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The London penetration depth, λ(T ), was measured in a single crystal V3Si. The superfluid
density obtained from this measurement shows a distinct signature of two almost decoupled super-
conducting gaps. This alone is insufficient to distinguish between s± and s++ pairing states, but it
can be achieved by studying the effect of a controlled non-magnetic disorder on the superconducting
transition temperature, Tc. For this purpose, the same V3Si crystal was sequentially irradiated by
2.5 MeV electrons three times, repeating the measurement between the irradiation runs. A total
dose of 10 C/cm2 (6.24 × 1019 electrons/cm2) was accumulated, for which Tc has changed from
16.4 K in a pristine state to 14.7 K (9.3 %). This substantial suppression is impossible for a single
isotropic gap, but also it is not large enough for a sign-changing s± pairing state. Our electronic
band-structure calculations show how five bands crossing the Fermi energy can be naturally grouped
to support two effective gaps, not dissimilar from the iron pnictides physics. We analyze the results
using two-gap models for both, λ(T ) and Tc, which describe the data very well. Thus, the exper-
imental results and theoretical analysis provide strong support for an s++ superconductivity with
two unequal gaps, ∆1 (0) ≈ 2.53 meV and ∆2 (0) ≈ 1.42 meV, and a very weak inter-band coupling
in V3Si superconductor.

I. INTRODUCTION

At the time of its discovery in 1953 [1], a cubic (A15
structure) V3Si compound had the highest superconduct-
ing transition temperature, around 17 K. Despite show-
ing a clear exponential attenuation of all thermodynamic
quantities upon cooling towards T = 0, which signaled a
fully gapped Fermi surface, most of spectroscopic [2, 3],
transport [4, 5] and thermodynamic measurements [3, 6–
8] showed unconventional behavior or at least some un-
usual features. Such behavior can be associated with
a peculiar electronic band-structure showing Van Hove
singularities in the density of states (DOS) close to the
Fermi level [3, 9–11]. While this certainly plays an im-
portant role, now we know that a multi-gap superconduc-
tivity is needed as well to understand the measurements.
Here we focus on a multi-band, multi-gap nature of su-
perconductivity in this fascinating material.

While MgB2 [12] is commonly accepted as the first con-
firmed two-gap superconductor [13–15], the multi-band
superconductivity was studied much earlier, albeit only
theoretically. Soon after the development of the micro-
scopic model of superconductivity [16] the possibility of
“overlapping bands” was studied [17–19], eventually lead-
ing to a general description of multi-band superconduc-
tivity [20–23], in particular the effects of disorder [23].
Nevertheless, before MgB2, there was no attempt to in-
terpret the unusual properties of V3Si through the prism

∗ prozorov@ameslab.gov

of multi-band effects. The observations of the uncon-
ventional London penetration depth [2, 3], anisotropic
upper critical field, Hc2 [6], an unexpectedly large de-
crease of Tc with nonmagnetic disorder, either after neu-
tron irradiation [5, 24] or naturally present in real ma-
terial [25], a large Tc/TF ∼ 0.01 ratio (TF is Fermi tem-
perature) [3] and a variety of vortex lattice configura-
tions [26] all pointed to an unconventional behavior of a
confirmed s−wave superconductor. Surely, modern re-
interpretation of many of these results is consistent with,
if not fully explained, by multi-gap superconductivity.
Therefore, retrospectively, V3Si is a much earlier than
MgB2, “the first” two-band superconductor.

Experimental observation of a two-gap superconduct-
ing state relies on a substantial decoupling between the
two bands and a substantial difference between them
either in terms of dimensionality, electronic properties,
pairing mechanism and/or scattering rates [7, 27–29]. In
terms of more recent measurements, when multi-band su-
perconductivity became widely accepted and discussed,
circa 2001, while some reports support single-gap conven-
tional s−wave BCS superconductivity in V3Si [28], many
more experimental and theoretical studies point to two
distinct energy gaps in this material [7, 30–32]. There
is a complication, though. Perhaps due to a variation
of stoichiometry, atomic disorder or extremely strain-
sensitive structure of Van Hove singularities in the vicin-
ity of the Fermi level, V3Si samples show a spread of
behaviors, especially in the properties related to a two-
gap superconductivity [4, 8, 10, 11, 24, 30, 33]. Fur-
thermore, establishing a multi-band nature from thermo-
dynamic measurements is necessary but insufficient for
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the microscopic understanding of superconductivity, be-
cause the order parameter enters thermodynamic quan-
tities in the even powers, therefore the gaps of the same
or opposite signs on different bands contribute similarly
[7, 27, 34, 35]. In this situation, phase-sensitive experi-
ments are needed, but it is often difficult to implement
experimentally [22, 36, 37]. While in high−Tc cuprates
direct measurements that depend on the phase varia-
tion along the Fermi surface have provided a definitive
proof of a sign-changing d−wave order parameter [36],
in multi-band iron-based superconductors, a similar sim-
ple arrangement in real space is not possible, and more
complicated approaches are needed [37]. The interpreta-
tions of more complex phase-sensitive experiments, such
as quasiparticles interference, are not straightforward ei-
ther [38, 39].

