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We present a unifying picture of the magnetic in-plane anisotropies of two-dimensional supercon-
ductors based on transition metal dichalcogenides. The symmetry considerations are first applied
to constrain the form of the conductivity tensor. We hence conclude that the two-fold periodicity
of transport distinct from the planar Hall related contributions, requires a tensor perturbation. At
the same time, the six-fold periodic variation of the critical field results from the Rashba spin-orbit
coupling on a hexagonal lattice. We have considered the effect of a weak tensor perturbation on
critical field, gap function and magneto-conductivity. The latter is studied using the time dependent
Ginzburg-Landau phenomenology. The common origin of the π-periodicity in transport and ther-
modynamics properties is identified. The scheme constructed here is applied to describe the existing
theoretical scenarios from a unified point of view. This allows us to single out the differences and
similarities between the suggested approaches.

I. INTRODUCTION

The superconductivity in few-layer superconducting
transition metal dichalcogenides (TMDs) is at the focus
of the research for the last few years [1–10]. The experi-
mental work has been initially motivated by the progress
in fabrication techniques resulting in the ability to exfo-
liate one to several stacked atomic layers on a substrate.
Surprisingly, these systems turned out to be supercon-
ducting with the critical temperatures of the same order
of magnitude as in the bulk counterparts.

Samples with the odd number of layers including
mono-layers such as exfoliated NbSe2 and gated MoS2

lack an inversion center, see Fig. 1. This has two major
consequences. First, the strong atomic spin-orbit (SO)
coupling due to a transition metal splits electronic bands
with the spin splitting larger than the superconducting
gap by a few order of magnitudes [11].

The strong SO interaction manifests itself in the
strongly enhanced in-plane critical field, Bc far above
the usual Pauli limit [1, 3, 4, 6–8]. Thanks to the hori-
zontal, in-plane mirror symmetry, σh the SO interaction
polarizes electrons out-of-plane, and is referred to as Ising
SO coupling. The superconductivity is protected in the
Ising superconductor because in the presence of strong
Ising SO coupling the in-plane spin susceptibility remains
close to the Pauli susceptibility of a normal state [12].

The second consequence of the lack of the inversion
center, is the coexistence of the triplet superconductiv-
ity with the conventional s-wave singlet pairing [13–15].
In the case of Ising SO the electrons forming the triplet
states have anti-parallel spins. Such triplet order param-
eter (OP), however decouples from the leading singlet OP
when the SO splitting is much smaller than the Fermi en-
ergy, EF [16]. The parallel triplet correlations induced
by the in-plane field, [17] are argued to be detectable as
“mirage” gaps in the tunneling density of states [18].

Importantly, spin triplet correlations and SO coupling
make it possible to manipulate the symmetry of the wave-
function of the Cooper pairs by an external symmetry

FIG. 1. Crystal structure of NbSe2 mono-layer with bigger
(purple) and smaller (yellow) circles denoting Nb and Se ions,
respectively. Panel (a): top view of the crystal. a1,a2 are
primitive vectors of the triangular Bravais lattice. x, y, z are
Cartesian axes. The external field B lies in the xy-plane and
forms the angle θB with the x axis. Panel (b): side view of
the crystal.

breaking perturbations. For instance, in the TMD mono-
layers with prismatic coordination (Fig. 1) the parallel
spin triplets are induced by the in-plane field [17, 19].
Such a triplet order parameter, is shown to affect the
current-phase relation of a Josephson junction with the
exchange interaction due to the ferromagnetic contacts
[20]. The Josephson current in this case depends on the
angle between the magnetizations in the two ferromag-
nets. Experimentally, the triplet OP might be related
to the unusual field dependence of the gap at very high
magnetic fields [21].

As another example, the transformation of the OP by
the externally applied magnetic field has been recently
observed in the heavy fermion compound CeRh2As2 [22].
In this case the singlet pair density wave OP is favored
by the magnetic field [23]. While the magnetic field is
pair breaking for the regular singlet OP, unconventional
OPs can better adjust to it.

The unconventional OPs are rare, and it is interesting
to explore the possibility of inducing such OP by exter-



2

nally applied perturbations. The reduced symmetry of
the OP presumably causes anisotropy in the properties
of a superconductor. For this reason, such an anisotropy
may potentially indicate the unconventional symmetry
of the OP. Very recently, the anisotropy has been re-
ported in transport measurements in a few- and mono-
layer NbSe2 in the presence of an in-plane magnetic field
B as a function of the field orientation [9, 10]. Indeed, the
suggested interpretations build on a two-component spin-
triplet OP either induced by external perturbation(s) or
spontaneously formed, respectively.

The one set of measurements studies the magnetic
anisotropy in few-layer NbSe2 device sandwiched between
the two magnetic electrodes [9]. This experiment reports
the dependence of magneto-resistance on the angle θB
formed by the in-plane field B and a fixed direction,
Fig. 1. In the same setup, the critical field and the su-
perconducting gap inferred from the tunneling data are
measured. For all three observables the data is π-periodic
in θB . This is in contrast to the six-fold symmetry ex-
pected from the underlying hexagonal crystallographic
structure. The π-periodic magneto-resistance is mostly
observed in the transition region noticeably broadened
by fluctuations and centered at Bc. The π-periodicity of
the gap function persists in the superconducting phase.

In another set of experiments, [10] the critical field
anisotropy is measured in NbSe2 mono-layers on a sub-
strate. In this case, the critical field for the onset of the
superconductivity exhibits a six-fold, π/3-periodicity. As
the field is lowered the fully developed superconducting
state sets in at the field that exhibits a π-periodicity. In
this case the data has been interpreted in terms of two
superconducting transitions. The lower critical field has
been argued to mark the nematic phase transition break-
ing the C3 rotational symmetry spontaneously.

Recently, a scenario of π-periodicity based on a conven-
tional pairing has been suggested [24]. This approach has
been originally motivated by the transport measurements
in the tunnel junctions with the tunnel barrier made of
an easy-axis ferromagnet separating the two Ising super-
conductors [25]. The magnetic hysteresis is tied to the
superconductivity with the onset slightly below the crit-
ical temperature, Tc. This has been explained in terms
of a different pair breaking efficiency of the magnetic im-
purities pointing in- and out-of-plane, respectively [26].
The anisotropy of the magnetic scatterers stabilized by
the extended defects translates into the π-periodic criti-
cal field.

