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It has been recently shown how the tensorial nature of real-time path integrals involving the
Feynman-Vernon influence functional can be utilized using matrix product states, taking advantage
of the finite length of the bath-induced memory. Tensor networks promise to provide a new, unified
language to express the structure of path integral. Here, a generalized tensor network specifically
incorporating the pairwise interaction structure of the influence functional and its invariance with
respect to the average forward-backward position or the “sojourn” value in the form of the “blip
representation” is derived and implemented. This pairwise connected tensor network path integral
(PC-TNPI) is illustrated through applications to typical spin-boson problems and explorations of the
differences caused by the exact form of the spectral density. The storage and performance scalings
are reported showing the compactness of the representation and the efficiency of the contraction
process. Finally, the viability of using PC-TNPI for simulating multistate problems is demonstrated
taking advantage of the compressed representation. The PC-TNPI structure can be shown to yield
other tensor network algorithms currently in use. Consequently, it should be possible to use it as a
starting point for deriving other optimized procedures.

I. INTRODUCTION

Tensor networks (TN) are designed to be compact “fac-
torized” representations of high-ranked tensors. Proba-
bly the most common use of TN in physics is related
to representations of the quantum many-body wave-
function which, in general, is also a high-ranked ten-
sor. This use has been widely demonstrated in a mul-
titude of methods such as the density matrix renor-
malization group (DMRG) [1, 2] which uses a matrix
product state (MPS) [3, 4] representation, and multi-
configuration time-dependent Hartree (MCTDH) [5] and
its multi-layer version (ML-MCTDH) [6–8] which use tree
tensor networks. For multidimensional systems, an “ex-
tension” of MPS to multiple dimensions called projected
entanglement pair states (PEPS) [9] is used. For sys-
tems at critical points, an MPS representation does not
work because of long-range correlations necessitating the
use of the so-called multi-scale entanglement renormal-
ization ansatz (MERA) [10, 11]. Tensor networks, since
its introduction, have proliferated in various diverse fields
requiring the use of compact representations of multidi-
mensional data like machine learning and deep neural
networks.

While quantum dynamics at zero temperature can of-
ten be simulated using wave-function based methods like
time-dependent DMRG [2, 12, 13] or MCTDH, at finite
temperatures, owing to the involvement of a manifold of
vibrational and low frequency ro-translational states in
the dynamics, they suffer from an exponentially grow-
ing computational requirements. Feynman’s path inte-
gral provides a very convenient alternative for simulat-
ing the time-dependent reduced density matrix (RDM)
for the system. The vibrational states of the “solvent”
introduced as harmonic phonon modes under linear re-
sponse [14] are integrated out leading to the Feynman-
Vernon influence functional [15]. Identical influence func-
tional also arises in dealing with light-matter interaction
through the integration of the photonic field.

The primary challenge in using influence functionals
and path integrals is the presence of the non-local history-
dependent memory that leads to an exponential growth
of system paths. Many recent developments have helped
improve the efficiency of simulations [16–19]. Most no-
tably, the recently developed small matrix decomposition
of path integrals [20–22] (SMatPI) reduces the storage re-
quirement to multiple matrices of the size of the reduced
density matrix. However, all these methods utilize very
different and deep insights into the structure of path inte-
grals. It has recently been shown that the MPS represen-
tation can also be very effectively utilized to reformulate
real-time path integrals involving the influence functional
leveraging the finite nature of the non-local memory [23–
26] in condensed phases, and the consequently low “en-
tanglement” between well-separated time points. More
recently, such tensor network-based ideas have been ex-
tended to a novel 2D tensor network that can simulate
the dynamics of extended quantum systems coupled with
dissipative media [27].

While the MPS structure is the simplest tensor net-
work that can be used to describe the so-called path
amplitude tensor, the 1D topology is probably not opti-
mal when the bath-induced memory spans a large num-
ber of time-steps and suffers from growing bond dimen-
sions. In this paper, an alternate generalized tensor net-
work is introduced, that directly captures the pairwise
interaction structure of the Feynman-Vernon influence
functional and its independence with respect to the aver-
age forward-backward or “sojourn” position by utilizing
the so-called “blip representation” [17–19]. This pair-
wise connected tensor network path integral (PC-TNPI)
has an extremely compact representation, that can be
efficiently evaluated. We show how the previous MPS
representations can be thought of as special refactorings
of the current pairwise connected tensor network. Ten-
sor networks show great promise in being a unifying lan-
guage for formulating and thinking about path integral
methods. The goal of this paper is to introduce a ten-
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sor network that can act as this unified basis for further
developments and explorations in usage of novel tensor
networks for simulating open quantum systems.

The construction and evaluation of the tensor network
is discussed in Sec. II. The computational and space com-
plexity has been rigorously derived to prove the feasibil-
ity of contraction of this tensor network. In Sec. III, we
illustrate some typical applications of the algorithm. Be-
cause of usage of the blip representation, despite being
the most näıve implementation of the idea, it performs
on par with blip-summed path integral [17, 18]. The
implementation of this method utilized the open-source
ITensor [28] library for tensor contractions allowing for
extremely efficient tensor contractions using highly effi-
cient BLAS and LAPACK libraries. We end the paper
in Sec. IV with some concluding remarks and outlook on
future explorations.

