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Mechanism of antisymmetric spin polarization in centrosymmetric multiple-Q magnets
based on bilinear and biquadratic spin cross products
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Department of Applied Physics, the University of Tokyo, Tokyo 113-8656, Japan

We investigate how to engineer an antisymmetric spin-split band structure under spin density
waves with finite ordering wave vectors in centrosymmetric systems without the relativistic spin-
orbit coupling. On the basis of a perturbative analysis for the spin-charge coupled model in cen-
trosymmetric itinerant magnets, we show that nonzero chiral-type bilinear and biquadratic spin
cross products in momentum space under the magnetic orderings are related to an antisymmetric
spin polarization in the electronic band structure. We apply the derived formula to the single-Q
cycloidal spiral and double-Q noncoplanar states including the meron-antimeron and skyrmion crys-
tals. Our results present a clue to realize a giant antisymmetric spin splitting driven by magnetic
phase transitions in the centrosymmetric lattice structures without the spin-orbit coupling.

I. INTRODUCTION

Symmetry is an important factor to determine physi-
cal properties of solids. Among them, spatial inversion
symmetry has drawn considerable interest in condensed
matter physics, since its breaking gives rise to fascinating
physical phenomena, such as a spontaneous electric po-
larization and nonreciprocal transport [1–5]. The break-
ing of spatial inversion symmetry also leads to an anti-
symmetric spin polarization in terms of the wave vectors
in electronic band structures, which has been often found
in the noncentrosymmetric crystals with the strong rel-
ativistic spin-orbit coupling [6–8], such as polar crystals
with the Rashba-type spin-orbit coupling [9–12], chiral
crystals with the Weyl-type spin-orbit coupling [13, 14],
and other noncentrosymmetric crystals with the Ising-
type spin-orbit coupling [15–18]. The antisymmetric
spin polarization becomes a source of spin-related parity-
violating physical phenomena [19–22], such as the spin
Hall effect [23–27] and the Edelstein effect [28–32].

The above parity-violating phenomena also occur un-
der the centrosymmetric crystal structures once the spa-
tial inversion symmetry is broken by a spontaneous phase
transition through the electron correlation [19, 33, 34].
Especially, magnetic phase transitions to the noncollinear
and noncoplanar magnetic ordered states actualize the
antisymmetric spin-orbit interaction even without the
relativistic spin-orbit coupling. One of the examples is
the inverse Dzyaloshinskii-Moriya mechanism where the
spin vector chirality in noncollinear magnets produces the
electric polarization [33, 35–39]. Another example is the
emergence of the electric polarization and the nonrecip-
rocal transport owing to nonzero spin scalar chirality in
noncoplanar magnets [40–44]. Besides, the origin of the
antisymmetric spin polarization under the noncollinear
and noncoplanar spin configurations has been microscop-
ically studied based on augmented multipoles [45, 46],
which is compatible with magnetic point group symme-
try [47–50].

Designing and engineering the antisymmetric spin-split
band structure under the noncollinear and noncoplanar
spin textures stimulate a further exploration of functional

materials with a giant spin splitting even in the absence
of the relativistic spin-orbit coupling in the centrosym-
metric lattice structures. It has an advantage of opening
up the option of candidate materials so as to include
light-element materials and 3d transition metal oxides
in addition to conventional heavy-element ones with the
strong spin-orbit coupling. Such an extension of candi-
date materials will be useful for a future realization of
high-efficient electronics and spintronics devices.

From the energetic point of view, there are various
mechanisms to stabilize noncollinear and noncoplanar
magnetic orderings that break the spatial inversion sym-
metry, such as a spiral state and a skyrmion crystal,
in the centrosymmetric lattice structures: the frustrated
exchange interactions in insulating magnets [51–59] and
the multiple-spin interactions and magnetic anisotropy
in itinerant magnets [60–67]. Considering that the
skyrmion crystal and other various noncoplanar magnetic
states are described by a superposition of the multiple-
Q spiral waves, one can expect a possibility of realizing
the giant antisymmetric spin splitting without relying
on the relativistic spin-orbit coupling in centrosymmet-
ric multiple-Q spiral magnets. However, the relationship
between electronic band structures and multiple-Q spiral
spin textures has not been fully understood yet.