Scattering off non-magnetic impurities is a phase-
sensitive method, albeit indirect, that was successfully
used in iron-based superconductors to probe the sign-
changing multi-band s± order parameter [40–42]. As
we discuss in Section III.E, the suppression of Tc for-
mally depends on the Fermi surface averaging of the or-
der parameter in the first power, 〈∆ (k)〉FS , which is
sign-sensitive. For example, isotropic s−wave angular
part averages to 1, but d−wave averages to 0. Of course,
more than one measurement is needed for different levels
of scattering in the system. In our approach, simultane-
ous measurements of normal state resistivity (to charac-
terize the amount of introduced disorder), the supercon-
ducting transition temperature, Tc (phase-sensitive mea-
surement), and low-temperature variation of the London
penetration depth, λ (T ) (to estimate the anisotropy of
the order parameter amplitude), provide enough infor-
mation to make that conclusion. Here we show that
this scheme can be applied to prove the existence of two
distinct gaps of the same sign, or s++ order parame-
ter, in the title material, V3Si. The utility of such an
approach was extended significantly by recent theoreti-
cal analysis of the impurity scattering in superconduc-
tors with non-trivial multi-band structure [43, 44]. For
example, it is possible to have a singlet unconventional
pairing with a sign-changing superconducting order pa-
rameter, yet fully gapped Fermi surface, similar to what
we uncover here. However, the electronic band-structure
should support such an unconventional scenario in a first
place. We note that nodeless unconventional supercon-
ductivity has been studied in a context of triplet pair-
ing, such as p−wave, which shows a variety of nodal and
nodeless behaviors depending on the material and exper-
imental conditions, for example, in some heavy-fermion
superconductors [45, 46]. However, most superconduc-
tors have singlet pairing states and the studies of the
effects of a controlled disorder is a powerful tool to study
unconventional and exotic states, including multi-gap su-
perconductivity [42]. For example, a similar combination
of London penetration depth measurements of electron-
irradiated samples was used to study disorder-driven
transitions of the superconducting gap [47], the interplay

of ferromagnetism and superconductivity [48], proving
fully-gapped superconductivity in a heavy-fermion super-
conductor [49], and following the doping evolution of the
order parameter [50]. If we include other types of irra-
diation, many studies employed neutrons and protons to
induce non-magnetic disorder. Such disorder was used to
induce a two-gap to a single-gap crossover in MgB2 [51],
trace the evolution of s± symmetry in iron-pnictides [52]
and studying its cross-over to s++ state [41], or signifi-
cantly suppress the superfluid density [53]. Evidently, a
controlled disorder in conjunction with thermodynamic
measurements is a well-established approach to tune and
probe the superconducting state.

II. EXPERIMENTAL

Our V3Si crystals with Tc ≈ 16.4 K were cut out of a
“master boule” single crystal studied previously, for ex-
ample in Refs.[54, 55] and references therein. The re-
sistivity above Tc of pristine samples was in range of
5 − 10 µΩ · cm, consistent with the previous reports
[25, 54, 55]. The samples were of sub-mm size. In par-
ticular, the crystal used in electron irradiation study was
0.73× 0.62× 0.2 mm3.

The variation of the in-plane London penetration
depth, ∆λ(T ), was measured using a self-oscillating
tunnel-diode resonator (TDR) technique [27, 34, 56]. The
TDR circuit resonates approximately at 14 MHz, and the
frequency shift is measured with a precision better than
one part per billion (ppb). Its inductor coil generates
ac magnetic field, Hac < 20 mOe, so that the sample is
always in the Meissner state at temperatures of interest.
Details of the technique and its principles are given in
Ref.[57–59] and the detailed calibration procedure is de-
scribed in Refs.[58, 60]. The sample was mounted on
a 1 mm diameter sapphire rod and inserted into a 2
mm diameter inductor coil. The coil and the sample
were mounted in a vacuum inside a 3He cryostat. The
TDR circuit was actively stabilized at 5 K, and the sam-
ple was controlled from 0.4 K and up by independent
LakeShore controllers. It is straightforward to show that
the change of the resonant frequency when a sample is
inserted into the coil is proportional to the sample mag-
netic susceptibility as long as the change of the total in-
ductance is small and one can expand, ∆f/f0 ≈ ∆L/2L0

where 2πf0 = 1/
√
CL0 with sub-index ”0” referring to an

empty resonator. The coefficient of proportionality that
includes the demagnetization correction is measured di-
rectly by pulling the sample out of the resonator at the
base temperature [60].

The low-temperature 2.5 MeV electron irradiation was
performed at the SIRIUS Pelletron facility of the Labo-
ratoire des Solides Irradiés (LSI) at the École Polytech-
nique in Palaiseau, France. The acquired irradiation
dose is conveniently expressed in C/cm2 and measured
directly as a total charge accumulated behind the sam-
ple by a Faraday cage. Therefore, 1 C/cm2 ≈ 6.24×1018
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FIG. 1. (a) V3Si unit cell with two formula units, Z = 2.
(b) Brillouin zone (BZ) and Fermi surfaces (FS) of the five
different bands crossing the Fermi level (EF ) for V3Si. The
band numbers correspond to the numbers in the text. (The
small FS of Band 5 is circled for clarity.) (c) Energy band
dispersion along the high symmetry directions of BZ and (d)
Partial density of states as function of energy for the five
bands crossing EF .

electrons/cm2. In the experiment, the London penetra-
tion depth was measured, then the sample was irradiated,
and the cycle repeated. The irradiation was carried out
with the sample immersed in liquid hydrogen at about 20
K. Low-temperature irradiation is needed to slow down
recombination and migration of defects. Upon warm-
ing up to room temperature, a quasi-equilibrium pop-
ulation of atomic vacancies remains due to a substan-
tial difference in the migration barriers between vacan-
cies and interstitials. An example of such incremental
irradiation/measurement sequence showing the resistiv-
ity change measured in-situ, as well as the annealing after
warming up, is given elsewhere [61]. In the present case,
the sample was dispatched between the lab and the ir-
radiation facility for the measurements and irradiation,
and then the sequence was repeated until the sample had
accumulated a substantial dose of 10 C/cm2 ≈ 6.24×1019

electrons/cm2. Further information on the physics of
electron irradiation can be found elsewhere [62, 63].