II. METHODOLOGY

Consider a quantum system coupled to a dissipative
environment described by a Caldeira-Leggett model [29–
31]

Ĥ = Ĥ0 + Ĥenv (p, x) (1)

Ĥenv (p, x) =
∑
j

p2
j

2mj
+

1

2
mjω

2
j

(
xj −

cj ŝ

mω2
j

)2

(2)

where Ĥ0 is the Hamiltonian of the D-dimensional sys-
tem of interest shifted along the adiabatic path [32]. If
the quantum system can be described by a two-level
Hamiltonian, then Ĥ0 = εσ̂z − ~Ωσ̂x, where σ̂z and σ̂x
are the Pauli matrices. Ĥenv represents the Hamiltonian
of the reservoir or environment modes which are cou-
pled to some system operator ŝ. The strength of the
jth oscillator is cj . While we are using a time indepen-
dent Hamiltonian for simplicity, time-dependence from
an external field in the system Hamiltonian can be cap-
tured through the corresponding system propagator in a
straightforward manner.

For a problem where the environment is in thermal
equilibrium at an inverse temperature β = 1

kBT
, and its

final states are traced out, the interactions between the
system and the environment is characterized by the spec-
tral density [14, 29]

J(ω) =
π

2

∑
j

c2j
mωj

δ(ω − ωj). (3)

In fact, the spectral function, S(ω) corresponding to the
collective bath operator X = −

∑
j cjxj is related to the

spectral density as follows [33]:

S(ω) =
2~J(ω)

1− exp(−β~ω)
. (4)

For environments defined by atomic force fields or ab ini-
tio calculations, it is often possible to evaluate the spec-
tral density from classical trajectory simulations.

The dynamics of the RDM of the system after N time
steps, if the initial state is a direct product of the system
RDM and the bath thermal density is given as:
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Here, Û is the short-time system propagator for ∆t and
the system forward and backward paths are discretized
in steps of ∆t. The forward and backward states of the
system at the jth point of time are denoted by s+

j and

s−j . The system would be represented by D states. How
D is determined, is dependent on the type of the sys-
tem [31]. If the system is discrete by its very nature,
D is easily known (D = 2 for a spin system). For prob-
lems that are not intrinsically discrete, a discrete variable
representation can be employed [34–36]. In such cases,
the value of D would be chosen to accurately simulate

the partition function at the given temperature. The
dimensionality of a forward-backward state at the jth

time point, denoted as s±j consequently is D2. While
the forward-backward state of the system at time point
j is typically denoted by s±j , for the sake of notational
convenience, here we use sj as a shorthand, especially
when the forward-backward state is used as an index of
a tensor. The Feynman-Vernon influence functional [15],
F [s±0 , . . . , s

±
N ], is dependent on the full system path dis-

cretized as s±0 , s
±
1 , . . . , s

±
N and the bath response func-

tion that is discretized as the ηkk′ -coefficients [34, 35, 37].
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FIG. 1. Diagram for P (1) for a 5-step propagation. Dark
brown circles represent the K tensors.

The influence functional depends upon the history of the
system path, leading to the well-known non-Markovian
nature of system-environment decomposed quantum dy-
namics. Notice that it can be factorized based on the
“range” of interaction in the following manner:

F [s±0 , s
±
1 , . . . , s

±
N ] =

N∏
α=0

N∏
k=α

I(α)
sk,sk−α

(7)

I(α)
sk′ ,sk

= exp

(
−1

~
(s+
k − s

−
k )(ηkk′s

+
k′ − η

∗
kk′s

−
k′)

)
δk′,k−α.

(8)

The influence functional creates pairwise interactions
between points that are temporally separated. As it has
been shown, if MPS and MPO are used to model the
influence functional, the fact that these interactions can
spread across long temporal spans leads to an increase
in the effective bond dimension. Here, the goal is to cre-
ate a structure that naturally and efficiently accounts for
the pairwise interactions that span long temporal separa-
tions while not being associated with any one particular
representation.

To motivate the tensor network representation, first
consider the Markovian part of Eq. (5), involving just
the propagators and the terms of the influence functional
coupling consecutive time points. These terms can be
simply rearranged as:

P (1)
s0,sN = Ks0,s1Ks1,s2 . . .KsN−1,sN (9)

Ksj−1,sj =
〈
s+
j

∣∣Û ∣∣s+
j−1

〉 〈
s−j−1

∣∣Û†∣∣s−j 〉 I(1)
sj−1,sjI

(0)
sj ,sj , j ≥ 2

(10)

Ks0,s1 =
〈
s+

1

∣∣Û ∣∣s+
0

〉 〈
s−0
∣∣Û†∣∣s−1 〉 I(1)

s0,s1I
(0)
s1,s1I

(0)
s0,s0 .

