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The Higgs mode associated with amplitude fluctuations of the superconducting gap in uniform superconduc-
tors usually is heavy, which makes its excitation and detection difficult. We report on the existence of a gapless
Higgs mode in the Fulde-Ferrell-Larkin-Ovchinnikov states. This feature is originated from the Goldstone mode
associated with the translation symmetry breaking. The existence of the gapless Higgs mode is demonstrated
by using both a phenomenological model and microscopic BardeenCooperSchrieffer (BCS) theory. The gapless
Higgs mode can avoid the decay into other low energy excitations, which renders it stable and detectable.

Introduction — The idea of spontaneous symmetry break-
ing, that a state does not need to have the same symmetries as
the model Hamiltonian that describes the system under con-
sideration, is one of the cornerstones of modern physics. Per-
haps the most important example is the breaking of the gauge
symmetry related to the weak and electromagnetic interaction
SU(2) x U(1), which creates the Higgs condensate as the ori-
gin of particle masses in the Standard Model. The correspond-
ing Higgs boson, which is generated by the quantum excita-
tion of the condensate, was discovered experimentally in 2012
[1, 2]. The Higgs boson as an elementary particle has a large
mass thus requiring a huge particle collider, such as CERN at
Europe, to enable its discovery.

An elementary excitation, analogous to Higgs boson, can
also appear in condensed matter systems [3—15]. One example
is the amplitude mode in superconductors, which is associated
with the amplitude fluctuations in the superconducting con-
densate from breaking of the U(1) gauge symmetry [4]. This
mode is widely referred as the Higgs mode in literatures [9].
Recently, the Higgs mode has been observed in conventional
s-wave superconductors (NbyTi;_xN, NbN) by ultrafast ter-
ahertz (THz) pump-THz probe spectroscopy [16, 17], which
revives the interest in the Higgs dynamics of superconducting
order parameter. Akin to its cousin in particle physics, the
Higgs boson in superconductors is very massive, which ren-
ders it short lived by decaying into quasiparticle continuum.
Lots of efforts have been made to reduce the energy of the
Higgs mode, and in certain circumstance, the energy of the
Higgs mode can be made smaller than the continuum of the
excitations, which results in a stable Higgs mode [18-20].

In this work, we demonstrate the existence of a gapless
Higgs mode in the two-dimensional Fulde-Ferrell-Larkin-
Ovchinnikov (FFLO) state of a superconductor. This is based
on the observation that the FFLO state breaks spatial trans-
lational invariance, thus admitting a gapless “phonon” mode
[21], which is just the Higgs mode. The damping of this low
energy Higgs mode is suppressed and the Higgs mode has a
long lifetime. The FFLO state was predicted in Pauli lim-
ited superconductors due to the imbalanced up and down spin
species under a magnetic field [22, 23]. The superconduct-
ing gap function A(r) = (y;y,) has a nonzero center-of-mass
momentum and oscillates in space. There are two competing

FFLO states: the state with only phase modulation is called
the FF state [22]; the state with only amplitude modulation
is called the LO state [23]. It has been found that the LO
state has a lower free energy. Possible FFLO states have been
reported experimentally in layered organic superconductors,
heavy Fermion superconductors and FeSe [24-37].

Effective low-energy theory — In the FFLO state, the spatial
translational symmetry is spontaneously broken, which gives
rise to a new type of Goldstone mode. The energy of the sys-
tem is invariant E(A(r)) = E(A(r + &;)) under a spatial trans-
lation &y, where A(r) is a spatial dependent order parameter.
The eigenstate of the Goldstone mode is d,A. In the FF state,
the Goldstone mode is the phase mode, while in the LO state,
the Goldstone mode is the amplitude or Higgs mode associ-
ated with the amplitude fluctuations. In this paper, we focus
on the Higgs mode in the LO state. The relation between the
Goldstone mode of the FFLO state and the Higgs mode can
be understood using a Ginzburg-Landau action. To the second
order in superconducting order parameter ¥, the low-energy
effective Lagrangian can be written as [38]

L =KW O+ K| WP WP+ V24 V2 (1)

Here we have neglected the coupling of the Cooper pairs to
the electromagnetic field for convenience of discussion. To
stabilize the FFLO state, we choose ¥ < 0 and n > 0. In .Z,
both first and second order time derivative terms are allowed
by time reversal symmetry and gauge invariant. By perform-
ing the particle-hole transformation, ¥ — W*, one can see the
K (K>) term breaks (preserves) particle-hole symmetry. It
is worth noticing that this particle-hole symmetry is a sym-
metry of the energy bands in the normal state. The particle-
hole symmetry has important consequence on the collective
excitation in superconductors [39]. Rigorously speaking, a
pure Higgs mode only exists in superconductors with particle-
hole symmetric band structure in the normal state. When the
particle-hole symmetry is violated, the phase and Higgs mode
start to hybridize.