Density functional theory (DFT) with Perdew-Burke-
Ernzerhof (PBE) exchange-correlation functional [64] has
been used to calculate the band structure of V3Si at the
experimental lattice constant of a = 4.741 Å [65]. The
DFT calculations have been done in VASP [66] using pro-
jected augmented wave method and a plane-wave basis
set with a kinetic energy cutoff of 246 eV. The charge den-
sity is converged on a (8×8×8) Monkhorst-Pack k−point
mesh, including the Γ−point. For the Fermi surface (FS)
calculations, a much denser (30× 30× 30) k−point mesh
is used. The Fermi velocity for each band has been calcu-
lated by the derivative of the DFT band dispersion, i.e.,
group velocity, and then averaged over the Fermi surface
of each band in the Brillouin zone (BZ), the same method
as employed previously [67, 68].

III. RESULTS AND DISCUSSION

A. Electronic band-structure

TABLE I. Electronic band structure parameters relevant to
the γ−model fitting. The bands are naturally grouped in
two effective bands I and II. The calculated parameter γ =(
n1v

2
1 + n2v

2
2

)
/
∑5

i=1 niv
2
i = nIv

2
I/
(
nIv

2
I + nIIv

2
II

)
= 0.109,

to be compared with the experimental best fit, γ = 0.175.
The effective quantities remapped on two effective bands are
shown in the last two columns.

band
v2F × 1015 DOS Two v2F × 1015 DOS

(cm/s)2 states/eV/cell bands (cm/s)2 st./eV/cell

1 2.22 1.22
I 3.69 1.74

2 4.48 2.26
3 7.11 6.11

II 7.70 6.80
4 8.18 7.48
5 0.00315 0.11 ×

V3Si has a primitive cubic crystal structure in space
group 223 (Pm3m) with V sitting at 6c and Si at 2a
positions as shown in Fig.1(a). The band structure of
V3Si, Fig.1(c) has flat pieces along Γ-X, Γ-M and Γ-R
directions, which is similar to Nb3Sn, another A15 su-
perconductor with the same group of elements. There
are five bands crossing the EF as highlighted in different
colors in Fig.1(c). The corresponding partial densities of
state (DOS) of these bands are plotted in Fig.1(d) and
summarized in Table I. Among them, bands 1 and 2
are hole bands with states gathering along the M-R di-
rection, the edges of the cubic Brillouin zone (BZ) (see
Fig.1(b)((1) and (2)). On the other hand, band 5 has
a very small electron pocket around the R point, and
the contribution to DOS is negligibly small. In contrast,
bands 3 and 4 are dominant in DOS at EF , which cor-
responds to most of the flat band contributions around
the Γ point as seen in Fig.1(c). The three-dimensional
(3D) Fermi surfaces (FS) in Fig.1(b)((3) and (4)) show
complex FS for both bands 3 and 4, which have multi-
ple sheets at EF . Analysis of Fig.1(b) suggests that the
five bands can be naturally grouped in two effective ones.
Specifically, bands 1 and 2 are well separated in energy
from bands 3 and 4 at intermediate k−values inside the
BZ, making the inter-band transitions improbable. Fur-
thermore, bands 1 and 2 are much closer in energy, and
this is also true for bands 3 and 4, but at different k. This
suggests grouping bands 1 and 2 into an effective band
I, bands 3 and 4 into another effective band II, and dis-
carding negligible-DOS band 5. Electronic parameters of
all five bands are reported in Table.I. The “effective” pa-
rameters of two effective bands, I and II, are given in the
last two columns. The multi-band average for band I is
v2F,I = (n1v

2
F,1 +n2v

2
F,2)/(n1 +n2), and similar for the ef-

fective band II. As we explain in the two-band γ−model
Section III.C, the relative contribution of each band to
the superfluid density, ρs = γρI + (1− γ) ρII ,is given
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FIG. 2. Temperature dependent London penetration depth
measured in a V3Si single crystal in pristine state and after
three doses of electron irradiation. The inset zooms at the
low temperature region showing a clear signature of a second
gap developing at around 10 K.

by the parameter, γ = nIv
2
I/
(
nIv

2
I + nIIv

2
II

)
(hence,

γ−model). As shown in Table I, we estimate γ = 0.109,
which is quite close to the experimental γ = 0.109, dis-
cussed in the next Section III.C.

The high DOS at EF in V3Si indicates electronic insta-
bility, consistent with literature reports [3, 10, 11]. Al-
though one way to reduce such instability is to promote
an exchange splitting, giving a magnetic solution at the
DFT level, experimentally V3Si is not magnetic. An-
other way to lift the electronic instability is through the
electron-phonon coupling. Similar band structure with
flat bands in Nb3Sn is susceptible to lattice distortion by
a phonon mode [69], indicating a strong electron-phonon
coupling in such compounds, hence obvious connection
to superconductivity. Thus, the non-magnetic electronic
band structure of V3Si provides important microscopic
details for superconductivity models, such as DOS at EF

and Fermi velocity, which have been used successfully for
MgB2, the first proven two-band superconductor. In fact,
we calculated the electronic band structure of MgB2 as a
benchmark to compare with with the original γ−model
[7, 29] and one of the first DFT calculations of a two-gap
system [67], and obtained similar results.