In this paper we construct the symmetry based phe-
nomenology that is general enough to capture the field
dependence of transport and thermodynamic properties.
The goal of such a description is to contrast different
scenarios of field anisotropy as well as to clarify their
commonalities.

We assume that the leading superconducting instabil-
ity is toward a singlet s-wave symmetric OP, ψ. This does
not exclude other subdominant pairing channels. More-
over, at some point in the present analysis we specifically

address them. The second assumption is that the two-
fold symmetry is caused by the tensor perturbation, ε̂. In
fact, we show that the tensor perturbation is necessary
for the π-periodic trace of the conductivity tensor.

The ε̂ tensor is assumed to be symmetric and without
loss of generality traceless. It appears as strain in the
scenario of [9], as the scattering anisotropy off magnetic
impurities in [24]. This OP can also form spontaneously
at the nematic transition as in [10]. Depending on the
particular scenario ε̂ can have a different physical realiza-
tion. For shortness, we will refer to it as strain. To avoid
the confusion we will state the meaning of ε̂ explicitly
whenever appropriate.

The main ingredient of our approach is the coupling
between the strain and the in-plane field. To the leading
order in B, a finite strain changes the free energy by
an amount ∆F ∝ Tr[(BB)ε̂], where (BB) denotes the
dyadic tensor, with components, (BB)αβ = BαBβ . Such
term modifies the temperature dependence of the critical
field, Bc(T ), and makes it two-fold anisotropic. We show
that the same contribution to the free energy explains
the anisotrpic transport and thermodynamic properties.
At the same time it places certain restrictions on the
microscopic mechanisms underlying this anisotropy.

The paper is organized as follows. The findings that
are independent of any particular scenario, and based
solely on symmetry considerations are summarized in
Sec. II. They include the discussion of π-periodicity of
transport and thermodynamic properties. In Sec. III we
formulate some of the existing microscopic mechanisms
of the field anisotropy within the general phenomenology
introduced in Sec. II. In the concluding section IV we
discuss our results in light of the existing theories of field
and/or strain induced anisotropy.

II. SYMMETRY CONSIDERATIONS

The main goal of this paper is to construct the phe-
nomenology that allows to test different scenarios of the
magnetic anisotropy. Specifically, the discussion of the
conductivity tensor below allows us to identify the key
scalar part of the free energy that gives rise to the two-
fold anisotropy. The numerical value of the specific coef-
ficients responsible for the anisotropy may be fixed based
on one measurement of, say, the critical field. The phe-
nomenology then allows to make a specific prediction
regarding the anisotropy in other thermodynamic and
transport properties.

We start with the discussion of the conductivity ten-
sor directly accessible via the transport measurements.
To clarify the restrictions imposed by symmetry it use-
ful to extend the D3h point symmetry group of a TMD
mono-layer to a D∞h symmetry group of a finite circular
cylinder. In the systems with broken mirror symmetry
the extended continuous symmetry we analyze is that of
of the right cone, C∞v. Having discussed the systems
with the artificially extended continuous symmetries, we
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separately address the results depending on the discrete-
ness of the symmetry group.

A. General form of the conductivity tensor

Consider a two-dimensional system in the presence of
the in-plane field. As stated in the introduction we sub-
ject the system to tensor perturbation, ε̂αβ , α, β = x, y.
We stress again, that although we refer to ε̂ as a strain
for brevity, the only important assumption here is that
it is a symmetric and traceless tensor.

The most general form of the in-plane conductivity ten-
sor consistent with the Onsager relations, to linear order
in strain and to all orders in B is expressed as a sum of
three contributions,

σ̂ =1 {σd + σBε Tr [(BB)ε̂]}+ σεε̂

+ σp [(BB)− 1 Tr(BB)/2] , (1)

where 1αβ = δαβ is a unit tensor. Equation (1) follows
from the general theorems on invariants of the rotation
group [27]. Alternatively, it can be obtained by method
of invariants for construction of material tensors [28]. All
coefficients, σd, σBε, σε and σp are some functions of B2.

The first term of Eq. (1) represents the diagonal part
of the conductivity tensor modified by a combined action
of the magnetic field and strain. The second term is
a modification of the conductivity tensor due to strain
alone.

The off-diagonal part of the the last term, ∝ σp
in Eq. (1) describes the dissipative planar Hall effect
[29, 30]. We refer to this whole term as a planar Hall
contribution for shortness. This term itself adds a π-
periodicity in θB to all components of the conductivity
tensor. Therefore, care is needed to separate this π-
periodicity from the one of the Tr σ̂. The latter appears
to the first order in ε̂, while the former exists also at
ε̂ = 0. Here we predominantly focus on the π-periodicity
of the Tr σ̂. We describe how the planar Hall may arise
from the field induced anisotropy in Appendix A.

The second consequence of Eq. (1) is that in scenar-
ios, where the s-wave symmetry of the dominant pairing
channel is not broken spontaneously, the π-periodicity
sets in due to the combined action of the strain and the
field. In Eq. (1) it is described by the term proportional
to σBε which has a form fixed by symmetry alone regard-
less of the microscopic details.

In the case of a free-standing or on-substrate mono-
layer with the D3h or C3v symmetries respectively, the
diagonal part of the conductivity has an angular depen-
dence only at the sixth order in the field. In both in-
stances of the hexagonal symmetry, this is captured by
the conductivity tensor written up to sixth order in the

field and in the absence of other perturbations as follows,

σ̂ =1
[
σ3 + σ0Re(B6

+)
]

+ σ2

[
Re(B2

+) Im(B2
+)

Im(B2
+) −Re(B2

+)

]
+ σ1

[
Re(B4

−) Im(B4
−)

Im(B4
−) −Re(B4

−)

]
, (2)

where σn(B2) are polynomials of degree n in B2, B± =
Bx ± iBy, and we have set the yz-plane as the vertical
mirror symmetry plane, Fig. 1.

The terms proportional to σ3 and σ2 are the same in
form as terms proportional to σd and σp in Eq. (1), re-
spectively. The discreteness of the symmetry group al-
lows the two additional terms in (2). The term propor-
tional to σ1 is similar in structure to the planar Hall con-
tribution present in both Eqs. (1) and (2), and has a π/2-
periodicity. We conclude from comparison of Eqs. (1)
and (2) that (i) the six-fold periodicity of σ̂ requires the
discrete hexagonal symmetry, and (ii) the two-fold peri-
odicity in Tr σ̂ requires tensor-like perturbation. These
conclusions hold generally provided the s-wave symmetry
of the order parameter is not broken spontaneously.