(11)

Here, we are implicitly summing over repeated indices
that do not appear on both sides of the equation. Once
again, the ± labels on the forward-backward states that
act as the site indices of the tensors are omitted for con-
venience of notation. The superscript, 1, on P is there to
denote the maximum distance of interaction that we have
incorporated. Equation (9) is already a tensor network;
more specifically it is series of matrix multiplication as
shown in Fig. 1. Let us now bring the “next-nearest

neighbor” interactions I
(2)
sj−2,sj . Clearly, it is not possible

to directly contract the I
(2)
sj−2,sj tensor to the P (1) tensor

because the internal sj ’s have already been traced over.

To make it possible to incorporate the I(2) tensors, we
augment the K tensors as follows:

Kr1s0,s1 = Ks0,s1δs0,r1 (12)

FIG. 2. Diagrams for the K tensors. The edge tensor is on
the left, and the internal tensors on the right. For the edge
tensor, the output index is a left index if it is a right edge
tensor (Eq. (13)) and a right index if it is a left edge tensor
(Eq. (12)).

FIG. 3. Diagram for P (2) for a 5-step propagation. The darker
circles which form the base represent the K tensors. The
comparatively lighter red squares forming the second layer
represent the I(2) tensors.

KlN−1
sN−1,sN = KsN−1,sN δsN ,lN−1

(13)

Klj−1,rj
sj−1,sj = Ksj−1,sjδsj ,lj−1δsj−1,rj if j 6= 1 and N.

(14)

The topology of the K tensors are demonstrated in
Fig. 2. It is convenient to think of lower indices as the
“input” indices and the upper indices as the “output” in-
dices, though there is no other mathematical significance
to the positioning of the indices. Also, in context of the
diagram, the l and r indices point to the left and right di-
rections respectively. With this input-output convention
in mind, it is easy to see that the internal augmented K
tensors duplicate and flip the order of the input indices,
sj . This ensures that indices that differ by two time steps
are now placed adjacent in the output layer. Now, the
Markovian terms and the I(2) terms can be combined and
we get:

P (2)
s0,sN = Kr1s0,s1

N−2∏
j=1

I
(2)
rj ,lj

Klj ,rj+1
sj ,sj+1

I
(2)
rN−1,lN−1

KlN−1
sN−1,sN ,

(15)

which is depicted in Fig. 3. Notice that the index sj still

connects Ksj−1,sj and Ksj ,sj+1 , as in P (1), but now there

is another connection that goes through the I(2) tensor
in a “triangular” form. This feature of an I(α) with a
higher α acting as a bridge between K or I tensors with
smaller values of α would become a recurring motif in
this tensor network.

The pattern for inclusion of the rest of the non-local
interactions is quite similar. Note that in Fig. 3, if we
did the same “trick” of duplicating and flipping the or-
der of the inputs, in the next layer indices that differ by
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FIG. 4. Diagrams for the I tensors. The edge tensor is on the
left, and the internal tensors on the right. The exact color
would vary to indicate the distance of “interaction” encode
by the influence functional term. Same conventions as Fig. 2
apply.

FIG. 5. Diagram for the final Green’s function for a 5-step
propagation. Dark brown circles represent the K tensors. The
various red squares represent the I tensors for different sep-
arations. The lighter shades of red show a larger separation
between interacting time-points. The indices that point to
the top-left from the base of the triangle would be said to be
a “left” index; and those that point to the top-right would be
said to be a “right” index carrying on the convention set up
for the K̃ tensors.

three time points, like s0 and s3, s1 and s4, are going to
be adjacent. These augmented tensors would now be de-
noted by I, whose diagram is shown in Fig. 4. Hence, this

can now be multiplied by I
(3)
sj−3,sj . Continuing like this,

we can complete the network. The diagram is shown in
Fig. 5 [38], these augmented tensors are going to be writ-
ten as K, I(2), . . . . The tensor network shown in Fig. 5,
which we will conventionally denote by P (∞), represents
the final Green’s function for the propagation of the sys-
tem RDM having incorporated the non-local influence
from the environment. So, ρ(t) = P (∞)ρ(0).

In Fig. 5, all the indices have D2 dimensionality corre-
sponding to each of the possible combination of forward-
backward states. However, this is not optimal. The in-
fluence functional tensors for a time difference of α can
be massaged in the following manner:

I(α)
sk−α,sk

= exp
(
−∆sk(ηk,k−αs

+
k−α − η

∗
k,k−αs

−
k−α)

)
,

(16)

where ∆sk = s+
k − s−k . This expression depends only

on the “difference” coordinates or blip values, ∆sk. So,
currently, we are carrying over more information than
we need to. By transforming this coordinate, s±k to
an average or “sojourn” values and difference notation,
s̄k = 1

2

(
s+
k + s−k

)
and ∆s respectively, it can be seen

that there is a symmetry with respect to the average
forward-backward position or the sojourn value of the lat-
ter or the kth time point. The blip-summed path integral
method [17, 18] (BSPI) formulation achieves a complete
transformation of the real-time path integral algorithm in
terms of these blip and average value coordinates allow-
ing for effective grouping, filtering and summing of paths
according to the distribution of these blips. However,
with the PC-TNPI tensor network, a partial transforma-
tion is possible, where only the latter time point, k, is
transformed into its blip value and the earlier time point
still continues in the forward-backward form is possible.
In fact, significant compaction and performance gain can
be achieved with minimal change in the tensor network
discussed till now, simply by reducing the dimensionality
of all the “left” indices, that carry the excess information.

