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We theoretically study a stabilization mechanism of the skyrmion crystal in centrosymmetric
magnets with a bilayer structure. We show that the interplay between a layer-dependent staggered
Dzyaloshinskii-Moriya interaction that arises from the absence of local inversion symmetry and the
interlayer exchange interaction gives rise to a plethora of multiple-Q states including the skyrmion
crystal with a quantized topological number. By performing the simulated annealing for the bi-
layer triangular-lattice model under an external magnetic field, we demonstrate that the skyrmion
forms the triangular-shaped crystals with different helicities in each layer owing to the staggered
Dzyaloshinskii-Moriya interaction. Although the relative positions of the skyrmion core in each
layer are different depending on the sign of the interlayer exchange interactions, the skyrmion crys-
tal phases robustly appear under both ferromagnetic and antiferromagnetic interlayer interactions.
We also find another two triple-Q states with a uniform scalar chirality but without a quantized
topological number in the low- and high-field regions. Especially, the low-field triple-Q state ex-
hibits the opposite sign of the scalar chirality to the skyrmion crystal, which are not found in the
single-layer system. Our results indicate that the lack of local inversion symmetry in the lattice
structure is another key ingredient to induce topological spin textures in centrosymmetric magnets.

I. INTRODUCTION

The emergence of nontrivial topological spin textures
has drawn considerable interest in condensed matter
physics. Among them, a magnetic skyrmion charac-
terized by a swirling spin texture with an integer of a
topological number has been extensively studied in re-
cent years, as it gives rise to intriguing physical phenom-
ena caused by entanglement between topology and mag-
netism, such as the topological Hall effect [1–4]. Since
the discovery of the crystal formation of the magnetic
skyrmion in the cubic chiral magnet MnSi [5], known
as the magnetic skyrmion crystal (SkX), it has been
found in various noncentrosymmetric magnets [6], such
as another chiral magnets [7–14], the polar magnets [15–
17], and the other noncentrosymmetric magnets [18, 19].
In these materials, the Dzyaloshinskii-Moriya (DM) in-
teraction, which arises from relativistic spin-orbit cou-
pling without inversion symmetry [20, 21], is an impor-
tant ingredient to realize the SkX. More specifically, an
essence to stabilize the SkX is the competition between
the ferromagnetic (FM) exchange interaction and the
DM interaction under an external magnetic field [3, 22–
24]. Moreover, an unconventional short-period SkX and
a hedgehog lattice with a three-dimensional topological
spin texture have been observed in the chiral magnets
EuPtSi [25–28] and MnSi1−xGex, respectively [24, 29–
33]. Although the above stabilization mechanism is not
directly applied to the short-period SkX and hedgehog
lattice, several theoretical studies have shown that the
interplay between the DM interaction and the multiple-
spin interactions can give rise to such short-period topo-
logical objects [15, 34–47].

On the other hand, the SkX and other topological
spin textures have been recently observed in centrosym-
metric lattice structures, such as the hexagonal magnets
Gd2PdSi3 [48–53] and Gd3Ru4Al12 [54, 55], the tetrag-

onal magnet GdRu2Si2 [56, 57], and the cubic magnet
SrFeO3 [58–61]. From the theoretical point of view, these
nontrivial topological spin textures in centrosymmetric
magnets are brought about by the frustrated exchange
interaction [62–68], the Ruderman-Kittel-Kasuya-Yosida
interaction with/without magnetic anisotropy [69–71],
and the multiple-spin interactions [45, 72–82]. These
studies open up a possibility to the realization of the
SkX even in the centrosymmetric lattice systems, which
provides still active research fields in both theory and
experiment.