Close to T < T., ¥y = Wocos(Q - r)e?, which breaks
the spatial translational invariance. To find the eigen modes,
we expand ¥ around the mean field saddle point Wy, i.e.
Y = Wy + 0. The eigenstate of the corresponding Gold-
stone mode associated with a small spatial shift » — r+ 0, is
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FIG. 1. (a) Spatial dependence of superconducting order parameter
in the FFLO state, and (b) the corresponding density of state. The
parameters are V = 1.6, E; =0.15,t = 1.

0¥ = Q- &, sin(Q - r), which is just the Higgs mode of the su-
perconducting order parameter. Therefore the breaking of the
spatial translational invariance in the FFLO state guarantees
the existence of the gapless Higgs mode. In the presence of
particle-hole symmetry (K; = 0), the dispersion of the Higgs
mode is Qp = vyq according to Eq. (1) since the inversion
symmetry of the Lagrangian restricts the lowest order of ¢
as g%, same as the order of Qy from |J,%¥|?. This mode can
also be regarded as the “phonon” mode of the crystal of the
superconducting order in the FFLO state. The presence of im-
purities can gap the Higgs mode by a pinning of the FFLO
order parameter. We will consider clean systems in the fol-
lowing discussions. It is worth mentioning that a Higgs mode
being gapless or gapful has no direction connection with the
superconducting order parameter in the momentum space be-
ing nodal or nodeless. For example, spatially uniform d-wave
superconductors with nodal lines have a gapful Higgs mode
[40-42].

In the FFLO state, there are nodal regions with |¥(r)| =0,
where the local quasiparticles become gapless. The Higgs
mode can decay into these quasiparticles, which renders the
lifetime of the Higgs mode being finite. The decay process
conserves energy and momentum, and as the Higgs mode en-
ergy approaches Qp — 0, the phase space of decay is reduced
significantly. It is expected that the Higgs mode becomes long
lived in that limit.

Field theoretic approach — To gain further insight and to
demonstrate explicitly the damping of the Higgs mode, we
study the Higgs mode using the microscopic BCS theory. We
consider a superconducting film made of an s-wave supercon-
ductor under a parallel magnetic field. In this case, the orbital
coupling is absent and the upper critical field is limited by the
Pauli pairing breaking effect. The Hamiltonian is given by
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with u the chemical potential, E, the Zeeman term and V the
pairing interaction strength. We have taken the unit 7 = 1.

Using the standard Hubbard-Stratonovich transformation, we
obtain the action with superconducting gap function A in the
imaginary time domain [43-45]

S= /dr/dzr <‘1/ |A|2> —trlnGal, (3)

with the Gorkov Green’s function
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with 4 = —V?/2m — . We choose a gauge by setting A to
be real by noting that the LO is the ground state in the FFLO
state. In the weak coupling limit with A <« @, < Er, where
@, is the cutoff frequency and Er is the Fermi energy, the
particle-hole symmetry in the normal state is approximately
preserved in the energy window —m, < E < @, even in the
presence of Zeeman field. The hybridization between the
phase mode and Higgs mode is negligible [9, 39] and we will
focus only on the Higgs mode in the following calculations.

We then consider the amplitude fluctuation around the sad-
dle point solution Ay, with A = Ag +s(7,r)

S:/df/dzr(;A+s|2) —uln (G, +%), (5

with ¥ = 50,. By expanding the action to the second order of
s, we obtain the action for the fluctuation [45]

Sy = / dt / d*r (éﬂ) + %tr(GoZGOZ). (6)

For a uniform BCS state, we can represent s in the frequency-
momentum representation,
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where @, = 2m+1)7T and Q; = 2IxT are the fermionic
and bosonic Matsubara frequency, and L is the linear size of
the system. To summarize, we rewrite S, as
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where the coupling matrix M, is given by
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For the uniform superconducting state, M, can be obtained
analytically because Gy is a two by two matrix. At the reso-
nance condition M, = 0, we obtain the well known dispersion
relation for the Higgs mode as Q7 = 4A% + %v%|q|2 [3]. The
Higgs mode has a gap of 2A. The phase fluctuations are gap-
less due to the U(1) symmetry breaking. The phase couples
to the external gauge field and becomes a plasma mode due
to the Anderson-Higgs mechanism (The plasma gap is gener-
ally bigger than 2A for most superconductors) [9]. The decay
of the Higgs mode around energy 2A to quasiparticle contin-
uum and plasma mode thus is suppressed. However, the Higgs
mode can still decay into other low lying bosonic modes such
as the phonon mode, which makes the Higgs mode short lived.
Indeed, the lifetime of the Higgs mode is of the order of pi-
cosecond in experiments [9].