B. London penetration depth and superfluid
density

We begin by examining the superfluid density obtained
from the measured London penetration depth. Figure 2
shows temperature dependent variation of London pene-
tration depth, ∆λ ≡ λ (T )−λ (Tmin), with the increasing
dose of electron irradiation. Considering the exponen-
tial low-temperature behavior, we can safely assume that

λ (Tmin = 0.4 K) ≈ λ (0) and then the normalized super-

fluid density is calculated as ρs = (∆λ (0) /∆λ (T ))
2

=

(1 +∆λ/λ (0))
−2

. The inset in Fig.2 zooms at the low-
temperature region. There is a clear, almost knee-like
feature in ∆λ (T ) around 10 K, which we now know is
expected for a two-gap superconductor with different and
weakly-coupled gaps [27]. Similar features were reported
in high quality V3Si crystals before and not surprisingly
was interpreted as a definitive evidence of a two-gap su-
perconductivity [7, 30]. The temperature of this kink-like
feature is suppressed upon irradiation approximately at
the same rate as Tc, signaling that both gaps change at a
similar rate. Furthermore, in Fig.2, normal state values
above Tc are determined by the skin depth. They increase
upon irradiation due to the increase of residual resistiv-
ity following the Matthiessen’s rule [70]. Importantly,
the superconducting transition temperature, Tc, is mono-
tonically and noticeably suppressed from 16.4 K to 14.7
K (9.3%). The upper cut-off at Tc is determined by the
normal-metal skin depth, which allows us to estimate the
resistivity in a contact-less way using ρ = µ0πfδ

2 where
δ (Tc ← T ) ≈ 2λ (T → Tc) and λ (T ) = ∆λ (T ) + λ (0),
where λ(0) = 130 nm from Ref.[3, 4]. The extracted re-
sistivity values are 8.6, 11, 13.6, and 15.4 µΩcm for 0,
2.1, 5.7 and 10 C/cm2 electron irradiation doses, respec-
tively. These values appear to be quite comparable with
the literature [4, 5, 25]. We note that in a large body of
work on V3Si, a spread of λ(0) values ranging from 83 nm
to 230 nm can be found. They were obtained using dif-
ferent methods, and in samples of different forms (crystal
vs. polycrystalline) and purity [71–73]. The value we use
is within the statistical maximum of the current litera-
ture values. Importantly, our results and conclusions are
independent of the particular value of λ(0).

Figure 3 (a) shows the normalized superfluid density
of a V3Si crystal in pristine state. A similar curve for a
different crystal, cut from the same master boule, show-
ing the same two-gap structure, was published in our
earlier paper where a self-consistent γ−model based on
Eilenberger formalism was introduced [7]. In the original
γ−model, two isotropic s−wave gaps are obtained from
the solution of the self-consistency equation, and then all
thermodynamic quantities, including the superfluid den-
sity, can be calculated. The model was further general-
ized to include anisotropic or even nodal gaps [74]. Here,
it is sufficient to consider the original isotropic approach.

C. The isotropic γ−model

The γ−model considers two bands with Fermi ve-
locities, vi, and the partial densities of states, ni =
Ni (0) /N (0), where N (0) is the total density of states at
Fermi level, so that n1+n2 = 1. The dimensionless effec-
tive interaction constants are defined as νik = N(0)Vik,
where Vik is the electron-electron interaction matrix.
Note that in the original paper we used λ for the in-
teraction matrix. To avoid confusion with the London



5

FIG. 3. (a) Symbols show the superfluid density in pristine
sample calculated from the data shown in Fig.2. Blue and
green solid lines show labeled partial superfluid densities, ρ1
and ρ2, obtained in the least squares fitting. The thick orange
line behind the data shows an excellent agreement of the data
with the fitted total superfluid density, ρs = γρ1 + (1 − γ) ρ2.
Best fit parameters are: ν11 = 0.700, ν22 = 0.578, ν12 = 0.005,
and γ = 0.175. (b) Best fit solutions of the self-consistency
gap equations, Eq.2. The T = 0 gap ratios are, ∆1/Tc = 1.787
and ∆2/Tc = 1.005.

penetration depth, here we use νik. Also note that
this definition differs from that used in the literature,
gik = nkνik. Our notation has an advantage of being
symmetric, νik = νki. Therefore, for two bands, we have
three coefficients of the interaction matrix, two in-band,
ν11 and ν22, and an inter-band coupling, ν12. In the
analysis, we perform a least-squares fit of the experimen-
tal superfluid density shown in 3 (a) in Matlab. If all
normal-state parameters of a material are known, νik are
the three fitting parameters. They are reduced to two
free parameters by the equation for Tc (νik),

1.7638kBTc = 2~ωD exp(−1/ν̃) (1)

where we assume conventional electron-phonon mecha-
nism of superconductivity with ωD being the Debye fre-

quency. In general, if energy of bosonic pairing “glue” is
known, it should be substituted instead of ~ωD in Eq.1.
The pre-factor comes from the weak-coupling approxima-
tion used in the γ−model. The effective interaction con-
stant, ν̃ (νik), is obtained from the solution of algebraic
equations containing all coefficients, νik, see Section II.A
of Ref. [7]. To fit the superfluid density, first the self-
consistent gap equation is solved at each temperature.
Introducing dimensionless quantities, δi = (∆i/T )/(2πt),
where t = T/Tc, the gaps equations are given by

δi =
∑
k=1,2

nkνikδk
(
ν̃−1 − ln t−Ak

)
,

Ak =

∞∑
n=0

[
(n+ 1/2)

−1 −
(
δ2k + (n+ 1/2)

2
)−1/2]

(2)

Note that we often set Boltzmann constant, kB = 1,
where it is obvious, and use it explicitly to emphasize
the numerical values or proper dimensions, e.g., Eq.1.
For a given set of the coupling constants, νik, and par-
tial densities of states, ni, this system can be solved
numerically for δi (t) and therefore provide the energy
gaps, ∆i (t) = 2πTδi(t). This is a crucial step miss-
ing in the so-called α−model description of the two-band
superconductivity [13]. While it was useful early on to
explain experimental signatures of two-gap superconduc-
tivity in MgB2, the fitting parameters of α−model have
little physical meaning. A follow-up study used two-gap
functions pre-calculated from the microscopic theory and
showed an excellent agreement between experimental and
theoretical superfluid density, ρs (t) [75]. Indeed, the
s−wave MgB2 for which all normal-state parameters are
known is a perfect demonstration of the γ−model where
different quantities are calculated from νik obtained from
the fit of ρs (t) [7, 29].