In order to do that, we need to start by redefining
the K tensors. In Eqs. (12)–(14), the output indices, l
and r are exactly the same as the input indices, except
flipped in order. The l indices, consequently, carry the
full information about the forward-backward state that
occurs later in time, which is unnecessary. Now, these
tensors can be modified such that the l indices carry only
the blip value or the value of ∆s as follows:

K̃r1s0,s1 = Kr1s0,s1 (17)

K̃lN−1
sN−1,sN = KsN−1,sN δs+N−s

−
N ,lN−1

(18)

K̃lj−1,rj
sj−1,sj = Ksj−1,sjδs+j −s

−
j ,lj−1

δsj−1,rj if j 6= 1 and N.

(19)

Notice that the upper-right output indices in the di-
agrams remain exactly the same. Only the upper-
left output index of K changes. Therefore, the ten-
sor Kr1s0,s1 remains unchanged. The dimensionality of
the “l” indices is the number of unique values of the
blips, ∆s = s+ − s− that the system can have. For
the most general D-level system, this value is B =
D2 − D + 1 instead of D2, however the actual sym-
metries present in the system might reduce this even
further. Finally, the influence functional tensors have

to be changed to be consistent, viz. Ĩ(α)
sk−α,∆sk

=

exp
(
− 1

~∆sk(ηk,(k−α)s
+
k−α − η∗k,(k−α)s

−
k−α)

)
. Even with

these changes, the basic topology of the network remains
the same. The new network with the different dimensions
is shown in Fig. 6. Here, we introduce a bit of terminol-
ogy to facilitate the discussion of the network. The solid
edges in Fig. 6 carry the full information of the forward-
backward state, and hence would be said to belong to
the “forward-backward space.” On the other hand, the
dashed lines carry only the information of ∆s, and hence
shall be said to belong to the “∆s space” or the “blip
space.”



5

FIG. 6. Optimized diagram for the final Green’s function for
a 5-step propagation. Dashed lines have dimension B, and
solid lines carry dimension D2. Blue arrows show the order
of contraction.

Having discussed the tensor network, now let us turn
to the job of contracting it. Typically, many tensor net-
works are constructed using singular value decomposition
(SVD) and evaluated via the truncation of the singular
values [23, 26]. The PC-TNPI network is constructed
without resorting to any SVD calculations and conse-
quently “exact.” The goal now is to find an optimal
contraction scheme that preserves this “exactness.” The
storage cost, S, is also evaluated at the end of every step.
The canonical contraction order that we discuss below
has been marked out in cyan arrows in Fig. 6. For a
simulation with N time steps:

1. Start with Ĩ(N)
s0,sN and contract it with Ĩ(N−1)

s0,sN−1 . S =
D2B2.

2. Multiply by Ĩ(N−2)
s0,sN−2 . S = D2B3.

3. Multiply all Ĩ(α)
s0,sα followed by K̃s0,s1ρs0 . At this

stage the storage cost is S = D2BN−1. It is inter-
esting to note the various indices at this stage. The
index corresponding to the zero time, s0 has been
completely contracted away, s1 is in the forward-
backward space, while all the other sites carry only
the information about ∆s.

4. Contract the second edge sequentially, starting
from K̃s1,s2 . S = (D2)2BN−2.

5. While contracting the remaining N − 3 tensors on
the second edge, the storage cost remains constant
at S = (D2)2BN−2.

6. Lastly, the topmost tensor on the second edge
needs to be contracted. The storage drops to
S = D2BN−2. Again, after contracting the sec-
ond edge, the resulting tensor does not have the s0

and s1 indices, s2 is in the forward-backward space,
and everything else is in the ∆s space.

7. Continuing in the same fashion, the storage require-
ments of contracting the internal tensors of the jth

edge is S = (D2)2BN−j when j < N .