B. Thermodynamic properties

We describe the thermodynamic properties via the
Landau free energy functional, F [ψ]. Here, ψ(x) is the
spin singlet, s-wave symmetry OP assumed to domi-
nate other pairing channels. Keeping in mind the sub-
sequent applications we allow for the spatial fluctua-
tions of the OP described by the Fourier components,
ψq = S−1

∫
d2xe−iqxψ(x) with non-zero q. Here, S

stands for the area of a two-dimensional system. For
the present purposes we expand F [ψ] up to fourth order
in ψ, F [ψ] = S

∑
qEq|ψq|2 + c4

∫
d2x|ψ(x)|4. Here the

fourth order coefficient, c4 is taken as constant which only
weakly depends on strain and the applied fields. Hence,
we focus on the dispersion relation of the superconduct-
ing fluctuations, Eq.

In the rotation invariant systems with a continuous
symmetry group, D∞h we have

ν−1
0 Eq =ε+ βB2 + q2ξ2 +(B·q)

2
ξ2
B +ν−1

0 Eεq , (3)

where ν0 is the density of states per spin species, ε =
(T − Tc)/Tc, Tc is a zero field and zero strain critical
temperature, ξ is a zero field coherence length, β defines
the zero strain critical field, Bc0 =

√
−ε/β. In writing

Eq. (3) we normalize the OP, ψ such that it coincides
with the gap in the BCS limit. The fourth term of Eq. (3)
describes the field induced anisotropy of the spectrum of
fluctuations discussed in Appendix A, and the last term
is the correction to the spectrum of fluctuations due to
strain,

ν−1
0 Eεq = αBεTr[(BB)ε̂] + βεTr[(qq)ε̂]

+βBεTr[(BB)ε̂]
[
B2q2ξ2

Bε + (B·q)
2
ξ′2Bε

]
. (4)
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Here the first term yields the π-periodic modulation of
the critical field, the second term describes the strain in-
duced anisotropy of superconducting fluctuations. The
last term describes the π-periodic modulation of the dis-
persion. As the strain perturbation is assumed to be
weak, the terms of second order in momentum in the
dispersion play a less significant role, and we omit them
from the subsequent analysis.

Eqs. (3) and (4) hold in the D∞h symmetric system
with inversion symmetry. In the system with C∞v sym-
metry lacking the inversion center the dispersion rela-
tion also has Lifshitz invariants linear in the momentum,
q [11]. These terms are crucial for a few effects pre-
dicted for the non-centrosymmetric superconductors such
as onset of helical state, [31] and magnetoelectric effect,
[32, 33]. Here we assume that the Tc enhancement due
to the magnetoelectric effect is weak enough such that
the field remains to be pair breaking. Apart from the
shift in the momentum the fluctuation spectrum is qual-
itatively the same for both continuous symmetries. For
this reason Lifshitz invariants present in C∞v symmetric
systems do not show up in the present calculation, and
we omit them for clarity.

The superconducting OP temperature and field depen-
dence, ψ(B, T ) as well as the critical field temperature
dependence, Bc(T ), easily follow from Eqs. (3) and (4)
evaluated at q = 0. The OP reads,

ψ(T,B) =

√
−c−1

4 (ε+ βB2 + αBε Tr[(BB)ε̂]) , (5)

where previously introduced c4 coefficient is related to

the zero field OP via ψ(T < Tc, B = 0) =
√
−c−1

4 ε. The

OP given by Eq. (5) is shown in Fig. 2(b) for T < Tc and
three different choices of the ε̂ tensor. Fig. 2(b) demon-
strates that the amplitude and phase of the OP angular

dependence is controlled by
√
ε2
xx + ε2

xy, and εxx/εxy, re-

spectively.

Critical field is obtained from the condition of van-
ishing of the OP, ψ(T < Tc, Bc) = 0. This gives the
relationship,

ε+ βB2
c + αBεTr[(BcBc)ε̂] = 0 . (6)

which can be easily solved

Bc(θB)

Bc0
=

[
1− αBε

B2
c0

ε
(εxx cos 2θB + εxy sin 2θB)

]−1/2

.

(7)

The critical field shown in Fig. 2(b) exhibits qualita-
tively similar angular dependence as the OP. In both
Eqs. (5) and (7) the term ∝ αBε gives rise to the π-
periodic oscillations with identical dependence of the os-
cillation phase on the strain orientation.

C. Fluctuation mediated transport

The π-periodic magneto-resistance has been reported
at or near superconducting to normal transition driven
by an in-plane field. It is, therefore, rather plausible to
relate this observation to the onset of critical fluctuations.

Here we present a phenomenological treatment of the
transport at criticality based on the time dependent
Ginzburg-Landau formulation. Within this formulation
we use the standard expression for the Aslamazov-Larkin
fluctuation correction to the conductivity [34],

σALαβ = e2πν0

4Tc
T

∫
d2q

(2π)2

vαqv
β
q

E3
q

, (8)

where vαq = ∂Eq/∂qα is the group velocity of the super-
conducting fluctuations, e is electron charge, and here
and below we set kB , ~ = 1. We have checked explic-
itly that the fluctuation correction captured by Eq. (8)
complies with the symmetry requirements expressed by
Eq. (1) provided the spectrum of fluctuations takes the
form given by Eqs. (3) and (4).

To see how the critical field anisotropy is related to
the θB dependence of conductivity, it is instructive to
consider the spectrum of fluctuations,

ν−1
0 Eq ≈ ε+ βB2 + q2ξ2 + αBεTr[(BB)ε̂] , (9)

which depends only on the magnitude of the momentum,
q, and yet is anisotrpic with respect to the field, thanks
to the last term of Eq. (9). With the spectrum, (9),
the fluctuation correction, (8) can be written as σALαβ =

δαβTe
2/16[T−Tc(B, θB)], where the critical temperature

renormalized by field and strain, Tc(B, θB) = Tc−βB2−
αBεTr[(BB)ε̂].

Experimentally, it is often more convenient to control
the field B at fixed T . For T < Tc and B > Bc we
can rewrite the above result using the definition of Bc0
introduced earlier,

σALαβ = δαβ
e2

16

T

Tc

×
[(

1− T

Tc

)(
B2

B2
c0

− 1

)
+ αBεTr[(BB)ε̂]

]−1

. (10)

The conductivity correction given by Eq. (10) is shown
in Fig. 2(c) for the set of parameters used in Fig. 2(b).
The result, (10) suggests that the π-periodic θB depen-
dence in the critical field, gap, and magnetoresistance
have the same origin, expressed as a single term, ∝ αBε
in the free energy. In fact, Figs. 2(b) and 2(c) show that
the maxima in Bc, ψ and fluctuation conductivity all oc-
cur at the same field orientation.