Higgs mode in FFLO state — In the FFLO state, we calcu-
late Ag(r) numerically by considering a tight-binding Hamil-
tonian with nearest neighbor hopping on a square lattice [46]

+ +
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We have set the chemical potential to be zero to ensure
particle-hole symmetry when E, = 0. Standard Bogoliubov-
de Gennes (BdG) method is used to solve this model [47]
with the mean-field local pairing amplitude A; = V(cjrc;y).
We then diagonalize the mean-field Hamiltonian by the Bo-
goliubov transformation, c¢;c = Y, (uf’cy,, — GV?G*YJ) ,c}; =
Y, (wiyi — oV 1), where ¥ and ¥, are the creation and an-
nihilation operators for Bogoliubov quasiparticle at state n and
the prime sign means the sum is over all positive quasiparticle
state E,, > 0. The u and v coefficients are obtained from the
BdG equations,

(—t+E)8y A ) (“ﬁ) (un)
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where A; =YY, up, vy tanh (E, /2kpT).

The FFLO state is calculated self-consistently by solv-
ing the BAG equations iteratively on supercells with the size
Nya x a. By considering I, and L, supercells in the two direc-
tions, the total size of the thin film is Lya X L.a with L, = Nyl.
Therefore, in the folded Brillouin zone, there are [, meshes
in the k, axis and L, meshes along the k, axis. By taking
N, =40, = 10 and L, = 400, we find the LO state as the en-
ergy minimum for the parameters V = 1.6¢,E, = 0.15¢,kpT =
0.0001. The LO state has the maximum gap |Ay| ~ 0.22¢ at
x = 0a,20a as shown in Fig. 1(a). The total density of states
(DOS) of electrons is given in Fig. 1(b). We can see the gap
structure shifted to about [—0.1,0.4] due to the Zeeman field.
The peak of DOS at Q = 0.15¢ is an in-gap Andreev bound
state because the spacial sign change of gap function effec-
tively plays the role of a m-junction around the node of A(r).
The energy of Andreev bound state is shifted to Q = 0.15¢ due
to the Zeeman coupling. This further suppresses the damping
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FIG. 2. Contour figure of spectral density A (Q,q) of Higgs modes in
the FFLO state in Fig. 1 along the path (a) '— X —P; and (b) I'—P»,
where the peaks (bright yellow and green) form the spectra. (c) and
(d) show the A (Q) at (gx,g;) = (0, 0) and (0.47/40a, 0) (white dash
line). The damping parameter 11 = 0.01|Ap|. The discretized bright
spot (peaks) in panel (a) and (b) are due to the mesh discretization in
our numerical calculations.

of the Higgs mode caused by decaying into Bogoliubov quasi-
particles as will be shown below.

We then study the Higgs mode in the FFLO state. In prin-
ciple, the Higgs mode becomes gapped when Ay(r) is com-
mensurate with the tight-binding lattice and also in a finite
system [48]. The gap induced by pinning of the FFLO due to
the tight-binding lattice is negligible because the period of the
FFLO modulation is much larger than the tight-binding lattice
parameter. The action for the amplitude fluctuations is [45]

-
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with f(E) the Fermi-Dirac distribution function and 1 being
a damping parameter which is introduced for convenience of
numerical evaluation. Here

D= 1 (5 V"5 () 1 () ()
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where n,d are the index of eigen-energy indices. The Green
function of the Higgs modes is given by Gq g = _Mg_z,lq and

the spectral density is given by A (Q,q) = —Im (Ga,q) /7.
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FIG. 3. Amplitude fluctuations of A(x) corresponding to the Higgs
mode at (a) Q =0 and (b) 0.21 at the I" point. The blue curves show
the equilibrium state and the red curves show the excited states with
fluctuations. The gap functions are uniform along the z direction.

Figure 2(a) and (b) show the low-energy and long-
wavelength spectra of Higgs mode (bright yellow and green)
along the path I' — X — Py and I" — P, where P; and P, are on
the path X —M and I — Z. Because of the high anisotropic su-
percell with 40a x a, we have I' — X much shorter than X — M
and I' —Z. The spectra are formed by the peaks of spectral
function at q cuts, as shown in Fig. 2(c) and (d). The peak
locations for small |q| values connect into a linear line start-
ing from the I" point, which indicates a gapless Higgs mode,
consistent with the analysis in Egs. (1). Far from the I" point,
the peaks become more obscure with increasing |q| and fi-
nally disappear for a large |q|, indicating a strong damping of
the Higgs mode by coupling to the quasiparticle continuum.
This means that the Higgs mode is only well defined in the
long-wavelength limit.