In the present study, we discuss another intriguing
mechanism of the SkX in centrosymmetric magnets with
the DM interaction. We consider the proper lattice struc-
ture where the inversion symmetry is preserved globally
but broken intrinsically at atomic sites dubbed the local
inversion symmetry breaking [83–90]. In this situation,
the effect of the DM interaction appears to be canceled
out due to the presence of global inversion symmetry,
but it still remains in a sublattice-dependent form. For
example, the zigzag [91–95], honeycomb [96–99], and di-
amond [100–102] structures are typical prototypes with
the sublattice-dependent DM interaction. Another ex-
ample is a bilayer structure system where the sign of
the DM interaction is opposite for the different two lay-
ers [103–106]. Although the above lattice structures with
the sublattice degree of freedom have attracted great
interest owing to the findings of an antiferromagnetic
(AFM) SkX [107–112] and intriguing dynamics [113–
119], the effect of the sublattice-dependent DM interac-
tion on the stabilization of the SkX has not been fully
clarified yet [120, 121].

Motivated by these studies, we here investigate the
SkX formation in the centrosymmetric layered system by
focusing on the role of the layer-dependent staggered DM
interaction on the stabilization of the spiral and multiple-
Q states. Specifically, we consider the bilayer triangular-
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lattice system, where the layers are coupled by the FM
or AFM interlayer interaction. We construct a magnetic
phase diagram against the interlayer interaction and the
magnetic field, and obtain eight phases including the SkX
by performing the simulated annealing. We show that
the SkXs with different helicities are stabilized on each
layer as a result from the opposite sign of the DM interac-
tion. We find that the spin textures of the SkX are clearly
different between the FM- and AFM-coupled bilayers, al-
though the same topological charge is obtained in both
cases: The core positions of the SkXs on the different
layers are different (the same) for the FM(AFM)-stacked
cases. Furthermore, we find that two types of triple-Q
states with the uniform scalar chirality appear while in-
creasing and decreasing the magnetic field in the SkX
phase. In particular, the low-field triple-Q state with the
opposite sign of the scalar chirality to the SkX is stabi-
lized by the synergy between the interlayer coupling and
the staggered DM interaction that are not obtained in the
single-layer model. The results indicate that the layer de-
gree of freedom with the staggered DM interaction might
be another prototypes to realize various topological spin
textures even in centrosymmetric lattice structures. We
discuss the details of the obtained spin and chirality con-
figurations in real and momentum spaces in each phase.

The remainder of this paper is structured as follows.
In Sec. II, we introduce the bilayer system consisting of
two triangular-lattice planes with the staggered DM in-
teraction. We also outline the simulated annealing. We
discuss the numerical results in Sec. III. After present-
ing the magnetic phase diagram while changing the inter-
layer exchange coupling and the external magnetic field,
we show the spin and chirality textures in the obtained
phases. Section IV is devoted to a summary. In Ap-
pendix A, we show the real-space spin configurations and
the spin and chirality structure factors in the magnetic
phases that are not mentioned in the main text. We
show the results for the different DM interactions in Ap-
pendix B.

II. MODEL AND METHOD

We consider a bilayer system consisting of two
triangular-lattice planes. We take the triangular planes
in the xy plane and the stacking direction along the z
direction; we label the lower and upper layers as layer A
and layer B, which are separated by c = 1. Consider-
ing the bilayer structure, inversion center is not located
at the lattice sites but at the bond center between the
layers. Thus, there is a local crystalline electric field on
each layer, whose directions are opposite to each other.
In such a situation, the layer-dependent staggered DM
interaction appears so as to satisfy global inversion sym-
metry in the system; the DM vectors are lied perpendic-
ular to the intralayer bond direction and the z direction
in the opposite way for the different layers, as shown in
Figs. 1(a) and 1(b).

(a) layer A (z=0)

(b) layer B (z=c)

(c)

(d)

E

E

FIG. 1. (a), (b) The bilayer triangular-lattice system con-
sisting of (a) the layer A and (b) the layer B under the local
crystalline electric field E along the opposite directions. The
green arrows represent the DM vectors. (c), (d) The Néel-type
skyrmion spin textures with the opposite helicities, which are
related to the DM vectors in (a) and (b).