The approximate spectrum of fluctuations, Eq. (9) is
isotropic with respect to momentum direction. In re-
sult, the conductivity tensor, (10) satisfies, σALxx = σALyy ,

and σALxy = 0. At finite field and/or strain the fluctua-
tion spectrum is allowed to be anisotropic in momentum.
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FIG. 2. Panel (a): Solid (black) line shows the critical
field without strain Bc0. Dashed (red) lines show the max-
imal and minimal critical field Bc, Eq. (7) attained as θB
varies for |αBε|

√
ε2
xx + ε2

xy/β = 0.2. The field is in units of
Bc0(T = 0.75Tc). Panel (b): Left axis (blue): the OP ψ(θB),
Eq. (5) for B/Bc0 = 0.8 [dotted (blue) line in panel (a)] nor-
malized to ψT0 = ψ(B = 0). Right axis (red): Bc(θB)/Bc0,
Eq. (7). Here αBε (εxx, εxy) /β = (0, 0) , (0.2, 0) , (0, 0.2) for
the solid, dashed and dotted lines, respectively. All the curves
are T independent. Panel (c): σAL

xx (θB)/e2 per Eq. (10) for
B = 1.35Bc0 and T = 0.75Tc [black dot • in panel (a)] for
αBε (εxx, εxy) /β = (0, 0), (0.2, 0), (0, 0.2) shown by solid,
dashed and dotted lines, respectively.

The microscopic origin of such an anisotropy requires a
separate consideration that is beyond the scope of the
current work. Instead, in Appendix A we show how the
fluctuation spectrum anisotropy results in non-diagonal
conductivity tensor in the form of the planar Hall effect.

III. MICROSCOPIC MODELS OF THE
CRITICAL FIELD ANISOTROPY

Here we discuss microscopic mechanisms of the in-
plane field anisotropy.

A. Six-fold anisotropy

Before addressing the two-fold anisotropy, for com-
pleteness we briefly discuss the possible origins of the
pronounced six-fold anisotropy reported in Ref. [10]. It
is rather natural that the SO interaction is necessary to
couple Zeeman interaction to the six-fold anisotropy of
the lattice. Yet, the Ising SO coupling points out of plane
with the in-plane field staying perpendicular to the spin
polarization for all field orientations. We therefore do
not expect the Ising SO taken alone to generate the an-
gular dependence of the critical field. This, of course is
in agreement with the direct calculation.

In contrast, Ref. [25] reports clearly different data for
the in- and out-of-plane exchange fields. Similarly, for
the purely in-plane field the anisotropy might result from
the spin-polarization that can form different angles with
the in-plane field. The well known SO coupling of this
kind is the Rashba SO coupling. It appears when the
horizontal mirror symmetry, σh is broken. In fact, it has
been shown in Ref. [35] that in the presence of the Rashba
SO coupling the topological phase [36] is very sensitive to
the direction of the magnetic field. In particular, the two
pairs of nodes present when the Zeeman splitting exceeds
the superconducting gap, survive the Rashba SO only for
the field aligned along the ΓK directions.

Based on these observations we compute the angular
dependence of Bc in the presence of Ising and Rashba
SO interaction within a minimal model of a single band
superconductor with the band structure represented by
the Hamiltonian,

H0 =
∑
k,s

ξkc
†
kscks +

∑
k,ss′

[γk −B] · σss′c†kscks′ , (11)

where ξk is the energy measured from EF , γk = −γ−k
is the SO coupling term, c†ks creates a particle with the
momentum, k and spin s. We denote by σ = (σ1, σ2, σ3)
the vector of Pauli matrices.

For a specified SO coupling, γk, the critical field,
Bc(T ) is determined by the solution of the linearized self-
consistency equation [16, 37, 38]

ln

(
T

Tc

)
+ πT

∞∑
n=−∞

[
1

|ωn|

−

〈
|ωn|

(
γ2 + ω2

n

)
ω2
n (B2

c + γ2) + (Bc ·γ)2 + ω4
n

〉
F

]
= 0, (12)

where 〈. . .〉F stands for the angular averaging over the
Fermi surface, ωn = πT (2n+ 1), Bc = Bc(B/B).



6

Bc

0 π

2
π

3 π
2

2 π

7.88

7.90

7.92

7.94

7.96

7.98

8.00

8.02

K'K

Γ

M

kx

ky

R

-2
-1
0
1
2

K'K

Γ

M

kx

ky

I

θB

FIG. 3. The six-fold oscillations of the critical field, Bc in
units of Tc as a function of the field direction, θB obtained by
solving Eq. (12) with T = 0.8Tc, γ

I = 80Tc, γ
R = 4Tc, kFa1 =

2.9. Insets show the direction of the Rashba SO coupling (R)
and the magnitude of the Ising SO coupling (I) aligned with
the z axis in units of γI shown in the first Brillouin zone.

We write, γk = γIk + γRk , with the dominant SO cou-
pling of Ising type, γIk and much weaker Rashba SO inter-
action, γRk . For simplicity, we employ the tight-binding
single band approximation,

γIk = γI ẑ[sin(k · d1) + sin(k · d2) + sin(k · d3)] (13a)

γRk = γR
√

3

2
x̂[sin(k · d2)− sin(k · d3)]

+γR
1

2
ŷ[sin(k · d2) + sin(k · d3)− 2 sin(k · d1)] , (13b)

where the vectors, di are expressed via the Bravais lattice
vectors, a1,2 shown in Fig. 1 as d1 = a1, d2 = a2 − a1,
and d3 = −a2. Eqs. (13) can be obtained based on the
representations of D3h and C3v groups on the hexagonal
lattice, respectively [11]. The critical field obtained from
Eqs. (12), (13) are illustrated in Fig. 3. From symmetry
we expect the six fold modulation to appear in sixth order
in field, which would make the effect rather small, as
indeed is apparent from Fig. 3 for the typical choice of
parameters.