At T" point, except for a peak at Q = 0, there is another
visible peak at Q =~ 0.21¢, which indicates another amplitude
mode. To understand these two modes, we calculate the eigen-
states of Mq ¢ at q = 0, which are presented in the form of
arrows in Fig. 3. Fig. 3(a) shows the gapless mode which
corresponds to the spatial translation of the FFLO order pa-
rameter. Fig. 3(b) shows the eigenstate for the gapped mode
at Q ~ 0.21¢, which corresponds to the breathing of the FFLO
order parameter.

The Higgs mode in the FFLO state is extremely stable, and
its lifetime is limited by the size of the q point and numeri-
cal damping parameter 7 used in our numerical calculations.
To demonstrate explicitly the stability of the Higgs mode in
the FFLO state, we compare the spectral density of the Higgs
mode both in the FFLO and the uniform BCS state in Fig. 4
[45]. The spectral density for the FFLO state is much sharper
than the uniform state, which indicates a longer lifetime of the
Higgs mode in the FFLO state. The gapless Higgs mode cou-
ples to the acoustic phonon. This coupling can be modeled by
introducing a new term in the coefficient & in Eq. (1), which is
proportional to the lattice displacement field. To the quadratic
order in fluctuating fields, the Higgs mode hybridizes with the
phonon mode. However, because the velocity of the Higgs
mode, which is of the order of Fermi velocity, is much larger
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FIG. 4. Spectral density A(Q,q) of the Higgs mode at (gx,q;) =
(57/400a, 57/400a) for the (a) FFLO state in Fig. 1 and (b) uniform
superconducting state with E; = 0 where the gap function is Ag =
0.227.

than the velocity of the phonon, the Higgs mode remains well
separated from the phonon mode. The decay of the Higgs
mode to phonon mode can only occur in higher order process
(such as one Higgs mode decays into two phono modes), and
thus is generally much weaker.

The existence of the gapless Higgs mode has consequence
on the stability of the FFLO state. In 3D, the FFLO state
has a true long range order. However in 2D, the FFLO state
becomes quasi-long-range order due to the gapless mode ac-
cording to the Mermin-Wagner theorem. To induce the FFLO
state, the particle-hole symmetry is not exact in the normal
state because of the Zeeman field induced spin band splitting.
Therefore, there is coupling between the Higgs mode and the
phase mode. In charged superconductors, the phase mode be-
comes plasma mode with the gap proportional to the local su-
perconducting order parameter. The decay of the Higgs mode
into the phase mode is thus suppressed. In charge neutral su-
perfluids, the phase mode is gapless. In the uniform state,
the gapped Higgs mode decays quickly into the phase mode,
and its visibility depends on the dimensionality of the sys-
tem [49]. Nevertheless, in the FFLO state, the gapless Higgs
mode remains stable even in presence of the gapless phase
mode. So far we have focused on the collective excitation
associated with translation of the FFLO. Spatially localized
topological excitation in the translation of the FFLO state is
allowed, which corresponds to the dislocation of the FFLO or-
der and can be regarded as localized topological Higgs mode.

It is recognized that the FFLO state rather belongs to a
broader class of order called pair density wave [50]. The pair
density wave is believed to exist in cuprate [51-53] and cer-
tain heavy Fermion superconductors [54, 55]. The gapless
Higgs mode discussed here can readily be generalized to the
pair density wave. Soto-Garrido et al. studied the fluctua-
tion associated with the amplitude of pair density wave, i.e.
fluctuation of W in the order parameter ¥ = Wy cos(Q-r)e?.
They found that the gapped Higgs mode is stable [56]. They
did not study explicitly the Higgs mode associated with the
translation of the pair density wave, which is the main focus
of the present work. The experimental observation of the gap-
less Higgs mode, at zero magnetic field, would also provide a



strong evidence for the pair density wave phase in the cuprates
and heavy fermion systems.

Conclusion — We have demonstrated the existence of a
gapless Higgs mode in the FFLO state of an s-wave super-
conductor. The gapless Higgs mode originates from the trans-
lational symmetry breaking and is also the acoustic “phonon”
mode of the FFLO state. This gapless Higgs mode is stable
because its decay into other modes is suppressed or forbid-
den kinematically. The linearly dispersive Higgs mode with
zero gap shows up in thermodynamical quantities, i.e. it con-
tributes a 73 dependence term to the specific heat. The gap-
less Higgs mode can be probed by Raman spectroscopy and
time-resolved terahertz spectroscopy techniques.
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