In the present paper, we study a microscopic mech-
anism of the spin-dependent antisymmetric band mod-
ulation in the single-Q and multiple-Q spiral states to
open another route of noncentrosymmetric spin-orbit-
coupled physics in inversion-symmetric materials with
negligibly small atomic spin-orbit coupling. We derive ef-
fective momentum-dependent chiral-type bilinear and bi-
quadratic spin cross products in momentum space under
the magnetic orderings by performing the perturbative
expansion with respect to the exchange coupling in the
classical Kondo lattice model. The derived expressions
indicate that the antisymmetric spin polarization appears
when the magnetic orderings with nonzero bilinear and
biquadratic spin cross product occur. Moreover, the ex-
pressions provide necessary multiple-Q spin modulations
to cause the momentum-dependent antisymmetric spin
polarization in the band structure. We test the expres-
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sions to the single-Q state on a one-dimensional chain and
the double-Q states on a two-dimensional square lattice.
We also apply the expressions to the skyrmion-hosting
centrosymmetric magnet GdRu2Si2. The examples in-
clude the square-shaped meron-antimeron and skyrmion
crystals. The present results are ubiquitously applied to
any magnetic textures with finite ordering wave vectors
in any lattice systems, which will be useful to extend
the scope of materials with a giant antisymmetric spin
splitting in centrosymmetric magnets even without the
spin-orbit coupling.

This article is organized in the following way: In
Sec. II, we introduce the classical Kondo lattice model
as one of the fundamental models in itinerant magnets.
In Sec. II, we show a derivation of effective momentum-
dependent chiral-type bilinear and biquadratic spin cross
products by using the perturbation expansion for the
Kondo lattice model in terms of the exchange coupling
between itinerant electrons and localized spins. We dis-
cuss the antisymmetric spin-split band structure under
the single-Q and multiple-Q spiral states on the basis
of the derived formula in Sec. IV. We also discuss the
relevant materials and physical phenomena in Sec. V.
Section VI is devoted to the summary.

II. MODEL

We study a spin-charge coupled system consisting of
itinerant electrons and localized spins with itinerant mag-
nets in mind. For that purpose, we adopt the classi-
cal Kondo lattice (double exchange) model with the ex-
change coupling between itinerant electron spins and lo-
calized spins, which is one of the underlying models to
exhibit a plethora of multiple-Q spiral states [42, 60, 62,
63, 68–70]. The Hamiltonian is given by

H = −
∑
i,j,σ

tijc
†
iσcjσ + J

∑
i,σ,σ′

c†iσσσσ′ciσ′ · Si, (1)

where c†iσ and ciσ are creation and annihilation opera-
tors of an itinerant electron at site i and spin σ, respec-
tively, while Si is a localized spin at site i. Here, we
regard Si as the classical spin with the magnitude of
|Si| = 1. The Hamiltonian consists of the kinetic energy
term of itinerant electrons in the first term in Eq. (1)
and the exchange coupling term between itinerant elec-
tron spins si and localized spins Si in the second term;

si = (1/2)
∑
σ,σ′ c

†
iσσσσ′ciσ′ where σ = (σx, σy, σz) is

the vector of Pauli matrices. We here do not consider the
effect of the spin-orbit coupling by targeting the materi-
als with negligible small spin-orbit coupling, although the
extension incorporating such an effect is straightforward.
tij and J > 0 are the hopping and exchange interaction
parameters, respectively. It is noted that the sign of J is
irrelevant in the following result.

For later convenience, we present the Fourier transform

of the model in Eq. (1) as

H =
∑
k,σ

εkc
†
kσckσ +

J√
N

∑
k,q,σ,σ′

c†kσσσσ′ck+qσ′ · Sq,

(2)

where c†kσ, ckσ, and Sq are the Fourier transform of c†iσ,
ciσ, and Si, respectively, where N is the number of sites.
εk is the energy dispersion of the electrons. Hereafter, we
implicitly consider the centrosymmetric lattice structure
without the sublattice degree of freedom for simplicity:
εk = ε−k.

III. EFFECTIVE MOMENTUM-DEPENDENT
CHIRAL-TYPE SPIN CROSS PRODUCTS

From the general symmetry aspect, the necessary con-
ditions of the antisymmetric spin-split band structure are
the breakings of spatial inversion symmetry and the prod-
uct symmetry consisting of spatial inversion and time-
reversal symmetries. These conditions are naturally sat-
isfied in noncentrosymmetric nonmagnetic systems with
the relativistic spin-orbit coupling, such as the Rashba
metals. Meanwhile, in the absence of the spin-orbit
coupling, the spin polarization occurs only when time-
reversal symmetry is broken. In other words, the spin-
dependent band modulation is caused by the scattering
due to the ordered localized spins with wave vector q,
i.e., 〈Sq〉 6= 0 (〈· · · 〉 represents the expectation value),
via the exchange coupling in Eq. (2). Furthermore, the
noncollinear spin configurations are necessary to induce
the antisymmetric momentum-dependent spin polariza-
tion, since the collinear ones do not break spin rotational
symmetry, which ensures the twofold degeneracy with re-
spect to the spin degree of freedom [71].