The origin of oscillations is deduced from the observa-
tion made in Ref. [35] regarding the stability of the topo-
logical phase. The oscillations arise because the Ising
SO coupling Eq. (13a) vanishes along ΓM . Indeed, for
such momenta the spin-splitting is solely due to Rashba
SO Eq. (13b). The superconductivity k on ΓM lines is
least protected when γRk ‖ B. We stress that the present
analysis does not relate directly to the field induced topo-
logical phase, since the above calculation is performed in
the normal state.

B. Mechanisms of two-fold anisotropy

The natural question is whether the existing physically
motivated models conform to the phenomenology pre-

sented thus far. We, indeed find this to be correct. In
some cases this is not automatic, and we furnish some re-
strictions on these models. We start with the discussion
of the models formulated in terms of the conventional
OP.

1. Anisotropic magnetic impurities

In the recent work Ref. [24] the scenario of two-fold
field anisotropy has been suggested based on the effect of
magnetic defects with an easy axis. This point of view
has an added advantage of explaining the hysteretic be-
haviour tied to the superconductivity [25] rather natu-
rally. Moreover it lends itself to the phenomenology pre-
sented above.

Indeed, the isotropic part of the pair breaking effect of
the field captured by the constant β in Eq. (3) [26],

β =πT
∞∑

n=−∞

Γ′m
(
Γ′2m + (γI)2

)
(2Γm + |ωn|)2

(|ωn|Γ′m + (γI)2)

× 1

[Γ′m (2Γm + |ωn|) + (γI)2]
, (14)

where Γm is the scattering rate off the magnetic im-
purities and Γ′m = Γm + |ωn|. Here and in what fol-
lows, we considered the Ising SO coupling, Eq. (13a)
for the momenta close to the K-points of the Brillouin
Zone. In this case the SO coupling takes the form,
γ (ϕk) ≈ ẑγIsgn [cos (3ϕk)]. Although this approxima-
tion applies to K-pockets, the results for the Γ pocket
are qualitatively similar.

What is crucial for us here is that in addition to β
we have αBεε̂ 6= 0 signifying the field anisotropy when
the magnetic impurities have an easy axis. The coeffi-
cient of the first term of Eq. (4) controlling the two-fold
anisotropy reads,

αBεε̂ =πT

( ∞∑
n=−∞

−ΓmΓ′2m

(2Γm + |ωn|)2
[|ωn|Γ′m + (γI)2]

× 1

[Γ′m (2Γm + |ωn|) + (γI)2]

)
ε̂ϕ (15)

where,

ε̂ϕ =

[
cos 2ϕ sin 2ϕ
sin 2ϕ − cos 2ϕ

]
(16)

contains the dependence of the critical field on the easy
axis direction, specified by the angle ϕ it forms with x-
axis. Equation (16) reflects the transformation prop-
erty of a second rank tensor, as the easy axis direc-
tion changes. Put simply, it ensures that the two-fold
anisotropy enters via the combination ∝ cos[2(θB − ϕ)]
which is naturally expected. We have confirmed this by
a direct calculation as well. We emphasize that the phys-
ically meaningful quantity is the product, αBεε̂. In the
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presented scenario ε̂ does not have a meaning of strain.
It is therefore, neither possible nor necessary to consider
αBε and ε̂ separately in this case.

2. Coupling between the leading singlet and subleading
triplet channels

Following Ref. [9] we now consider the possibility of
the two-fold anisotropy arising from the coupling between
the leading s-wave instability and the subleading uncon-
ventional triplet OP(s). Our approach here remains the
same. It, again builds upon observation that the relevant
observable is the critical field.

Consider a two-component triplet order parameter,
η = (η1, η2). The free energy including the two OPs
can be written as

F [ψ, η] =ε|ψ|2 + εt(|η1|2 + |η2|2) + c4|ψ|4

+

[
ψ∗

2∑
l=1

C∗l (B, ε̂)ηl + c.c.

]
, (17)

where εt = (T − Tt)/Tt, Tt < Tc is the critical tempera-
ture of the triplet channel. The free energy in Eq. (17)
is minimized with respect to ηi for ηi = −ψCi(B, ε̂)/εt.
Substitution of this solution to Eq. (17) gives the effective
free energy,

F [ψ] =

[
ε− ε−1

t

∑
l

|Cl|2
]
|ψ|2 + c4|ψ|4 (18)

describing the condensation of the singlet OP.
The question at this junction is how the free energy

in Eq. (18) may result in π-periodic critical field. It
can appear via the specific dependence of the coupling
coefficients Cl on the field and strain. The gap func-
tion is a mixture of the isotropic singlet and anisotropic
triplet components. Still, in the considered scenario the
thermodynamic state retains the symmetry of the un-
derlying lattice. The same is true for the free energy
in Eq.(18). Therefore, the π-periodicity follows if the
coefficient

∑
l |Cl|2 happens to generate the combina-

tion, ∝ Tr[(BB)ε̂]. For this to happen, the couplings
Cl should contain two kinds of terms, Cl = CBl + CεBl ,
where CBl ∝ B, and yet additionally, CεBl linear in both
B and ε̂.

To be specific, we consider a D3h symmetric system
where the A′1 symmetric singlet coexists with E′′ field
induced parallel spin triplets [17]. To the linear order in
the field the coupling constants in this case are fixed by
the symmetry, CBl ∝ i(ẑ ×B)l. To write the symmetry
allowed coupling linear in both strain and the field, note
that the vector, ε̂B with components, (ε̂B)l =

∑
l′ ε̂ll′Bl′

belongs to E′′ as does the B. Hence, Cl = λ1i(ẑ ×B)l +
λ2i(ẑ × ε̂B)l, where λ1,2 are two constants. Consulting
Eq. (18) we obtain in the considered scenario,

αBε = −2ε−1
t λ1λ2 . (19)

(a)
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FIG. 4. Panel (a): The angular dependence of the effective
magnetic field B2

eff , computed from the definition Eq. (20).
The magnitude of the magnetic field |B| = 7Tc. Panel
(b): The angular dependence of the critical field Bc ob-
tained by solving Eq. (23) for the clean case with T = 0.5Tc,
γI = 15Tc. Panels (a,b): The results obtained for the val-
ues of λ (εxx, εxy) = (0, 0), (0.1, 0), (0, 0.1) and (0.1, 0.1) /

√
2

are shown by the thin (black), solid (blue), dashed (red) and
dotted-dashed (green) lines, respectively. All curves are π-
periodic and have a phase difference of π/8. Bc and Beff are
given in units of Tc.