Figure 3(b) shows two gaps calculated self-consistently
from Eq.2. The individual gap ratios are, ∆1/Tc = 1.787
and ∆2/Tc = 1.005. This should be compared with the
results of microwave surface impedance measurements
where similar apparent two-gap behavior was observed
in the superfluid density and the values of ∆1/Tc = 1.8
and ∆2/Tc = 0.95, quite close to ours, were derived [30].
In the absolute units we obtain, ∆1 (0) ≈ 2.53 meV and
∆2 (0) ≈ 1.42 meV. After the gaps are calculated, the
total superfluid density, ρs = γρ1+(1− γ) ρ2 can be eval-
uated and fitted to the experimental data. The partial
contributions to the superfluid density are given by [7],

ρi = δ2i

∞∑
n=0

[
δ2i + (n+ 1/2)2

]−3/2
,

γ =
n1v

2
1

n1v21 + n2v22
(3)

where vi are the Fermi velocities (not to be confused with
Greek νi of the interaction matrix). Analyzing Fig.1, we
group bands 1 and 2 into one effective band I, and bands
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FIG. 4. Knock-out defects creation cross-sections for vana-
dium and silicon ions in V3Si as function of electron energy
assuming the displacement energy threshold, Ed = 25 eV.
At the operating energy of 2.5 MeV, the total cross-section
is σ = 72 barn, which leads to the estimate of 4.4 × 10−4

displacements-per-atom (dpa) per 1 C/cm2 of the irradiation.

3 and 4 into another band II, and we can safely neglect
band 5. (Here we use Roman numerals I and II to in-
dex these “effective” bands). For the first effective band,

we find γ =
(
n1v

2
1 + n2v

2
2

)
/
∑5

i=1 niv
2
i = 0.109. If we

included band 5, it’d make the difference only in 6th dec-
imal digit. Using γ as another fitting parameter, the best
fit of this model to the data gave ν11 = 0.700 (fixed by Tc,
Eq.1), ν22 = 0.578, ν12 = 0.005, and γ = 0.175, with the
effective ν̃ = 0.350 (see Eq.1). Remarkably, the best-fit
value of γ is quite close to the estimate from the elec-
tronic band-structure calculations, see Table I where we
find γ = 0.109, . This gives confidence in the model and
shows its applicability to describe the superconductiv-
ity in V3Si. Naturally, overall, smaller partial density of
states on band I, somewhat counter-intuitively, leads to
a larger gap, which is the property of the self-consistent
two-band model [7, 35]. We note that the possible uncer-
tainty in the experimental value of λ (0) leads to some un-
certainty in the fitting parameters, but not large enough
to alter the general conclusion of the relative amplitudes
of the obtained interaction matrix.

D. Effect of electron irradiation

In the last three decades, many studies involving par-
ticle irradiation were performed on various conventional
and unconventional superconductors and there is a vast
literature on this topic [42, 76–78] Due to the differences
in the rest mass and irradiation temperature, the number
and the morphology of the created defects varies signif-
icantly between different projectile particles. It appears
that MeV electrons, thanks to a small rest mass, transfer
just enough energy upon collision with ions, of the order

of tens of eV, to produce well-defined point-like scatter-
ing centers [48]. Much larger energy transfer, for example
from protons, produce many secondary collisions and less
localized damage. A more detailed discussion of electron
irradiation and created defects in solids can be found
elsewhere [62, 63].

Figure 4 shows the ion-type-resolved cross-sections of
the defects creation calculated using SECTE (“Sections

Efficaces Calcul Transport d’Électrons”) software, devel-

oped at École Polytechnique (Palaiseau, France) by mem-
bers of the “Laboratoire des Solides Irradiés”, specifically
for the interpretation of MeV-range electron irradiation
using their Pelletron-type linear accelerator, SIRIUS [79].
Basically, this is a computer-assisted atomic-weights-
averaged interpolation of the ion knock-out cross-sections
tabulated by O. S. Oen [80]. In the absence of micro-
scopic calculations, we used the commonly assumed value
of the ion displacement energy upon a head-on collision,
Ed = 25 eV. The partial cross-sections are very similar,
and we expect a roughly equal number of defects on vana-
dium and silicon sites. At the operational energy of 2.5
MeV, the total cross-section is estimated as σ = 72 barn,
which means that roughly 1.8 defects are produced per
1000 unit formulas per 1 C/cm2. This is a small number
of defects that cannot change the electronic structure in
any appreciable way, and a significant reduction of Tc
observed in our experiments must have a different expla-
nation, such as its pair-breaking nature.

First, let us examine the effect of electron irradiation
on superfluid density. While we do not know how much
λ (0) changes, we attempted to adjust its value to scale
all curves onto a pristine one. As shown in Fig.5 this
worked rather well with a small increase of λ (0) values
shown in the legend. This indicates that scattering does
not alter the gap values themselves and, due to very small
inter-band coupling, has practically no effect on the total
superfluid density. Each isotropic band follows the An-
derson theorem [81] and the change in Tc comes mostly
from the inter-band scattering between order parame-
ters of different magnitude. We note that the relative
change of λ (0) can be estimated from Tinkham’s widely-
used approach [82] that gives for moderate scattering,

λ ≈ λclean
√

1− ξ0/` , where ξ0 ≈ 60 nm is the BCS co-
herence length, and ` ≈ 30 nm is the electronic mean free
path in the pristine state. Both numbers are estimated
for V3Si from Tc, Fermi velocity and resistivity, see Table
I and Fig.2. As shown in Fig.2, at the maximum irradi-
ation dose, the resistivity doubles. Therefore, we expect
the increase of λ (0) by a factor of about 1.3, which is
not large and does not alter our conclusions, especially
considering an apparent scaling shown in Fig.5 .