The bilayer triangular spin model incorporating the
effect of the staggered DM interaction is given by

H =
∑
γ

H⊥γ +H‖ +HZ, (1)

H⊥γ =
∑
ij

[
JijSi · Sj −D

(γ)
ij · (Si × Sj)

]
, (2)

H‖ =J‖
∑
i

Si · Si+ẑ, (3)

HZ =−H
∑
i

Szi . (4)

The total Hamiltonian H consists of three parts: the
intralayer Hamiltonian H⊥γ (γ = A,B is the layer in-

dex), the interlayer Hamiltonian H‖, and the Zeeman
Hamiltonian HZ. The first term of H⊥γ represents the
layer-independent exchange interaction Jij and the sec-
ond term represents the layer-dependent staggered DM

interaction, i.e., D
(A)
ij = −D(B)

ij with the same magni-

tude |D(A)
ij | = |D(B)

ij | = Dij . We take the directions of
the staggered DM vector along the directions shown in
Figs. 1(a) and 1(b). The two layers are coupled via the
exchange coupling J‖ in Eq. (3). The effect of an external
magnetic field is introduced by the Zeeman coupling with
the field strength H along the z direction in Eq. (4). In
the model in Eq. (1), we neglect long-range dipole-dipole
interactions for simplicity.

The magnetic phases while changing H were investi-
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gated for the model with the FM exchange interaction
and the DM interaction between the nearest-neighbor
spins in the absence of J‖, i.e. the single-layer model,
[22, 122, 123]: the single-Q cycloidal spiral state for the
low-field region, the Néel SkX for the intermediate-field
region, and the fully-polarized state for the high-field re-
gion. The Néel SkX is described by a superposition of
three cycloidal spirals connected by threefold rotational
symmetry of the triangular-lattice structure. The spin
helicity in the cycloidal spiral state and the SkX is deter-
mined by the sign of the DM interaction. We show the
skyrmion spin textures stabilized on the layers A and B
in Figs. 1(c) and 1(d), respectively, where the inplane
spin directions around the skyrmion core are opposite to
each other.

Based on the magnetic instabilities in the single-layer
system, we here focus on the effect of the interlayer ex-
change coupling J‖ on the stabilization of the single-Q
spiral and the Néel SkX. Owing to the opposite helicity
in the spiral spin textures for the different layers, a mag-
netic frustration occurs irrespective of the FM and AFM
interlayer interactions; the FM (AFM) interaction leads
to an energy cost in the xy(z)-spin component when the
core positions of the SkXs in both layers are the same,
as found in Figs. 1(c) and 1(d). Furthermore, the model
Hamiltonian possesses spatial inversion symmetry when
considering the bilayer structure with the inversion cen-
ter at bonds between the layers, which makes optimized
spin configurations nontrivial.

In order to examine such effects of the interlayer ex-
change coupling and the staggered DM interaction, we
simplify the intralayer Hamiltonian H⊥1 +H⊥2 as

H̃⊥ =
∑
ν

∑
γ

[
− JS(γ)

Qν
· S(γ)
−Qν

− iD(γ)
ν · (S(γ)

Qν
× S

(γ)
−Qν

)
]
,

(5)

where S
(γ)
Qν

is the Fourier transform of Si with wave vec-

tor Qν for the layer γ. In Eq. (5), we extract the dom-

inant q contributions from
∑

q[J
(γ)
q S

(γ)
q · S(γ)

−q + iD
(γ)
q ·

(S
(γ)
q ×S(γ)

−q )], which corresponds to the Fourier transform

of H⊥γ in Eq. (2), by supposing six global energy minima
in momentum space so as to satisfy the rotational symme-
try of the bilayer triangular lattice [63, 124]. We suppose

global minima at Q1 = (π/3, 0), Q2 = (−π/6,
√

3π/6),

Q3 = (−π/6,−
√

3π/6), Q4 = −Q1, Q5 = −Q2, and

Q6 = −Q3; J ≡ J
(γ)
Qν

and D
(γ)
ν ≡ D

(γ)
Qν

. We neglect
the contributions from the other q components in the
interactions for simplicity. Hereafter, we fix J = 1 and

|D(γ)
Qν
| = D = 0.2 and take J‖ and H as the parameters.