8. After contracting the final tensor on the jth edge,
the storage drops to S = D2BN−j .

9. Finally, the last tensor, K̃sN−1,sN is contracted.

In the above contraction scheme, we multiply the ini-
tial condition, ρs0 , and get the final RDM. While this
leads to a more efficient algorithm in terms of the storage
and computational cost, it is possible to reformulate the
scheme in terms of the Green’s function by not involving
the initial condition in the contractions and evaluating
P (∞). An in-depth analysis of the memory and computa-
tional cost is given in Appendix A. Of course, the storage
requirement grows to a maximum of (D2)2BN−2 before
decreasing continuously. As shown by the computational
and storage cost (derived in detail in Appendix. A), PC-
TNPI is already quite useable, exponentially outperform-
ing traditional iterative quasi-adiabatic propagator path
integrals (QuAPI) [34, 35] and performing on par with it-
erative blip summed path integral (BSPI) [17–19]. How-
ever, it does not address the problem of storage, which
continues to scale exponentially. In a future work, fil-
tration schemes on top of PC-TNPI, giving it a row-wise
matrix-product representation, would be introduced that
can not only deal with this problem, but would also avoid
the construction and storage of the full tensor. The focus
of this paper is however on the general tensor network,
which is quite performant even in the most näıve imple-
mentation.

A short discussion of the connection of this tensor net-
work with the traditional QuAPI and the newer tensor-
network based path integral approaches would be helpful
in better explaining the structure. While most methods
are based on the ability to assign an amplitude to either
a single path or a group of paths collectively, here how-
ever, it is not possible in a simple manner. As the tensor
network is evaluated, there is no point of time, where all
the points along the discretized system path are available
simultaneously. The complete evaluation of the network
finally yields the time propagated reduced density matrix
or the Green’s function depending on whether the ini-
tial state is incorporated while contraction or not. More
precisely, the so-called path-amplitude tensor for a path
integral of N steps is a tensor with indices s0, s1, . . . , sN
that gives the amplitude corresponding to a particular
discretized system path. The contraction algorithm is
built in a way that at no point is such a tensor available.

The existing tensor network methods are based on
MPS and MPO [23, 39]. One can think of them as differ-
ent approaches of representing the base of the triangle in
Fig. 5 or Fig. 6 in the matrix product form. It is currently
not known if this is the most optimal representation pos-
sible. While in the current work, we have outlined and
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FIG. 7. Diagram for the final Green function for a 5-step
propagation with memory length L = 3.

analysed the optimal brute-force contraction scheme, it
is by no means the only way to evaluate the network.
Because this PC-TNPI can be contracted directly, it can
form a basis for future investigations for different decom-
positions of the same. It is possible that the optimal
fitering procedure built on top of PC-TNPI would lead
to a completely different matrix product representation
of the problem.

It is well-known that in condensed phase dissipa-
tive environments the non-local memory of the influ-
ence functional dies away with the distance between
the points, allowing for a truncation of memory. This
idea is commonly used both in Nakajima-Zwanzig gen-
eralized quantum master equations [40–42] and iterative
QuAPI [34, 35]. The length of this non-local memory is
related to the the time-scales of the bath response func-
tions. Computationally, it is treated as a convergence pa-
rameter, which is increased till the dynamics stops chang-
ing. In the framework of PC-TNPI, the length of the
memory is equal to the depth of the resultant network.
The topmost tensor encodes the interaction between the
most distant points, while the bottom most tensor cap-
tures the Markovian interactions coming through the
propagator and the I(1) terms.

At two time-steps of memory, that is L = 2, we basi-
cally get Fig. 3. In Fig. 7, we show the structure of the
network for a 5-step propagation with L = 3. Because
s0 does not interact with s4 or s5, it is not necessary to
store and evaluate the full diagram at once, but it can
be built iteratively. The first edge, corresponding to in-
teractions with s0 is contracted, and multiplied by the
second edge, using the canonical contraction scheme dis-
cussed previously. As soon as this is done, the storage
of the first edge can be freed, and the third edge can be
contracted. This iteration scheme turns out to be identi-
cal to the iteration scheme in any iterative path integral
method like iQuAPI or iBSPI. The first steps of the it-
eration algorithm is pictorally outlined in Fig. 8.

Makri [17] has shown that it is possible to think of
the memory as arising from two different causes. The
influence functional F can be rewritten in terms of the
real and imaginary parts of the η-coefficients as:

F [s±0 , s
±
1 , . . . , s

±
N ]

= e−
1
~
∑
k ∆sk

∑
k′≤k(Re ηkk′∆sk′−2i Im ηkk′ s̄k′ ) (20)

where ∆sk = s+
k − s

−
k and s̄k = 1

2 (s+
k + s−k ). The part of

(a) Contract all influence functionals with s0.

(b) Contract result with all influence functionals with s1. No-
tice that the external index with s1 from the previous step has
been contracted out and now the bottom-most external index

is s2.

(c) Contract result with remaining terms to get RDM.

FIG. 8. First steps of algorithm for iteration. The basic
contractions are done in the same way as described for the
full path part.

the influence functional that arises from Re ηkk′ is called
the classical decoherence factor. It corresponds to stim-
ulated phonon absorption and emission [43]. This can
also be obtained through classical trajectory-simulations
and reference propagators [44, 45] in a Markovian man-
ner. All effects of temperature is captured in the classi-
cal decoherence term. The term with the Im ηkk′ is the
back-reaction that leads to quantum decoherence. This
part of the memory is truly non-local and temperature
independent.