E. Suppression of Tc by disorder in a two-band
superconductor

While it is clear that the superfluid density shows
a convincing two-distinct-gaps features implying small
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FIG. 5. Evolution of superfluid density (ρs) upon irradiation.
For the pristine case, we used λ(0) = 130 nm from Ref. [3].
The curves representing irradiated state were calculated with
the penetration depth λ(0) values shown in the legend. They
were chosen to collapse the curves on the pristine one.

inter-band coupling, this still leaves an unanswered im-
portant question of the relative sign of the order param-
eter on each band. This is because superfluid density, as
well as any other thermodynamic quantity includes even
powers of the gap function, so that an s± state cannot be
distinguished from an s++ state if the gaps are the same,
see, for example, Eq.3. The suppression of Tc on the
other hand is very sensitive to the overall anisotropy of
the order parameter, including a generalized view when
two bands are considered side by side along the common
path on the entire Fermi surface [83]. This situation can
be analyzed employing a very useful ansatz that temper-
ature and angular parts of the order parameter can be
separated, ∆ (T,kF ) = Ψ (T ) Ω (kF ), where kF is Fermi
wave vector and the angular part obeys the normaliza-
tion condition for the Fermi surface average,

〈
Ω2
〉
FS

= 1
[83, 84]. For example, for a single band s−wave, Ω = 1

and for a d−wave, Ω =
√

2 cos (2ϕ). For a two-gap su-
perconductor Kogan introduced two gaps each described
by its own angular part Ωi [83]. In this case, the normal-
ization reads,

〈
Ω2
〉

= n1
〈
Ω2

1

〉
+ n2

〈
Ω2

2

〉
= 1 (4)

In the case of an anisotropic gap, even non-magnetic
(no spin-flip) scatterers suppress superconducting tran-
sition temperature, Tc. With spin-flip scattering
both channels reduce Tc. Openov gives a general-
ized Abrikosov-Gor’kov [85] type expression where gap
anisotropy is explicitly taken into account [86, 87]. We
note that a more general theory of the Tc suppression by
disorder scattering, extended to topologically non-trivial
superconductors, is discussed elsewhere [43, 44]. Here it
suffice to consider the Ω− approach, which gives,

ln tc = ψ

(
g + gm

2tc
+

1

2

)
− ψ

(
1

2

)
− 〈Ω〉2

[
ψ

(
g + gm

2tc
+

1

2

)
− ψ

(
gm
tc

+
1

2

)]
(5)

where tc = Tc/Tc0 with Tc0 being the transition tem-
perature in a pristine state, and ψ is the digamma func-
tion. Dimensionless magnetic and non-magnetic scatter-
ing rates are given by

g(m) =
~

2πkBTc0

1

τ(m)
(6)

where τ and τm are non-magnetic and magnetic (spin
flip) scattering times, respectively. (Note that original
Abrikosov-Gor’kov theory uses a different definition of
the scattering rate, ρ = ~/ (πkBTcτ), with the actual
(suppressed) Tc). The effect of gap anisotropy can be
immediately seen from Eq.5 - it contains Ω in the first
power. For a single-band s−wave, 〈Ω〉 = 1 and we obtain
tc = 1, recovering the Anderson theorem [81]. For a
d−wave, 〈Ω〉 = 0 and we obtain an expression where
both magnetic and non-magnetic impurities suppress Tc.
It is interesting to note that the critical value for the
complete Tc suppression of an s−wave order parameter
by magnetic impurities, gm = 0.14, is exactly half of the
value for a d−wave order parameter suppression by non-
magnetic impurities, g = 0.28.

We can now use Eq.5 with the two-gaps Ω−approach,
Eq.4 and that 〈Ω〉 = n1 〈Ω1〉 + n2 〈Ω2〉. Specifically, we
consider two isotropic gaps described by constant values
Ω1 and Ω1. In other words, two bands are represented
in a generalized single angular coordinate, - band 1 from
0 to 2π, and band 2 from 2π to 4π, each with its own
density of states Ni, so that the partial densities of states
are ni = Ni/ (N1 +N2). Introducing the gap ratio, r =
Ω2/Ω1 and the ratio of the partial densities of state, n =
n2/n1=N1/N2, we obtain for the total average in this
two-gap model:

〈Ω〉2 =
(nr + 1)2

(n+ 1) (nr2 + 1)
(7)

Without magnetic scattering (gm = 0), the transition
temperature of a two-band superconductor is,

ln tc = ψ

(
g

2tc
+

1

2

)
− ψ

(
1

2

)
− (nr + 1)2

(n+ 1) (nr2 + 1)

[
ψ

(
g

2tc
+

1

2

)
− ψ

(
1

2

)]
(8)

It is important to emphasize that the superfluid density
as a function of (reduced) temperature and Tc are two in-
dependent measurements, which makes the analysis bet-
ter defined and constrained.
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FIG. 6. Suppression of Tc upon different types of particle irra-
diation. Normalized Tc suppression upon electron irradiation
(current study) is compared with two different previous stud-
ies by proton and neutron irradiations. It is clearly shown
that the electron irradiation is most effective in suppressing
Tc.