The model in Eq. (5) in the absence of H‖ reproduces
the single-Q cycloidal spiral and the SkX while changing
the magnetic field, as the model in Eq. (2) does, which
will be shown later.

In the following, we perform the simulated annealing
to determine the magnetic phase diagram of the model
H̃ = H̃⊥ + H‖ + HZ on the bilayer triangular lattice.

In the simulations, we gradually reduce the temperature
from high temperature with a rate Tn+1 = αTn, where
Tn is the nth-step temperature (T0 = 0.1-1.0) and α =
0.999995. The final temperature is set as T = 0.001.
After reaching the final temperature, we perform 105-106

Monte Carlo sweeps for measurements. The update of
the spin configuration is performed based on the standard
Metropolis local updates. The total number of spins are
taken as N = 2× 962.

The magnetic phases are identified by the spin and
chirality configurations at the lowest temperature. The
spin structure factor is represented by

Sαη (q) =
1

N

∑
j,l∈η

Sαj S
α
l e

iq·(rj−rl), (6)

for α = x, y, z. The site indices j and l are taken for
the layer η = 1, 2. The total spin structure factor in
the system is Sαs (q) = SαA(q) + SαB(q). We also compute
Sxyη (q) = Sxη (q)+Syη (q). The net magnetization for each
layer is given by Mα

η = (1/N)
∑
i∈η S

α
i .

The spin scalar chirality is represented by

χsc
η =

1

N

∑
R∈η

Sj · (Sk × Sl), (7)

where R represents the position vector at the centers of
triangles; the sites j, k, and l form the triangle at R in the
counterclockwise order. The local chirality is represented
by χR = Sj · (Sk × Sl). The magnetic ordering with
nonzero χsc = χsc

A + χsc
B exhibits the topological Hall

effect. We also calculate the scalar chirality structure
factor is given by

Sχη (q) =
1

N

∑
µ

∑
R,R′∈µ

χRχR′eiq·(R−R
′), (8)

where µ = (u, d) represent upward and downward trian-
gles, respectively.

III. RESULTS

Figure 2 shows the magnetic phase diagram obtained
by simulated annealing down to T = 0.001 while chang-
ing the interlayer exchange coupling J‖ and the magnetic
field H on the bilayer triangular lattice. When J‖ = 0,
the present system reduces to the single-layer system.
The single-Q spiral (1Q) state is stabilized at zero field,
which turns into the SkX, the 3Q state, and the fully-
polarized state while increasing H. Such a tendency of
the transitions is similar to that for the model with the
ferromagnetic and the DM interaction in the single-layer
system [22, 122].

The introduction of J‖ changes the magnetic phase
diagram. The positive (negative) J‖ represents the
AFM(FM)-stacked case. As shown in Fig. 2, we ob-
tain seven magnetic states including the SkX except for
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FIG. 2. The magnetic phase diagram while changing the in-
terlayer exchange interaction J‖ and the external magnetic
field H. The color plot represents the spin scalar chirality
χsc. The regions for J‖ > 0 and J‖ < 0 represent the cases of
the antiferromagnetic (AFM) and ferromagnetic (FM) stack-
ings, respectively.
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FIG. 3. H dependence of (a), (c) the magnetization Mz
η and

(b), (d) the scalar chirality χsc
η for the layers η =A and B at

(a), (b) J‖ = −0.1 and −0.5 and (c), (d) J‖ = 0.1 and 0.4.
The solid (dashed) vertical lines represent the phase transi-
tions between the SkX and the other magnetic states for the
small (large) values of |J‖|.