The question arises as to the microscopic origin of the
coupling proportional to both ε̂ and B. One possible
assumption leading to such a coupling is that the strain
renormalizes the Zeeman interaction such that it becomes

Heff = Beff · σ , Beff = B + λε̂B . (20)

The form of Eq. (20) is fixed by symmetry. This, however
is insufficient to estimate the relative importance of the g-
factor anisotropy. For that reason we describe the possi-
ble mechanism of the correction to the g-factor due to the
tensor perturbation in some details in Appendix B. We
have estimated λ ≈ (λSO/∆Ecr) (∆Estr/∆Ecr), where
λSO is the atomic SO coupling strength, ∆Ecr is a crys-
tal field splitting, and ∆Estr is a typical energy scale
associated with the strain.

It follows that λ in Eq. (20) is sensitive to the micro-
scopic details such as, for instance, the splitting between
the eg and t2g orbitals even and odd under the mirror,
σh, respectively. Generally, the ratio ∆Estr/∆Ecr is ex-
pected to be small. However, it might not be small near
the extended defects, which may lead to modification of
the OP or even the local time reversal symmetry breaking
[39].

One consequence of Eq. (20) is that the two-fold
anisotropy results already in the scenario based on a sin-
gle component, s-wave OP. Indeed, the pair breaking ef-
fect is caused by the Zeeman splitting of the electronic
bands. With the effective Zeeman interaction, Eq. (20)
the spin splitting itself becomes anisotropic. This is il-
lustrated in the Fig. 4a for different strain tensor, ε̂. We,
therefore, address this possibility in the next section.
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FIG. 5. The angular dependence of the critical field for
different values of impurity scattering rate Γ, obtained from
Eq. (23) for T = 0.5Tc, γ

I = 15Tc, λ (εxx, εxy) = (0.1, 0.1).
The results obtained for Γ = 0, 1, 10, 100Tc are shown in solid
(blue), dashed (red), dotted (green) and thin (black) lines
respectively. As in the clean case, Fig. 4b, Bc (θB) has a
π periodicity. The angular dependence is suppressed as the
disorder scattering rate, Γ increases. Bc is given in units of
Tc.

3. Critical field anisotropy induced by the anisotropic
g-factor

Now we make an assumption of an anisotropic g-factor
given by Eq. (20), and study how this generates the π-
periodic critical field Bc. We adopt the same strategy as
before to describe the angular dependence of the critical
field. Specifically, we work within the phenomenological
scheme presented in the Sec. II. In the expression for the
free energy given by Eq. (3) we have for the constant
controlling the critical field, Bc0,

β = πT

∞∑
n=−∞

(Γ + |ωn|)
ω2
n [(γI)2 + Γ |ωn|+ ω2

n]
, (21)

and because of the Eq. (20), we have a simple relation-
ship,

αBε = 2λβ . (22)

In fact, for the particular scenario of the field
anisotropy based on Eq. (20) we can compute the critical
field without making an expansion in B (see Appendix C
for details),

ln

(
T

Tc

)
+ πT

∞∑
n=−∞

{
1

|ωn|

− (γI)2 + Γ |ωn|+ ω2
n

|ωn| [B2
eff + (γI)2 + ω2

n] + Γ (B2
eff + ω2

n)

}
= 0, (23)

where we have allowed for non-magnetic disorder charac-
terized by the elastic scattering rate Γ.

We solve Eq. (23) numerically for different choices of
the anisotropic part of the g-factor tensor, λε̂. The re-
sults are shown in Fig. 4b. In the present approach the

anisotropy of the critical field is a direct consequence of
the anisotropy of the g-factor Eq. (20). This is illus-
trated by the juxtaposition of the angular dependence
of the effective field, Beff Eq. (20) for an external field,
of a fixed magnitude and the angular dependence of the
critical field. Comparison of Fig. 4a and 4b shows that
maximal (minimal) Bc occurs for minimal (maximal) g-
factor.

In the present scenario, the scalar disorder randomiz-
ing different directions of motion tends to suppress the
effect of the g-factor anisotropy. The detrimental effect
of the disorder scattering on the critical field anisotropy
is illustrated in Fig. 5.

4. Two-fold periodicity resulting from the nematic
transition

In this scenario, suggested in Ref. [10] the role of tensor
perturbation ε̂ is played by the components (η1, η2) of the
triplet OP, that is assumed to form spontaneously. In this
scenario, taking for instance the system with C3v or D3h

symmetry, the contribution to the free energy that gives
rise to π-periodicity reads, ∝ 2BxByη1 + (B2

x − B2
y)η2.

The rest of the analysis is then similar to the above, with
a similar outcome.

IV. CONCLUSIONS

We have constructed a phenomenological theory of
the in-plane magnetic field anisotropy in two-dimensional
TMD based superconductors. The starting point of the
discussion is the analysis of constrains imposed on the
conductivity tensor by symmetry to all orders in the mag-
netic field. The symmetry alone implies that the two-fold
anisotropy of the trace of the conductivity tensor requires
a symmetry breaking tensor perturbation. Alternatively,
such a tensor perturbation may result if the supercon-
ductivity breaks the symmetry of the underlying lattice,
e.g. via a nematic phase transition.

The individual entries of the conductivity tensor may
have a two-fold anisotropy because of the standard pla-
nar Hall effect. On experimental level, therefore, it is im-
portant to differentiate between the π-periodicity of the
trace of the conductivity tensor and π-periodicity related
to the planar Hall contribution. The very same discus-
sion makes it clear that the six-fold anisotropy requires
either D3h or C3v symmetries.

We then turned to the thermodynamic properties, fo-
cusing initially on the single component s-wave OP. We
have identified the specific combination of the tensor per-
turbation and the magnetic field that is responsible for π-
periodicity in both transport and thermodynamic prop-
erties. This has allowed us to formulate the existing sce-
narios of the π-periodicity within the same scheme. Such
a reformulation reveals the limitations of the existing ap-
proaches, their commonalities and differences.
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We now outline the broader significance of our results
in the context of the existing literature. Ref. [9] suggests
that the in-plane anisotropies are due to the coupling of
the leading s-wave superconducting instability and sub-
leading spin-triplet channels. The main claim of this part
of Ref. [9] is that coupling mediated by strain and/or
magnetic field results in the field anisotropies. Here we
clarify this statement by deriving the explicit field depen-
dence of the singlet to triplet coupling in Sec. III. Based
on the symmetry analysis of the conductivity tensor we
show that the two-fold anisotropy may result only if there
are two kinds of this couplings: one linear in the field,
and the other linear in both the strain and the field. We
present the microscopic model giving rise to such singlet-
triplet coupling is constructed in in Sec. III B 2.