To compare the experimentally observed decrease of
Tc with our model, we need a proper parameter char-
acterizing the scattering rate. The problem is that dif-
ferent sources of disorder produce somewhat different ef-
fects. Figure 6 compares the relative change of the tran-
sition temperature, ∆tc ≡ (Tc − Tc0) /Tc0, in V3Si per
1 µΩ · cm of resistivity increase caused by electron ir-
radiation in the current study with two previous stud-
ies where defects were induced by proton [88] and neu-
tron [5] irradiation. The rates of the relative change are,

d∆tc/dρ = −0.013 (µΩ · cm)
−1

(electron irradiation),

-0.008 (µΩ · cm)
−1

(neutron), and -0.006 (µΩ · cm)
−1

(proton). Due to their small rest mass and matching
range of the energy transfer (1-100 eV), electrons produce
the most efficient point-like defects and have the largest
suppression rate. A similar trend is observed in other
materials, for example, well-studied iron-based supercon-
ductors [42, 48]. On the other hand, the observed rates

are not too different, roughly 0.01 (µΩ · cm)
−1

, and we
can put it in a perspective by comparing with other su-
perconductors. For that, we need to calculate the dimen-
sionless scattering rate, Eq.6. In our case of measured
λ (T ) and ρ (T ) the simplest estimate of the scattering
time, τ , is via the London and Drude electrodynamics,
τ (Tc) = µ0λ

2
clean (0) /ρ (Tc). Note that clean-limit value,

λclean (0), needed for the density of states in the normal
metal, enters this estimate, whereas (normal metal) scat-
tering time comes from resistivity. This approach is well
justified in isotropic s−wave superconductors and s++

compounds assuming that the gap smearing caused by
the modest amounts of non-magnetic disorder is much
smaller than the gap amplitudes.

In our case, we can use Tinkham’s widely-used ap-

proach [82] that gives for moderate scattering, λ ≈
λclean

√
1− ξ0/` , where ξ0 ≈ 60 nm is the BCS coher-

ence length, and ` ≈ 30 nm is the electronic mean free
path in the pristine state. Both numbers are estimated
for V3Si from Tc, Fermi velocity and resistivity, see Table
I and Fig.2. As shown in Fig.2, at the maximum irradi-
ation dose, the resistivity doubles. Therefore, we expect
the increase of λ (0) by a factor of about 1.3. This is an
insignificant change to alter the main features reported
here - the exponential attenuation at low temperatures
and a higher temperature kink signaling of two barely-
coupled gaps of different magnitude. This is further con-
firmed by the apparent scaling of the superfluid density
for all doses of electron irradiation, Fig.5.

The experimental dimensionless scattering rate can be
estimated as,

g ≈ ~
2πkBµ0

ρ(Tc)

Tc0λclean(0)2
(9)

Note that we measure resistivity change with respect
to the pristine sample to subtract inelastic scattering, but
this also removes background impurity scattering in sam-
ples before irradiation. Fortunately, judging by very low
pinning, this correction is negligible [26]. Also, note that
this dimensionless rate contains unmodified Tc0, which is
different from the original Abrikosov-Gor’kov definition
[85].

Figure 7 shows the normalized change of superconduct-
ing transition temperature, ∆tc ≡ (Tc − Tc0) /Tc0, as
function of the dimensionless scattering rate, g. Figure
7(a) compares V3Si single crystal with known nodeless
and nodal s± superconductors, isovalently substituted
Ba(Fe0.76Ru0.24)2As2 and BaFe2(As0.7P0.3)2, and hole-
doped underdoped Ba0.81K0.19Fe2As2 and optimally-
doped Ba0.66K0.34Fe2As2 (BaK122) [42]. The theoretical
curves from Eq.8 are shown by different lines. Clearly,
all sign-changing s± superconductors show suppression
rate significantly higher than in two-gap V3Si, which
is consistent with s++ theoretical curve for gap ratio,
r = +0.4, while the same gap ratio, but of opposite
signs, r = −0.4, is close to BaK122 data. Interestingly, a
nodal multi-band s± superconductor, BaFe2(As0.7P0.3)2,
shows even greater rate of Tc suppression, most likely be-
cause in this case the inter-band and in-band scattering
channels are both pair-breaking. Figure 7(b) compares
V3Si with another s++ two-band superconductor, NbSe2
[89], and unconventional Dirac semi-metal compound,
PdTe2 [43, 90]. In NbSe2, the situation is complicated
by the charge-density wave (CDW), whose competition
with superconductivity (SC) leads to the initial increase
of Tc. However, as soon as CDW is destroyed by dis-
order, further suppression of Tc is quite similar to our
subject compound, V3Si [89]. The second compound, un-
conventional PdTe2 shows the rate of suppression quite
similar to V3Si. Moreover, it also has a fully-gapped
Fermi surface leading to exponential attenuation of the
penetration depth. However, peculiarities of the elec-
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FIG. 7. Normalized change of superconducting transition
temperature, ∆tc ≡ (Tc − Tc0) /Tc0 as function of the dimen-
sionless scattering rate, g. (a) comparison of V3Si single crys-
tal with known nodeless and nodal s± superconductors shown
in the legend. The theoretical curves from Eq.8 are shown
by lines. Clearly, all sign-changing s± superconductors show
suppression rate larger than in V3Si. (b) similar comparison
with another s++ two-band superconductor, NbSe2 [89] and
unconventional Dirac semi-metal compound, PdTe2 [43, 90].
As soon as CDW is suppressed, NbSe2 shows a similar sup-
pression rate as V3Si.

tronic band structure of PdTe2 support unconventional
pairing mechanism [43, 90], whereas V3Si does not have

such topological features and is consistent with BCS-type
two-gap superconductivity. This is a good example show-
ing that measurements alone cannot answer objectively.
They must be supported by theoretical analysis.