the fully-polarized state with Si = (0, 0, 1) in the high-
field region. Among the magnetic states, the SkX, 1Q,

and triple-Q spiral (3Q′ I) are robustly stabilized in both
FM- and AFM-stacked regions, while the triple-Q states
denoted as 3Q and 3Q′ IV (3Q′ II and 3Q′ III) appears
in the AFM(FM)-stacked region, where Q′ represents the
different amplitudes of the constituent waves. Each mag-
netic state is characterized by the different spin and chi-
rality configurations, as shown below. In addition, we
find that three out of seven states exhibit the uniform
spin scalar chirality, χsc: negative chirality in the SkX
and the 3Q state and the positive one in the 3Q′ I state,
as shown in the color plot of χsc in Fig 2. Especially, only
the SkX phase has the quantized skyrmion number −1
in each layer in the magnetic unit cell. χsc in the other
phases is negligibly small.

We show the H dependence of the magnetization Mz
η

and the scalar chirality χsc
η for each layer in the FM

stacking in Figs. 3(a) and 3(b) and the AFM stacking
in Figs. 3(c) and 3(d). The parameters of J‖ are taken
for those where the SkX is stabilized in the intermediate-
field region. As shown in Fig. 3, there are no differences
of Mz

η and χsc
η between the layers A and B in spite of

the opposite directions of the DM vectors. Furthermore,
one finds that the SkX and the 3Q state exhibit a nega-
tive scalar chirality, while the 3Q′ I state exhibits a posi-
tive one. The phase transitions between the SkX and the
other magnetic states are of first order with jumps of Mz

η

and χsc
η . The other transitions in Fig. 2 are as follows:

the phase transitions between the 1Q and 3Q′ I states for
nonzero J‖, between the 3Q′ I and 3Q′ IV states, and be-
tween the 1Q and 3Q are of first order, while the others
are of second order.

In the following, we discuss the detailed spin and chi-
rality configurations of the SkX in Sec. III A, the 3Q′

I state in Sec. III B, and the 3Q′ II and 3Q states in
Sec. III C. The momentum-space spin and chirality struc-
ture factors are shown in Fig. 4 and the snapshots in
terms of the real-space spin and chirality obtained by
simulated annealing in Figs. 5, 6, and 7. In both real
and momentum spaces, we show the spin- and chirality-
related quantities in each layer. In addition, we show the
averaged spin and chirality configurations over the lay-
ers in order to clearly show the similarity and difference
between the layers A and B. The spin and chirality struc-
tures in the other magnetic states, 1Q, 3Q′ III, and 3Q′

IV, are discussed in Appendix A.

A. Skyrmion crystal

We discuss the SkX stabilized in the intermediate-field
region in Fig. 2 in this section. The SkX robustly appears
for both FM and AFM interlayer interactions. The ori-
gin of the SkX is obviously attributed to the staggered
DM interaction inherent of the bilayer structure. As de-
tailed below, we obtain the skyrmion spin textures with
the opposite helicities in each layer, as inferred from the
DM vector [see also Figs. 1(c) and 1(d)]. The emergence
of the SkX in the present bilayer system indicates the
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FIG. 4. (Left and second left) The square root of the xy and z components of the spin structure factor for the layer A in (a)
the SkX at J‖ = −0.5 and H = 0.85, (b) the SkX at J‖ = 0.4 and H = 1.3, (c) the 3Q′ I state at J‖ = −0.5 and H = 0.4, (d)
the 3Q′ I state at J‖ = 0.5 and H = 0.5, (e) the 3Q′ II state at J‖ = −1 and H = 1.6, and (f) the 3Q state at J‖ = 0.5 and
H = 2.1. Black hexagons represent the first Brillouin zone. (Middle left) The square root of the chirality structure factor for
the layer A. The right three panels represent the data for the layer B corresponding to the left three ones.

importance of the layer degree of freedom in the lattice
structure, which gives a way to realize the SkX in cen-
trosymmetric systems without relying on the frustrated
exchange interactions and multiple-spin interactions.