The most significant difference between the Refs. [10]
and [9] is the pronounced six-fold anisotropy at higher
fields reported in Ref. [10], and not observed in the ex-
periments with larger number of layers. The microscopic
theory of the six-fold periodicity based on the combined
action of Rashba and Ising SO coupling is presented in
Sec. III A. Let us emphasize that the six-fold modula-
tion of the dispersion relation and/or six-fold variation
of the gap function do not produce the desired six-fold
periodic critical field, because the thermodynamic quan-
tities are averages over the Fermi surface, and the paral-
lel field couples to spin via isotropic Zeeman interaction.
The nematic transition [10] scenario, similarly to [9] re-
quires the close competition between the leading spin-
singlet and subleading spin-triplet pairing channels. Our
phenomenology is flexible enough to incorporate such a
scenario in order to produce predictions for other trans-
port and thermodynamic quantities other than the criti-
cal field.

In the work [24] two of us have studied the magnetic
anisotropic impurities as a possible source of the two-
fold field anisotropy. In the present work we have re-
formulated this model in terms of the symmetry based
phenomenology in Sec. III B 1. The phenomenology de-
veloped in this work allows us to readily obtain the
field and temperature dependence of the superconduct-
ing gap, critical temperature as well as the transport field
anisotropy based on a single input of the critical field
anisotropy studied in the previous work.

Clearly, more detailed studies are required to fully clar-
ify the origin of in-plane field anisotropy in TMD based
few-layer systems under different external conditions. We
believe that the presented phenomenological theory may
serve as a convenient framework in addressing the related
questions.
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Appendix A: Anisotropy of fluctuation spectrum
and planar Hall effect

Here we trace the relation between the anisotropy of
the fluctuation spectrum and the finite planar Hall ef-
fect. To this end, we compute the fluctuation conductiv-
ity from Eq. (8) yet now with ξB 6= 0 in the dispersion of
the superconducting fluctuations, Eqs. (3) and (4). This
term describes the anisotropy of the dispersion relation of
superconducting fluctuations due to the finite magnetic
field. Such an anisotropy gives rise to the fluctuation in-
duced planar Hall effect. This contribution is contained
in the general expression, Eq. (1) as a term proportional
to σp.

The result is presented in Fig. 6. Clearly, the planar
Hall contribution is π-periodic, and exhibits an enhance-
ment for the field and/or the temperature approaching
the transition. We stress that such a contribution has to
be disentangled from the π-periodicity of Tr σ̂. The mi-
croscopic origin of the field induced spectrum anisotrpies
is beyond the scope of the present work.
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Appendix B: Strain induced anisotrpy of the atomic
g-factor

Here we argue that the strain like perturbation de-
scribed by a tensor ε̂ gives rise to the anisotropy of the
Zeeman coupling expressed as Eq. (20). Such a g-factor
anisotropy most readily follows in the atomic limit. For
once an atom is subject to strain-like perturbation its re-
sponse to a Zeeman field is expected to become anisotrpic
in the presence of the SO coupling.

To illustrate the idea consider the electronic states at
the Γ point predominantly having a character of dz2 or-
bitals. At Γ the two states |0, 1/2〉 and |0,−1/2〉 are spin
degenerate. The in-plane field B couples these states via
the usual Zeeman interaction, Hz = B · σ, where the
Pauli matrices, σ = (σx, σy, σz) act in the subspace of
the two states, |0,±1/2〉. We subject this system to the
strain-like perturbation, Hε. Here we are not interested
in its exact form. What matters is its transformation
properties under the symmetry operations. Hence, we
write Hε =

∑
i,j ε̂ijXiXj , we denote by Xi any vector

operator. Such a perturbation causes the virtual tran-
sitions to the states with different orbital content. Our
goal is to show that such transitions modify the effective
Hamiltonian acting in the space |0,±1/2〉 thus taking the
form of Eq. (20).

1. Atomic Hamiltonian and crystal field

Consider the d-shell atomic levels of a transition metal
ion. For definiteness, we consider the limit of crystal
field being stronger than the SO coupling. Neglecting
for a moment the SO coupling the crystal field lifts the
five fold orbital degeneracy of a d-shell into the A1g, E1g

and E2g. These orbitals appropriate to the D∞h symme-
try are characterized by the z-component of the angular
momentum, m = 0, m = ±1 and m = ±2, respectively.

The crystal field quenches the in-plane components of
the angular momentum, Lx,y, while the expectation value
of Lz in the orbital states listed above staying finite. For
this reason we represent the atomic Hamiltonian in the
form, Ha = H0 + V , where the perturbation reads,

V = λSO(Lxσx + Lyσy) + gLB · L +Hε . (B1)

The unperturbed Hamiltonian, H0 describes the bare
atomic d-shell atomic level structure, and includes the
crystal field effects as well as a part of the SO interac-
tion, λSOLzσz left unquenched by the crystal field. In
addition, the last but one term in Eq. (B1) contains a
usual coupling of the magnetic field to the orbital mo-
tion of an electron in the atom.

Our approach here is to consider the terms other than
H0 as a small perturbation. This is justified in the limit
of crystal field being stronger than SO coupling. Indeed,
in this case the λSOLzσz as part of H0 lifts the double
spin degeneracy. The states then form five Kramers dou-
blets |0,±1/2〉, | ± 1,±1/2〉, | ± 1,∓1/2〉, | ± 2,±1/2〉,

| ± 2,∓1/2〉, where the state |m, s〉, has the z-component
of the spin, s = ±1/2. The doublets transform as E1/2g,
E3/2g, E1/2g, E5/2g, and E3/2g spinor representation of
the double group, D∞h.

2. Perturbation theory and effective Hamiltonian

For definiteness, we consider the space of |0,±1/2〉 as
appropriate to the electronic states residing at the hole
pocket centered at Γ. Equation (20) is an effective Hamil-
tonian describing spectrum in the above space of two
states.

By adopting the results of Ref. [40] to the present prob-
lem we obtain for the matrix elements of the effective
Hamiltonian, apart from the original Zeeman splitting,

Heff
ss′ =

∑
m,m′ 6=0

s1,2

(E0s − Ems1)−1(E0s − Em′s2)−1

×〈0s|VX |ms1〉〈ms1|VD|m′s2〉〈m′s2|VX |ms1〉 , (B2)

where Ems are the unperturbed energies defined by H0.
In Eq. (B2) the perturbation, (B1) is split into a diag-
onal and off-diagonal parts, V = VX + VD defined in
terms of the projection operator, P = |0, 1/2〉〈0, 1/2| +
|0,−1/2〉〈0,−1/2| as VX = PH(1 − P) + (1 − P)HP,
VD = V − VX .