In this section, we examine how the band structures are
modulated under noncollinear magnetic orderings with
finite ordering wave vectors within the perturbation cal-
culation by supposing that the exchange coupling J is
small enough compared to the bandwidth of itinerant
electrons. We present the momentum-dependent chiral-
type bilinear spin cross product in Sec. III A and chiral-
type biquadratic spin cross product in Sec. III B, which
are obtained from the second-order and fourth-order con-
tributions in terms of J . The following results in this
section can be applied to any magnetic structures in any
lattice systems in one to three spatial dimensions. We
discuss the result for the specific magnetic textures and
the lattices in Sec. IV.

A. Bilinear spin cross product

To examine the antisymmetric spin-dependent modu-
lation in the electronic band structure under noncollinear
magnetic orderings with finite ordering wave vectors, we
evaluate the expectation value of the itinerant electron

spin operator sk = (1/2)
∑
σ,σ′ c

†
kσσσσ′ckσ′ with wave
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(a)

(b)

FIG. 1. Feynman diagrams for (a) the second-order and (b)
four-order contributions to the k-resolved spin sk in the per-
turbation expansion in terms of the spin-charge coupling J .
See Eqs. (3) and (4) for specific expressions. The vertices
with wavy lines denote the scattering of the itinerant electrons
by the localized spins in the momentum-space representation,
and the solid lines with arrows represent the bare propagators
of itinerant electrons.

vector k. The lowest-order contribution with respect to
J is of second-order, which is derived as

sk =i
J2

N
T
∑
q

∑
ωn

G2
kGk+q(Sq × S−q), (3)

where Gk(iωn) = [iωn − (εk − µ)]−1 is the noninteract-
ing Green’s function with the Matsubara frequency ωn
and µ is the chemical potential. The spin dependence of
the Green’s function is omitted owing to the absence of
the spin-orbit coupling (or spin-dependent hopping) in
the model in Eq. (2). The summation of the Matsubara
frequency can be taken analytically [see Eq. (5)]. The
corresponding Feynman diagram is shown in Fig. 1(a).

The expression in Eq. (3) indicates that the spin
cross product, which we call the chiral-type bilinear spin
cross product, in momentum space is related to the
momentum-dependent spin polarization in the magnetic
orderings with finite ordering vector q; the spin polar-
ization is induced along the direction of Sq × S−q. By
using the relation as εk = ε−k, one finds that s−k = −sk
is satisfied, which means that the k-antisymmetric spin
polarization appears for nonzero Sq × S−q and there is
no uniform component

∑
k sk = 0. In other words, a

nonzero antisymmetric contribution to sk appears when
the magnetic orderings with nonzero Sq×S−q occur. The
momentum dependence of the spin polarization is deter-
mined by the product of the Green’s function G2

kGk+q.
The result in Eq. (3) is reasonable from the symmetry

aspect, since the spin cross product Sq × S−q becomes

nonzero only when spatial inversion symmetry is absent
in the system. For example, the form of Sq×S−q appears
in the model Hamiltonian as the interaction for noncen-
trosymmetric itinerant magnets with the spin-orbit cou-
pling [72–74]. In contrast, the present bilinear spin cross
product is induced by the magnetic orderings which si-
multaneously break spatial inversion symmetry and does
not require the spin-orbit coupling. Thus, the antisym-
metric spin polarization in this mechanism only appears
in the presence of the magnetic orderings; the antisym-
metric band structure emerges below the critical temper-
ature in the materials.

From the expression of bilinear spin cross product in
momentum space, one finds that nonzero Sq × S−q can
be obtained by noncollinear and/or noncoplanar spin tex-
tures not the collinear ones. Moreover, Sq must have
both the real and imaginary components for nonzero
Sq × S−q owing to Sq = S∗−q. A simple spin texture
to satisfy these conditions is a single-Q spiral one char-
acterized by Si = (sinQ·ri, cosQ·ri, 0) with the position
vector ri, which induces nonzero szk ∝ (SQ × S−Q)z, as
will be discussed in Sec. IV A. We also show that the
antisymmetric spin-split band structure is caused by the
emergence of the multiple-Q spiral orderings, such as the
meron-antimeron and skyrmion crystals, as discussed in
Sec. IV B.