The inclusion of solvent trajectory-based reference
propagators is trivially possible in PC-TNPI using the
framework of harmonic back-reaction [43]. However, it is
interesting to note that it is possible to increase the effi-
ciency of the approximate simulations involving only the
classical decoherence even without these reference propa-
gators by judiciously using the tensor network structure.
This approximate dynamics would become increasingly
accurate as the temperature of the simulation rises. In
this, the full ηkk′ coefficients are used only when k = k′ or
k = k′+1, and otherwise the imaginary part of ηkk′ is ig-

nored. Effectively, we are modifying the I
(α)
sk′ ,sk operators

to be exp (−1/~Re(ηkk′)∆sk∆sk′) when α = k− k′ ≥ 2.
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Just like before when the sk lines carried unnecessary in-
formation, now the sk′ lines carry more information than
they need to. We only need to know about ∆sk′ . Thus
we can make the required changes to the dimensionality
of the indices by putting in the corresponding projector
operators in the K tensors, thereby reducing the cost of
computation even further. The network for the classi-
cal decoherence simulations would have exactly the same
structure as Fig. 5 with all edges except the base ones
being B dimensional. This approximation is especially
accurate at short times.

The scaling of the näıve contraction algorithm has been
derived in Appendix A. For a simulation of N time steps
with a memory length of L, the computational complex-
ity scales as O((N−L)BL−1) and the storage complexity
scales as O(BL) where B is the number of unique blip
values corresponding to the system.

III. RESULTS

As illustrative examples, we apply PC-TNPI to a two-
level systems (TLS) coupled bilinearly to a dissipative
environment:

Ĥ0 = εσ̂z − ~Ωσ̂x, (21)

where σ̂z and σ̂x are the Pauli spin matrix. The TLS
model is not just useful for describing spins, but also
for deep tunneling processes where the lowest doublet is
enough to describe the entire process.

The dissipative environment is chosen to be defined by
Ohmic model spectral densities, which are especially use-
ful in modeling the low frequency ro-translational modes.
We use the very common Ohmic form with an exponen-
tial cutoff,

J(ω) =
π

2
~ξω exp

(
− ω

ωc

)
(22)

where ξ is the dimensionless Kondo parameter and ωc is
the characteristic cutoff frequency and the Ohmic form
with a Drude cutoff,

J(ω) = κωc
ω

ω2 + ω2
c

(23)

where κ is a measure of the coupling strength. Generally
these model spectral densities are often thought to be
fully characterized by a reorganization energy

λ =
2

π

∫ ∞
−∞

J(ω)

ω
dω (24)

and the cutoff frequency, ωc. The reorganization energies
for the exponential and the drude cutoff spectral densities
are as listed below:

λExp = 2ξωc (25)

λDrude = 2κ. (26)

As we demonstrate through the examples, though the
reorganization energy and the cutoff frequency are same,
the exact dynamics of the reduced density matrix is
highly dependent on the form of the “decay function.”
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FIG. 9. Dynamics of a symmetric TLS interacting with a
bath with λ = 4, ωc = Ω at an inverse temperature ~Ωβ = 1.

Consider a symmetric TLS (ε = 0) and Ω = 1 inter-
acting strongly (ξ = 2) with a sluggish bath (ωc = Ω)
initially localized on the populated system state 1. The
bath has a reorganization energy of λ = 4 and is held at
an inverse temperature of ~Ωβ = 1. The dynamics was
converged at ∆t = 0.125, and a memory length L = 16
for the time-scales shown. The convergence is shown in
Fig. 9 (a) for an Ohmic bath with an exponential de-
cay. Full quantum-classical path integral (QCPI) sim-
ulations for this parameter have been reported for this
short time interval [45]. Converged results upto equili-
bration requires much larger memory lengths of L ≈ 100,
which cannot be achieved without some form of filtra-
tion. These results have been reported using SMatPI [22]
and reproduced by the augmented propagator path inte-
gral [26]. If the Drude form of decay is used, the dynamics
changes quite significantly. The comparison between the
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FIG. 10. Convergence with respect to memory length for the
spectral density with an exponential cutoff.

dynamics arising from the two spectral densities is shown
in Fig. 9 (b).

Next, consider a case where not only is the dynamics
different between the two different decay functions, but
the converged memory length is different as well. The dy-
namics of the same TLS as above (ε = 0,Ω = 1) is now
simulated in a bath with the reorganization energy λ = 8
and a characteristics cutoff frequency ωc = 5. The bath is
equilibrated at an inverse temperature of ~Ωβ = 5. The
time-step is converged at Ω∆t = 0.125. The convergence
of the dynamics of the reduced density matrix on chang-
ing the memory length, L, is shown in Fig. 10. While the
memory length for the exponential decay function spec-
tral density is quite close to convergence at L = 14, for
the Drude spectral function, it converges at L = 10.