It is convenient to rewrite the perturbation Hamilto-
nian, (B1) in the form

V =λSO(L+σ− + L−σ+) + gL(B+L− +B−L+)

+ (ε−L̄
2
+ + ε+L̄

2
−) (B3)

where, σ± = σx±iσy, L± = (Lx±iLy)/2, L̄± = X1±iX2

transforming as L±, and ε± = εxx − εyy ± 2iεxy. With
Eq. (B3) the effective Hamiltonian takes the form,

Heff = σ+
〈0|λSOL−|1〉〈1|gLL−|2〉〈2|ε−L̄2

+|0〉
(E0,1/2 − E1,−1/2)(E0,1/2 − E2,1/2)

(B4)

+σ+
〈0|gLL−|1〉〈1|λSOL−|2〉〈2|ε−L̄2

+|0〉
(E0,1/2 − E1,1/2)(E0,1/2 − E2,−1/2)

+ . . .+ h.c.,

where |m〉 is the orbital state with the out-of-plane com-
ponent of angular momentum, m, h.c. stands for the
Hermitian conjugation, and . . . denotes the remaining
4 terms obtained from the general expression Eq. (B2).
All such terms produce a similar contribution. In result
we estimate,

λ ≈ gL
(
λSO

∆Ecr

)(
∆Estr
∆Ecr

)
, (B5)

where ∆Ecr is the typical spin splitting and ∆Estr is the
typical energy scale associated with the strain perturba-
tion Hε.
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Appendix C: Critical field of a superconductor with
an anisotropic g-factor

Here we study the effect of the anisotropy of the g-
factor as expressed by Eq. (20) on the critical field of a
superconductor. In particular we derive the expressions
(21) and (22) controlling the critical field and the two-fold
anisotropy. We assume the superconductor is described
by the Hamiltonian Eq. (11).

The 4×4 Green function Ĝ (k;ωn) satisfies the Gor’kov
equation, [

iωnσ̂0 − ĤBdG − Σ̂
]
Ĝ (k;ωn) = σ̂0 (C1)

where σ0 is the 2× 2 unit matrix, ωn = πT (2n+ 1) are

the Matsubara frequencies and ĤBdG is the Bogoliubov–
de-Gennes (BdG) Hamiltonian corresponding to the nor-
mal state Hamiltonian [Eq. (11)],

ĤBdG =

[
ξk + [γ (k)−Beff ]·σ ∆

∆† −ξk + [γ (k) + Beff ]·σT

]
,

(C2)
where the Zeeman field B is replaced by Beff introduced
in Eq. (20) to incorporate the effect of strain.

As in the main text, in Eq. (C2) the isotropic OP coin-
cides with the spectral gap in the BCS limit, ∆ = ψiσ2.
The self-energy Σ̂ is due to the disorder scattering,

Σ̂ = Γ

∫
dϕk

2π

∫
dξk
π
σ̂zĜ (k;ωn) σ̂z (C3)

where Γ is the scattering rate off the scalar disorder, σ̂z =
diag (σ0,−σ0), and tanϕk = ky/kx. We introduce the
quasi-classical Green function in the form,

ĝ (kF) =

∫ ∞
−∞

dξk
π
iσ̂zĜ (k;ωn) (C4)

=

[
g (kF;ωn) −if (kF;ωn)

−if∗ (−kF;ωn) −g∗ (−kF;ωn)

]
,

where kF = k/k. We parametrize the function,
f (kF;ωn) in Eq. (C4) in the standard form as follows

[41],

f (kF;ωn) = [f0 (kF;ωn)σ0 + f (kF;ωn) · σ] iσ2 . (C5)

To find the critical field, it is sufficient to evaluate the
functions, f0 and f to the linear order in ψ denoted here

by f
(1)
0 and f (1), respectively. These expressions can be

found from the Eilenberger equation linearized in the OP
in the form [42]

ωnf
(1)
0 =if (1) ·Beff + sgn (ωn)ψ

+ Γsgn (ωn)
[〈
f

(1)
0

〉
− f (1)

0

]
, (C6a)

ωnf
(1) =if

(1)
0 Beff + γk × f (1)

+ Γsgn (ωn)
[〈

f (1)
〉
− f (1)

]
. (C6b)

where 〈· · · 〉 =
∫
dϕk/2π stands for the angular average

over the Fermi surface.

The critical field is determined by the self-consistency
equation written to the first order in the OP [19]

ln

(
T

Tc

)
+ πT

∞∑
n=−∞

(
1

|ωn|
− 1

ψ

〈
f

(1)
0

〉)
= 0. (C7)

To simplify the calculations we consider the SO coupling
of the form, γ (ϕk) = ẑγIsgn [cos (3ϕk)]. Such a coupling
is appropriate for the SO coupling at K pockets. Our
results are qualitatively unchanged with other k depen-
dence of the Ising SO coupling. With the above choice
of the SO coupling the solution to Eq. (C6) reads

〈
f

(1)
0

〉
=

ψ
((
γI
)2

+ Γ |ωn|+ ω2
n

)
|ωn|

(
B2

eff + (γI)
2

+ ω2
n

)
+ Γ (B2

eff + ω2
n)
.

(C8)
Substituting Eq. (C8) into Eq. (C7) gives an equation
(23) of the main text. The second order expansion of
Eq. (C8) in Beff yields Eq. (21) for the coefficient β.
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R. Cardoso-Gil, U. Stockert, A. P. Mackenzie, D. F.
Agterberg, C. Geibel, and E. Hassinger, Field-induced

transition from even to odd parity superconductivity in
cerh2as2 (2021), arXiv:2101.09522 [cond-mat.supr-con].

[23] T. Yoshida, M. Sigrist, and Y. Yanase, Journal of
the Physical Society of Japan 83, 013703 (2014),
https://doi.org/10.7566/JPSJ.83.013703.

[24] D. Wickramaratne, M. Haim, M. Khodas, and I. I. Mazin,
Phys. Rev. B 104, L060501 (2021).

[25] K. Kang, S. Jiang, H. Berger, K. Watanabe,
T. Taniguchi, L. Forró, J. Shan, and K. F.
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