B. Biquadratic spin cross product

Similarly, the fourth-order contribution to sk with re-
spect to J is given by

sk =i
J4

N2
T

∑
q1,q2,q3,q4

∑
ωn,l

G2
kGk+q1Gk+q1+q2Gk+q1+q2+q3

× δq1+q2+q3+q4,lG

[
(Sq1

× Sq2
)(Sq3

· Sq4
)

+ (Sq3
× Sq4

)(Sq1
· Sq2

) + (Sq1
× Sq4

)(Sq2
· Sq3

)

+ (Sq2 × Sq3)(Sq1 · Sq4)− (Sq1 × Sq3)(Sq2 · Sq4)

− (Sq2
× Sq4

)(Sq1
· Sq3

)
]
, (4)

where δ is the Kronecker delta and G is the reciprocal
lattice vector (l is an integer). In this case, the summa-
tion in terms of the Matsubara frequency is calculated for
a certain temperature, and then, it is taken in the T → 0
limit. The corresponding Feynman diagram is shown in
Fig. 1(b).

Equation (4) gives the four-spin cross product. The
functional form of the four-spin cross product resembles
the chiral biquadratic interaction in real space described
by (Si × Sj)(Si · Sj) [75–80]. In the present case, how-
ever, the biquadratic spin cross product is defined for
the Fourier components of spins and becomes nonzero
only under the magnetic orderings. In other words, the
present biquadratic spin cross product only contributes
to the momentum-dependent polarization and does not
contribute to the free energy. Similar to the bilinear spin
cross product, sk from the biquadratic spin cross product
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satisfy
∑

k sk = 0. The four-spin cross product in Eq. (4)
can account for the antisymmetric spin-polarization in
the multiple-Q states that are not explained by the bilin-
ear spin cross product in Eq. (3), as shown in Sec. IV C.

IV. ANTISYMMETRIC SPIN SPLITTING IN
SINGLE-Q AND MULTIPLE-Q STATES

We discuss the antisymmetric spin splitting in the band
structure in the presence of magnetic orderings. As the
result in Sec. II can be applied to any lattice structures
in one to three spatial dimensions, we here show the ex-
amples in the one- and two-dimensional cases. First, we
show the results in the single-Q cycloidal spiral state in
the one-dimensional chain in Sec. IV A. Then, we dis-
cuss the antisymmetric spin splittings in the two double-
Q states, the meron-antimeron and skyrmion crystals in
Sec. IV B, and in the other double-Q noncoplanar state
in Sec. IV C on the two-dimensional square lattice. Al-
though we here discuss the magnetic orderings only with
the commensurate ordering vectors, a qualitative similar
result is obtained when the modulation vectors are in-
commensurate, as clearly found in Eqs. (3) and (4). As
shown in each example, the antisymmetric spin polariza-
tions are well explained by the expressions in Eqs. (3)
and (4).

A. Single-Q cycloidal spiral state

We consider the single-Q cycloidal spiral state on the
one-dimensional chain along the x direction, where we
take the lattice constant as unity. The spin configura-
tion is given by Si = (sinQxi, cosQxi, 0) with Q = π/3,
whose schematic picture is shown in Fig. 2(a). In the
following, we take the nearest-neighbor hopping t1 = 1
in εk.

Figure 2(b) shows the band structure at J = 0.1. The
color map shows the spin polarization of the z compo-
nent, where the red (blue) lines show the positive (neg-
ative) z-spin component; momentum dependence of the
spin splitting is represented by szk ∝ kxσz. Although the
antisymmetric spin polarization in the band structure is
similar to that in the noncentrosymmetric system with
the Rashba spin-orbit coupling, but the origin of the an-
tisymmetric spin polarization is different with each other.
The present antisymmetric spin polarization is caused by
the single-Q cycloidal spiral ordering without the spin-
orbit coupling. Such a behavior remains for large J , as
shown in Fig. 2(c) in the case of J = 1.

The microscopic origin of the antisymmetric spin po-
larization is understood from the bilinear spin cross prod-
uct in Eq. (3). From the spiral spin configuration, we
find the z component of the antisymmetric spin polar-
ization as szk ∝ (SQ × S−Q)z. Besides, the momentum
dependence of the spin polarization is given by the factor
G2
kx
Gkx+Q. When using the following relation by elim-
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FIG. 2. (a) Cycloidal spiral state. (b), (c) The band struc-
tures at (b) J = 0.1 and (c) J = 1. The color map shows
the spin polarization of the z component at each wave vec-
tor. (d) J dependence of s̃zk = (2/N)

∑
kx>0 s

z
k and samp =√∑

i [(sxi )2 + (syi )2] for the lowest band.

inating the summation with respect to the Matsubara
frequency as

T
∑
ωn

G2
kxGkx+Q =

f(εkx+Q)− f(εkx)

(εkx − εkx+Q)2

+
1

εkx − εkx+Q
df(εkx)

dεkx
, (5)

εkx = −2t1 cos kx, (6)

we can evaluate the kx dependence of the antisymmetric
spin polarization.