IV. CONCLUSIONS

We used controlled point-like disorder induced by 2.5
MeV electron irradiation at different doses to study su-
perconducting order parameter in a V3Si single crys-
tal. Simultaneous measurements of London penetration
depth and superconducting transition temperature, Tc,
set stringent experimental boundaries on possible super-
conducting states. Specifically, we observe: (1) expo-
nentially attenuated low-temperature behavior of λ (T )
(which means a fully gapped Fermi surface); (2) a kink
at higher reduced temperatures (signaling of two barely-
coupled gaps); (3) a significant shift of Tc (gaps of differ-
ent amplitude). The discussed analysis is applicable for
any choice of λ (0). Using a two-band analysis for both
quantities, ρs (T ) and ∆Tc, we conclude that s++ pair-
ing with two barely-coupled gaps of different amplitudes,
∆1 (0) ≈ 2.53 meV and ∆1 (0) ≈ 1.42 meV, provide an
excellent fit and overall self-consistent description of the
experiment. This makes V3Si the earliest (superconduc-
tivity discovered in 1953) proven s++ superconductor,
preceding MgB2 (superconductivity discovered in 2001)
by half a century.

ACKNOWLEDGMENTS

We thank David Christen for providing excellent sin-
gle crystals well-characterized in his earlier papers. This
work was supported by the US Department of Energy
(DOE), Office of Science, Basic Energy Sciences, Materi-
als Science and Engineering Division. Ames Laboratory
is operated for the US DOE by Iowa State University
under contract DE-AC02-07CH11358. The authors ac-
knowledge support from the EMIR&A French network
(FR CNRS 3618) on the “SIRIUS” platform under pro-
posal # 18-5155. We thank the whole SIRIUS team, O.
Cavani, B. Boizot, V. Metayer, and J. Losco, for operat-
ing electron irradiation facility.

[1] G. F. Hardy and J. K. Hulm, Phys. Rev. 89, 884 (1953).
[2] J. W. Blezius and J. P. Carbotte, Phys Rev B 33, 3509

(1986).
[3] W. D. Wu, A. Keren, L. P. Le, G. M. Luke, B. J. Stern-

lieb, Y. J. Uemura, D. C. Johnston, B. K. Cho, and
P. Gehring, Hyperfine Interact. 86, 615 (1994).

[4] L. R. Testardi, J. M. Poate, and H. J. Levinstein, Phys.
Rev. B 15, 2570 (1977).

[5] R. Viswanathan and R. Caton, Phys. Rev. B 18, 15
(1978).

[6] M. N. Khlopkin, Journal of Experimental and Theoreti-
cal Physics Letters 69, 26 (1999).

[7] V. G. Kogan, C. Martin, and R. Prozorov, Phys. Rev. B
80, 014507 (2009).

[8] S. Tanaka, A. Miyake, T. Kagayama, K. Shimizu,
B. Salce, and D. Braithwaite, J. Phys. Conf. Ser. (On-
line) 200, 3 (2010).

[9] I. B. Goldberg and M. Weger, Le Journal de Physique
Colloques 33, C3 (1972).



10

[10] B. M. Klein, L. L. Boyer, D. A. Papaconstantopoulos,
and L. F. Mattheiss, Phys. Rev. B 18, 6411 (1978).

[11] J. Bok and J. Bouvier, J. Supercond. Novel Magn. 25,
657 (2012).

[12] J. Nagamatsu, N. Nakagawa, T. Muranaka, Y. Zenitani,
and J. Akimitsu, Nature 410, 63 (2001).

[13] F. Bouquet, Y. Wang, R. A. Fisher, D. G. Hinks, J. D.
Jorgensen, A. Junod, and N. E. Phillips, Europhys. Lett.
56, 856 (2001).

[14] J. Kortus, I. I. Mazin, K. D. Belashchenko, V. P.
Antropov, and L. L. Boyer, Phys. Rev. Lett. 86, 4656
(2001).

[15] S. L. Bud’ko, G. Lapertot, C. Petrovic, C. E. Cunning-
ham, N. Anderson, and P. C. Canfield, Phys. Rev. Lett.
86, 1877 (2001).

[16] J. Bardeen, L. N. Cooper, and J. R. Schrieffer, Phys. Rev.
106, 162 (1957).

[17] V. A. Moskalenko, Fiz. Met. Metalloved. (USSR); [Phys.
Met. Metallogr. 8, 25 (1959)] 8:4 (1959).

[18] H. Suhl, B. T. Matthias, and L. R. Walker, Phys. Rev.
Lett. 3, 552 (1959).

[19] B. T. Geilikman, R. O. Zaitsev, and V. Z. Kresin, Sov.
Phys.- Solid State (Engl. Transl.), 9: 642-7(Sept. 1967).
(1967).

[20] I. Mazin, A. Liechtenstein, C. Rodriguez, O. Jepsen,
and O. Andersen, Physica C: Superconductivity 209, 125
(1993).

[21] A. Golubov, O. Dolgov, E. Maksimov, I. Mazin, and
S. Shulga, Physica C: Superconductivity 235-240, 2383
(1994).

[22] A. Golubov and I. Mazin, Physica C: Superconductivity
243, 153 (1995).

[23] A. A. Golubov and I. I. Mazin, Phys. Rev. B 55, 15146
(1997).

[24] R. Viswanathan, R. Caton, and C. S. Pande, Phys. Rev.
Lett. 41, 906 (1978).

[25] T. P. Orlando, E. J. McNiff, S. Foner, and M. R. Beasley,
Phys. Rev. B 19, 4545 (1979).

[26] V. G. Kogan, P. Miranović, L. Dobrosavljević-Grujić,
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