In Fig. 11, we consider a TLS coupled to a strongly
coupled Ohmic bath with an exponential cutoff (ξ = 1.2,
ωc = 2.5Ω) equilibrated at a high temperature ~Ωβ =
0.2. The converged time step is ∆t = 0.125. The clas-
sical memory calculations converge at a comparatively
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FIG. 11. Comparison between the classical and full memory
calculations for a strongly coupled high temperature bath.
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FIG. 12. Rate according to the non-equilibrium flux function.
Markers: Classical memory approximate simulations. Line:
Full simulations without any approximation.

lower memory length, L and agree quite well with the
full simulations at short times.

For many processes that have timescales too long to
be simulated directed, rate theory provides a computa-
tonally efficient alternative. Quantum rate theory is for-
mulated in terms of equilibrium correlation functions in-
volving reactive flux [46–48]. Recently it has also been
shown that it is possible to get the same information non-
equilibrium initial conditions and simulations [39, 49].
Consider a model of a typical symmetric proton trans-
fer or isomerization reaction where the tunneling split-
ting is significantly smaller than the vibrational frequen-
cies of the environment. We consider the symmetric
TLS (ε = 0) studied in Ref. [50] and Ref. [49] with
~Ω = 0.000 525 cm−1. The strongly coupled bath is char-
acterised by an Ohmic spectral density with an expo-
nential cutoff at the cutoff frequency of ωc = 500 cm−1

and ξ = 0.5. The rate is obtained as a long-time limit

of the non-equilibrium flux function, F̂ = i
~

[
Ĥ0, |1〉〈1|

]
,

whose time evolution at different temperatures ranging
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FIG. 13. Population dynamics corresponding to an initially
populated first site. Lines: full simulations, markers: classical
memory simulations. For full decoherence, L = 6; for classical
decoherence, L = 4.

from T = 300 K to 2400 K is shown in Fig. 12. As can
be seen that at all the temperatures, the timescales in-
dicated by the classical memory only simulation, though
not exactly accurate, yields timescales that are consistent
with the full rate theory calculations. It is also seen that
the accuracy of the classical memory simulations increase
with temperature.

As a final example, consider a molecular wire described
by the tight-binding Hamiltonian involving D sites:

Ĥ0 =
∑

1≤j≤D

εj |σj〉〈σj | − ~V
∑

1≤j<D

(|σj〉〈σj+1|+ |σj+1〉〈σj |).

(27)

The site energy of the jth site is εj and the nearest neigh-
bor couplings are V . The sites are separated by unit dis-
tance such that |σj〉 are eigenstates of the position oper-
ator, ŝ |σj〉 = (j − 1) |σj〉. The site energy of all but the
first site is chosen to be zero εj = 0 for j 6= 1 and ε1 = 1.
The intersite coupling is chosen to be V = 0.025 [51].

The computational cost grows exponentially with the
number of sites. To test the efficiency of the basic con-
traction scheme outlined here, we use a system with
D = 4 sites. The bath is characterized by an Ohmic
spectral density with an exponential cutoff, Eq. (22) with
ωc = 4 and ξ = 0.12 [26] equilibrated at an inverse tem-
perature of β = 0.1. As discussed in Sec. II, the scaling
of the algorithm would go as B < D2. The symmetry
of the Hamiltonian enforced by the global bath in this
case ensures that the number of unique values of ∆s,
B = 7 for this 4 state system, which is even less than
the D2 −D + 1 = 13 for a completely general Hamilto-
nian. The population dynamics of all the states is shown
in Fig. 13. An initial state with only the first site pop-
ulated was used. Because of the high temperature of
the bath, the classical decoherence simulation produces
practically identical dynamics but converges at a smaller
memory length L.

IV. CONCLUSION

A novel tensor network is introduced to perform path
integral calculations involving the Feynman-Vernon in-
fluence functional. Not only does this pairwise con-
nected tensor network path integral (PC-TNPI) capture
the pairwise interaction structure of influence functional,
but it also benefits from the blip symmetry present in the
Feynman-Vernon influence functional [17, 18]. PC-TNPI
can be contracted efficiently, and minimizes the storage
requirements as far as possible without resorting to vari-
ous path filtration algorithms. Iterative decomposition of
the memory is also possible in an elegant manner. Anal-
ysis of the space and time complexity of PC-TNPI shows
that it scales like iBSPI, clearly taking advantage of the
blip symmetry.

Recently, tensor networks are proving to be very use-
ful in simulating the dynamics of open quantum sys-
tems [23, 26, 27]. PC-TNPI provides an alternative to
the commonly used MPS representation [23, 26], serv-
ing as a small step in further elucidating the deep rela-
tion between tensor networks and path integrals. While
no path filtration scheme has been developed, PC-TNPI
is already quite usable. It can easily incorporate classi-
cal trajectories through harmonic backreaction quantum-
classical path integrals [43–45, 52, 53] thereby making it
possible to include anharmonic effects of the environment
in an approximate manner without any additional cost.
Additionally, harmonic backreaction also leads to an in-
crease in the converged time-step and a decrease in the
effective memory length such that some ultrafast reac-
tions can be simulated directly. The combined method
would be able to simulate systems with strongly coupled
sluggish realistic solvents with high reorganization en-
ergy. This promises to be a fruitful avenue of research
in terms of applications to electron and proton transfer
reactions.