The degree of the antisymmetric spin polarization de-
pends on the amplitude of the order parameters and the
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band structure. To demonstrate that, we show the J de-
pendence of s̃zk = (2/N)

∑
kx>0 s

z
k for the lowest band

in Fig. 2(d), where the small (large) J regime mimics
the situation with the small (large) order parameters. s̃zk
becomes nonzero for J > 0 and shows the maxima at
J ' 0.018. The increment of s̃zk for 0 < J . 0.018 is ow-
ing to the enhancement of the spin moment of conduction
electrons samp =

√∑
i [(sxi )2 + (syi )2]. Meanwhile, the

suppression of s̃zk for 0.018 . J might be attributed to
the electronic band structure where the lowest band tends
to be decoupled from the other bands while increasing J
[see Figs. 2(a) and 2(b)], and hence, the denominator in
Eq. (5) becomes large.

It is noted that a similar antisymmetric spin polar-
ization occurs in the magnetic ordering with the ellipti-
cal spiral Si = (ax sinQxi, ay cosQxi, 0) where ax 6= ay.
Meanwhile, the antisymmetric spin polarization vanishes
in the collinear sinusoidal case, i.e., ax = 0 or ay = 0 due
to SQ × S−Q = 0

B. Double-Q spiral states

The above analysis can be directly applied to multiple-
Q states, which consists of multiple spiral waves. We
consider two double-Q states described by superposing
of single-Q cycloidal spirals, the meron-antimeron crystal
in Sec. IV B 1 and the skyrmion crystal in Sec. IV B 2,
on the square lattice with the nearest-neighbor hopping
t1 = 1. We take the ordering vectors Q1 = (π/3, 0) and
Q2 = (0, π/3), which are connected by fourfold rotational
symmetry.

1. Meron-antimeron crystal

The meron-antimeron crystal is represented by a su-
perposition of two cycloidal spirals. The real-space spin
configuration is given by

S̃i =

 cosQ1 · ri
cosQ2 · ri

− sinQ1 · ri − sinQ2 · ri

T

,

Si =
S̃i

|S̃i|
. (7)

The schematic spin configuration is shown in the left
panel of Fig. 3(a). Upon close looking in real space, one
finds that the spin configuration consists of a periodic
array of meron and antimeron with an opposite-sign half
skyrmion number [81–83]. The stabilization mechanism
of the meron-antimeron crystal has been widely studied
in chiral insulating magnets [84], frustrated insulating
magnets [85], and polar itinerant magnets [72, 86].

As the spin configuration in Eq. (7) is characterized
by two spiral waves along the different directions, the
antisymmetric spin polarization occurs for the two spin

components on the basis of the bilinear spin cross product
in Eq. (3): One is the y-spin antisymmetric polarization
that arises from the Q1 spiral [(SQ1

× S−Q1
)y 6= 0] and

the other is the x-spin one that arises from the Q2 spiral
[(SQ2

× S−Q2
)x 6= 0]. Then, one finds that the total

antisymmetric spin polarization in the band structure is
described by −kxσy + kyσx. Indeed, the functional form
of the antisymmetric spin polarization obtained by the
direct diagonalization is consistent with that by Eq. (3),
as shown in the right two figures in Fig. 3(a), where we
also plot the isoenergy surfaces at µ = 3.5 in the Brillouin
zone in the middle left panel for reference.

From the symmetry viewpoint, the functional form of
−kxσy+kyσx is the same as that induced by the Rashba-
type spin-orbit coupling under the polar point group
where the electric dipole moment is activated. This is
reasonable, since the real-space magnetic texture has the
same symmetry as the electric dipole moment along the
z direction; spatial inversion symmetry and mirror sym-
metry in terms of the horizontal plane are broken. Thus,
this mechanism to induce the antisymmetric spin polar-
ization is regarded as the inverse antisymmetric spin po-
larization mechanism, which is analogous to the inverse
Dzyaloshinskii-Moriya mechanism [33].

2. Skyrmion crystal

We show the antisymmetric spin polarization in the
double-Q skyrmion crystal, whose spin configuration is
given by

S̃i =

 cosQ1 · ri
cosQ2 · ri

M̃z − sinQ1 · ri − sinQ2 · ri

T

,

Si =
S̃i

|S̃i|
, (8)

where M̃z = 0.7. In contrast to the spin texture of the
meron-antimeron crystal in Fig. 3(a), the region with the
positive (negative) Szi extends (shrinks) owing to the in-

troduction of M̃z, as shown in the left panel of Fig. 3(b).
As a result, the skyrmion crystal exhibits the topologi-
cal Hall effect. The 2Q skyrmion crystal appears in the
ground state in itinerant magnets [87, 88] and in localized
magnets [85, 89].

