 0.2, tab = 0.1. The insets show the upper (red) and lower

(blue) nodal lines. Here the momentum kx is expressed in the unit of a−1, where a is the in-plane

hexagonal lattice constant. (f,g) Contour plots of the energy splitting ∆E (f) and momentum

displacement ∆k (g) in the taa − tab phase space. (h) Initial wave function on a single kagome

layer used to project out double Dirac structure in AA-BB-CC model. The color illustrates the

phase of wavefunction: 1 (red), ω = ei2π/3 (green) and ω̄ = e−i2π/3 (blue). The other partner

state is obtained by the mirror M operation defined by the dashed grey line. (i) The k · p 4-band

model (red) compared to the full 6-band AA-BB-CC model. (j) Initial basis set of a single Fe

kagome layer for k ·p projection of the double Dirac cones in Fe3Sn2. The rotated local coordinate

frames for Fe sites are shown with the out-of-plane ẑ′ axis. The wave function for projection is the

product of the phases in (h) and the local dxy orbitals. The partner state on the same layer can

be obtained by mirror M. (k) Fe3Sn2 band structure (blue) compared with the projected 4-band

k · p expansion (red) near K point.
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