The most important aspect of PC-TNPI is that it gives
a framework to unify and develop other tensor network
algorithms for simulating real-time path integrals. Algo-
rithms based on MPS representations of the augmented
reduced density tensor [23] or of the augmented prop-
agator [26] can be thought of as particular optimized
re-factorizations of the PC-TNPI network. In partic-
ular, these methods can be thought of as different ap-
proaches of representing the base as an MPS. We have
also established the viability of evaluating PC-TNPI in
a brute force manner. This suggests that using the PC-
TNPI network directly to generate other optimized rep-
resentations might also lead to novel methods whose per-
formance should significantly outstrip that of the brute
force evaluation of the tensor network. In this con-
text, there are optimized algorithms for doing calcula-
tions with MPSs and MPOs. It would be an interesting
future research direction to figure out the optimal repre-
sentation of the system using an MPS.

While ideas of path filtration were not a considera-
tion of the present paper, schemes based on the singu-
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(a) Contraction of internal tensor along the left edge (j ≥ 2).
C = (D2)2BN−j+1. S = D2BN−j+1.

(b) Contraction of K̃s0,s1ρs0 . C = (D2)2BN−1. S =
D2BN−1.

FIG. 14. Contraction along the left edge of the triangle.
Dashed lines show the B dimensional indices, and solid lines
show the D2 dimensional indices.

lar value decomposition (SVD) can be incorporated with
PC-TNPI, leading to a method that significantly reduces
the storage, since the full tensor would not need to be
computed and stored. This development would be dis-
cussed in a future publication, further optimizing the
framework of PC-TNPI.
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Appendix A: Cost of Contraction

Consider the tensor network corresponding to a full
path simulation spanning N time-steps. To calculate the
cost of contraction, the left “edge” of the triangular net-

work is first considered. Consider contracting Ĩ(j)s0,sj , for
j ≥ 2, with two D2 indices and one B index, as schemat-
ically indicated in Fig. 14 (a). The part that has already
been contracted has one D2 index and (N−j) B indices.
Therefore, the cost of contraction is (D2)2BN−j+1. The
space requirement at this stage is D2BN−j+1. To fin-
ish the contraction of the left-most edge of the triangle,
we need to multiply by K̃s0,s1ρs0 leading to the tensor
network shown in Fig. 14 (b). The resultant tensor does
not have a index corresponding to s0 because that has
been traced over. The computational cost of this step is

(a) Contracting the first tensor of the next parallel edge. C =
(D2)3BN−1. S = (D2)2BN−2.

(b) Contracting the last tensor of the next parallel edge. C =
(D2)2BN−1. S = D2BN−2.

FIG. 15. Contraction along an intermediate edge, say the one
next to the left-most edge.

C = (D2)2BN−1 and the storage becomes S = D2BN−1.
Now, the second parallel edge is to be contracted. This

step however is started from the bottom, i.e. from K̃s1,s2 .
The first contraction, shown in Fig. 15 (a), is the most
costly step in the entire algorithm. The computational
cost of this step is C = (D2)3BN−1 and the storage
requirement increases to S = (D2)2BN−2. Continuing
with the other intermediate tensors of the first parallel
edge, notice that the cost of contraction remains constant
at C = (D2)3BN−1 and the space required remains con-
stant at S = (D2)2BN−2. Finally, the last, top-most ten-
sor of this edge is to be contracted. This is illustrated in
Fig. 15 (b). The computational cost is C = (D2)2BN−1.
The storage cost now drops to S = D2BN−2.

Now, consider contracting a general diagonal edge, say
the jth one. The resultant tensor from the previous con-
traction has one D2 index and (N − j + 1) B indices.

Contracting the K̃ tensor leads to a tensor with two D2

indices and (N−j) B indices. The cost of this contraction
is C = (D2)3BN−j+1 and the storage is S = (D2)2BN−j .
For all the intermediate tensors at this stage, once again
both the computational costs and the storage costs re-
main the same. On contracting the last tensor of this
diagonal, the storage drops to S = D2BN−j .

Below we list the total computational cost for contract-
ing each of the “parallel” edges. The edge number is
given as the subscript.

C1 = (D2)2BN−1 +

N−1∑
j=2

(D2)2BN−j+1

= (D2)2

(
BN−1 +

B2(BN−2 − 1)

B − 1

)
(A1)

Cj = (D2)2BN−j+1
(
1 + (N − j)D2

)
, 2 ≤ j ≤ N

(A2)
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The prefactor of the computational and storage costs
is lower for classical decoherence simulations: It goes
from a power of D2 to the corresponding power of B.
It is clear that the complexity of the entire contrac-

tion goes as O
(
BN−1

)
and the peak storage requirement

is O
(
BN−2

)
. Beyond memory, the computational cost

scales linearly with the number of time steps simulated.
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