The right three panels of Fig. 3(b) shows the isoen-
ergy surfaces at J = 0.1 and µ = 3.5, where the right
two panels show the spin polarization of the x- and y-
spin components at each wave vector. The behavior of
the antisymmetric spin polarization is similar to that in
the meron-antimeron crystal in Fig. 3(a). This is be-
cause the difference between the meron-antimeron crys-
tal and the skyrmion crystal is in the nonzero uniform
z-spin component while keeping the double-Q spiral spin
texture, which does not lead to a qualitative difference.
The same discussion holds when considering the double-
Q spin texture with large M̃z so that the spin texture
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y

xz

(a) 2Q MAX

(b) 2Q SkX

FIG. 3. (Left panel) Real-space spin configurations of (a) the double-Q meron-antimeron crystal (2Q MAX) in Eq. (7) and
(b) the double-Q skyrmion crystal (2Q SkX) in Eq. (11). (Middle left panel) The isoenergy surfaces at J = 0.1 and µ = 3.5
in the Brillouin zone. (Middle right and right panels) The spin polarization of the x and y components at each wave vector
corresponding to the middle left panel.

has no skyrmion number; the same antisymmetric spin
polarization in the form of −kxσy + kyσx occurs unless

S̃xi = S̃yi = 0 in Eq. (11).

C. Other double-Q state

In the previous sections (Secs. IV A and IV B), we show
that the effective bilinear spin cross product under the
(multiple-Q) spiral orderings give rise to the antisym-
metric spin polarization in the band structure. In this
section, we present the situation where the magnetic or-
derings exhibit the antisymmetric spin polarization in the
presence of the effective biquadratic spin cross product
rather than the bilinear one. For that purpose, we con-
sider the following double-Q spin configuration as

S̃i =

 cosQ1 · ri
b cosQ2 · ri

− sinQ1 · ri − b cosQ2 · ri

T

,

Si =
S̃i

|S̃i|
, (9)

where b is the variational parameter to represent the rel-
ative amplitude of the second Q2 component. The spin
configuration in this state consists of the spiral along the
Q1 direction and the sinusoidal modulation along the Q2

direction with the different intensities. The expression

y

xz

(a) (b)

(c) (d)

FIG. 4. (a) Real-space spin configurations of the 2Q noncopla-
nar state at b = 0.5 in Eq. (9). (b) The isoenergy surfaces at
J = 0.1 and µ = 3.5 in the Brillouin zone. (c), (d) The spin
polarization of the (c) y and (d) z components at each wave
vector.

in Eq. (9) becomes equivalent with that of the meron-
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antimeron crystal in Eq. (7) when taking b = 1 and re-
placing cosQ2 ·ri in the z-spin component with sinQ2 ·ri.
Reflecting such a difference of the spin configuration from
the meron-antimeron crystal, the real-space spin texture
is clearly different, as shown in Fig. 4(a). Here and here-
after, we take b = 0.5.

Figure 4(b) shows the isoenergy surface in the 2Q
noncoplanar state in Eq. (9) at J = 0.1 and µ = 3.5,
which is similar to that in the meron-antimeron crystal in
Fig. 3(a) except for the regions around (kx, ky) = (π, π).
As the spin texture includes the spiral along the Q1 di-
rection, one finds the antisymmetric spin polarization in
terms of the y-spin component, as shown in Fig. 4(c).
The origin of this antisymmetric spin splitting is well ac-
counted for by the effective bilinear spin cross product
under the Q1 spiral, as discussed in Sec. IV A. Mean-
while, no antisymmetric spin polarization occurs in terms
of the x-spin component (not shown), since the spin
oscillation with the Q2 component is described by the
collinear(sinusoidal)-type oscillation.

Notably, we find that the antisymmetric spin polar-
ization in terms of the z-spin component, as shown in
Fig. 4(d). The origin of this antisymmetric spin polar-
ization is understood by the effective biquadratic spin
cross product instead of the bilinear one, since the quan-
tity (Sq1 × Sq2)z(Sq3 · Sq4) in Eq. (4) becomes nonzero
for (q1, q2, q3, q4) = (Q1,Q2,−Q1,−Q2) with the k-
dependent form factor G2

kGk+Q1Gk+Q2Gk+Q1+Q2 . The
above result clearly indicates that the resultant antisym-
metric spin polarization strongly depends on the way of
a superposition of the multiple-Q spin density waves. In
other words, detecting the antisymmetric spin polariza-
tion in experiments, such as spin- and angle-resolved pho-
toemission spectroscopy, might be useful to deduce the
constituent waves in the multiple-Q states.

V. DISCUSSION

In this section, we discuss the candidate centrosym-
metric multiple-Q magnetic materials to exhibit the an-
tisymmetric spin splitting in Sec. V A and present the
expected physical phenomena driven by the momentum-
dependent antisymmetric spin polarization in Sec. V B.

A. Relevant materials

The expressions in Eqs. (3) and (4) can be straightfor-
wardly applied to complex noncollinear and noncoplanar
spin configurations. As an example, we apply the de-
rived expressions to the multiple-Q states observed in
the f -electron compound GdRu2Si2 [90, 91]. The crys-
tal structure of this compound is the centrosymmetric
tetragonal crystal structure. The Lorentz transmission
electron microscopy and spectroscopic-imaging scanning
tunneling microscopy measurements have clarified three

double-Q states: the double-Q spiral state, the double-Q
skyrmion crystal, and the double-Q fan state from the
low magnetic-field region. The theoretical model calcu-
lations have indicated the real-space spin configurations
for three double-Q states are given by

S̃i =

 −b cosQ2 · ri
cosQ1 · ri
az sinQ1 · ri

T

,

Si =
S̃i

|S̃i|
, (10)

for the double-Q spiral state,

S̃i =

 − cosQ2 · ri
cosQ1 · ri

M̃z − sinQ1 · ri − sinQ2 · ri

T

,

Si =
S̃i

|S̃i|
, (11)

for the double-Q skyrmion crystal, and

S̃i =

 − cosQ2 · ri
cosQ1 · ri

M̃z

T

,

Si =
S̃i

|S̃i|
, (12)

for the double-Q fan state [87]. b, az, and M̃z are appro-
priate constants depending on the magnetic field. The
spin configuration of the double-Q skyrmion crystal is
similar to that in Eq. (11); the difference is found in the
helicity.

Although all the three states are characterized by the
double-Q spin configurations, the resultant antisymmet-
ric spin polarization is different with each other: The
double-Q spiral state exhibits the antisymmetric spin po-
larization in the form of kxσx, the skyrmion crystal shows
the antisymmetric spin polarization in the form of kxσx+
kyσy, and the double-Q fan state shows no antisymmet-
ric spin polarization. The difference of the antisymmetric
spin polarization between three magnetic states is ex-
plained by Eq. (3), which was confirmed by the direct
diagonalization of the Hamiltonian (not shown). Thus,
the spin- and angle-resolved photoemission spectroscopy
measurement is another experimental probe to distin-
guish the multiple-Q spin textures including the helicity
of the skyrmion crystal in addition to the Lorentz trans-
mission electron microscopy and spectroscopic-imaging
scanning tunneling microscopy measurements.

The appearance of the antisymmetric spin polarization
is also expected in the other centrosymmetric multiple-Q
magnets, such as the skyrmion-hosting triangular and
kagome magnets [83] and the hedgehog-hosting cubic
magnets [92, 93]. In addition, the relation between the
spin cross products and the antisymmetric spin polariza-
tion can be extended to noncentrosymmetric magnets.



8

Although there are two contributions from the spin-orbit
coupling and the magnetic orderings to the antisymmet-
ric spin polarization in noncentrosymmetric magnets, the
antisymmetric spin polarization by the magnetic order-
ings occurs only below the transition temperature. Thus,
the comparison of the spin-split band structures above
and below the transition temperature in experiments
would provide information about the constituent waves
in the multiple-Q states. Such information will pro-
vide a clue to understand unidentified magnetic orderings
in GdSbxTe2−x−δ [94], EuAl4 [95–97], EuGa2Al2 [98],
EuGa4 [99], and EuPtAS [100].

B. Relevant physical phenomena

The antisymmetric spin polarization means an effec-
tive coupling between the spin and the momentum in
itinerant electrons, which is called the spin-momentum
locking [101]. Although the spin-momentum locking and
its related physical phenomena have been often discussed
in noncentrosymmetric nonmagnetic systems with the
Rashba and Dresselhaus spin-orbit interaction as dis-
cussed in the introduction, similar physical phenomena
can be expected in the present magnetic-order-driven an-
tisymmetric spin polarization. One of the example is
the Edelstein effect where the uniform magnetization Mµ

is induced by applying an electric current Jν [28], i.e.,
Mµ =

∑
ν αµνJν for µ, ν = x, y, z. The tensor αµν be-

comes nonzero in the presence of the antisymmetric spin
polarization kνσµ. Another example is the nonlinear Hall
effect on the basis of the Berry curvature dipole mech-
anism [102, 103]. In a similar way, other physical phe-
nomena induced by the inversion symmetry breaking are
found in the multiple-Q states with nonzero Sq × S−q
and (Sq1

× Sq2
)(Sq3

· Sq4
).

VI. SUMMARY

To summarize, we have investigated the antisymmet-
ric spin polarization in the band structure induced by
the single-Q and multiple-Q spiral orderings. By per-
forming the perturbation calculation with respect to the
spin-charge coupling in the classical Kondo lattice model,
we find that effective chiral-type bilinear and biquadratic
spin cross products in momentum space are related to
the antisymmetric spin-split band structure in the ab-
sence of the relativistic spin-orbit coupling. The obtained
expressions indicate that the antisymmetric spin polar-
ization occurs in the spin component perpendicular to

the spiral plane and the momentum dependence is deter-
mined by the product of the Green’s function of itiner-
ant electrons. We demonstrate the presence of the an-
tisymmetric spin splittings in the single-Q state on the
one-dimensional chain and the three double-Q states, the
meron-antimeron crystal, the skyrmion crystal, and the
noncoplanar state, on the two-dimensional square lattice.
We show that a way of superposing of the multiple spin
density waves leads to a qualitatively different antisym-
metric spin polarization. We also discuss the relevant
materials and physical phenomena under the present an-
tisymmetric spin polarization induced by the magnetic
phase transitions.

The results open up a possibility of engineering the gi-
ant antisymmetric spin splitting without relying on the
relativistic spin-orbit coupling [45, 46]. The obtained
expressions in Eqs. (3) and (4) are applied to various
itinerant electron systems irrespective of the lattice and
magnetic structures. As the resultant antisymmetric
spin polarization is qualitatively similar to that by the
noncentrosymmetric nonmagnetic system with the spin-
orbit coupling, the emergence of the Edelstein effect and
the nonreciprocal transport is expected, as discussed in
Sec. V B. Thus, the present results will provide a way
of bottom-up design approach to realize parity-violating
physical phenomena on the basis of the spiral magnetic
textures.

A close relation between the real-space spin texture
and momentum-space spin polarization might be provide
a deep understanding of the multiple-Q magnetism. For
example, it is possible to obtain information about a way
of superposing the spin density waves by detecting the
spin-dependent electronic band structure based on spin-
and angle-resolved photoemission spectroscopy. Such an
indirect identification of the magnetic textures through
electric probes like the spectroscopic imaging scanning
tunneling microscopy measurement and the noncolinear
magnetoresistance has been performed in magnetic ma-
terials with complicated magnetic textures [91, 104–106].
The observation of the momentum-dependent antisym-
metric spin polarization would be also useful to under-
stand the nature of the multiple-Q states in both real
and momentum spaces.
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S. Blügel, L. Szunyogh, and S. Lounis, Phys. Rev. B
103, L140408 (2021).

[81] L. Brey, H. Fertig, R. Côté, and A. MacDonald, Physica
Scripta 1996, 154 (1996).

[82] X. Z. Yu, W. Koshibae, Y. Tokunaga, K. Shibata,
Y. Taguchi, N. Nagaosa, and Y. Tokura, Nature 564,
95 (2018).

[83] T. Kurumaji, T. Nakajima, M. Hirschberger,
A. Kikkawa, Y. Yamasaki, H. Sagayama, H. Nakao,
Y. Taguchi, T.-h. Arima, and Y. Tokura, Science 365,
914 (2019).

[84] S.-Z. Lin, A. Saxena, and C. D. Batista, Phys. Rev. B
91, 224407 (2015).

[85] Z. Wang, Y. Su, S.-Z. Lin, and C. D. Batista, Phys.
Rev. B 103, 104408 (2021).

[86] S. Hayami and R. Yambe, Phys. Rev. B 104, 094425
(2021).

[87] S. Hayami and Y. Motome, Phys. Rev. B 103, 024439
(2021).

[88] S. Hayami and R. Yambe, J. Phys. Soc. Jpn. 89, 103702
(2020).

[89] O. I. Utesov, Phys. Rev. B 103, 064414 (2021).
[90] N. D. Khanh, T. Nakajima, X. Yu, S. Gao, K. Shibata,

M. Hirschberger, Y. Yamasaki, H. Sagayama, H. Nakao,
L. Peng, et al., Nat. Nanotech. 15, 444 (2020).

[91] Y. Yasui, C. J. Butler, N. D. Khanh, S. Hayami,
T. Nomoto, T. Hanaguri, Y. Motome, R. Arita,
T. h. Arima, Y. Tokura, et al., Nat. Commun. 11, 5925
(2020).

[92] M. Hirschberger, T. Nakajima, S. Gao, L. Peng,
A. Kikkawa, T. Kurumaji, M. Kriener, Y. Yamasaki,
H. Sagayama, H. Nakao, et al., Nat. Commun. 10, 5831
(2019).

[93] M. Hirschberger, S. Hayami, and Y. Tokura, New J.
Phys. 23, 023039 (2021).

[94] S. Lei, A. Saltzman, and L. M. Schoop, Phys. Rev. B
103, 134418 (2021).
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