In each layer, the SkX is characterized by a superpo-

sition of three cycloidal spirals along the Q1, Q2, and
Q3 directions, and hence, it exhibits triple-Q peaks with
equal intensity in the spin and chirality structure factors.
The resultant spin textures in real space are represented
by a periodic array of the skyrmion core with Szi ' −1,
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(a) SkX (FM stacking, layer A)
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FIG. 5. (Left) Real-space spin configurations of the SkXs on (a), (d) the layer A and (b), (e) the layer B in (a), (b) the FM
stacked case at J‖ = −0.5 and H = 0.85 and (d), (e) the AFM stacked case at J‖ = 0.4 and H = 1.3. (c), (f) The averaged
spin configurations for the layers A and B in (c) the FM stacked case and (f) the AFM stacked case. The arrows represent the
xy components of the spin moment and the color shows the z component. (Right) Real-space scalar chirality configurations
calculated at each triangle plaquette.

which forms the triangular lattice. The vorticity around
the skyrmion core is fixed at +1, while the helicity de-
pends on the sign of the DM interaction. In the present
bilayer system, the helicities around the skyrmion core
should be opposite between the layers A and B due to
the staggered DM interaction. Indeed, we obtain such
a tendency in the simulations in the parameter region
where the SkX is stabilized irrespective of the FM and
AFM interlayer interactions; the direction of the inplane
spins around the skyrmion core is inward for the layer
A [Figs. 5(a) and 5(d)], while that is outward for the
layer B [Figs. 5(b) and 5(e)]. In addition, there is a uni-
form scalar chirality in both layers with the same sign,
which gives rise to the quantized skyrmion number of
−1. This real-space threefold-symmetric spin and chiral-
ity textures on both layers are consistent with the triple-
Q peaks in the spin and chirality structure factors in mo-
mentum space, as shown in Figs. 4(a) and 4(b). There
is no difference of the spin and chirality structure factors

between the layers A and B in both cases of the FM and
AFM interactions as well as Mz

η and χsc
η in Fig. 3.

Meanwhile, a clear difference between the FM and
AFM interlayer interactions is found in local spin and
chirality configurations in a real-space picture. The
skyrmion cores lie at the different positions on the layers
A and B under the FM stacking as shown in Figs. 5(a)
and 5(b), while those lie at the same positions under
the AFM stacking as shown in Figs. 5(d) and 5(e). By
closely looking into the real-space spin configurations,
one finds that the SkXs are stacked so that the inplane
spins on the two layers are aligned (anti)parallel to each
other in the FM (AFM) interaction. In other words, the
SkXs are stacked so as to gain the exchange energy in
terms of the xy spin component rather than the z spin
component. This seems to be reasonable, since the xy
spin contribution is larger than the z spin contribution
in the Qν component of the spin structure factor, e.g.,
SxyA (Q1)/SzA(Q1) ' 1.34 at J‖ = 0 and H = 0.85. Fur-
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thermore, there is a slight difference of the constituent
vortices between the FM and AFM interactions: the SkX
stabilized by the FM interaction consists of the vortices
with vorticity −2 around Szi ' +1, another with vor-
ticity +1 around Szi ' +1, and the other with vortic-
ity +1 around Szi ' −1 in each layer, while the SkX
by the AFM interaction does not have the vortices with
vorticity −2. Reflecting the difference, the scalar chiral-
ity distribution looks threefold(sixfold)-symmetric in the
FM(AFM)-coupled SkX, as shown in the right panels of
Figs. 5(a) and 5(b) [Figs. 5(d) and 5(e)] [125].

The different skyrmion core positions between the FM
and AFM interactions result in a difference of the aver-
aged spin textures over the layers. Figure 5(c) shows the
averaged spin textures in the case of the FM interaction,
where all the spins have the positive z component. In
the regions where the skyrmion cores lie on the layer A
or B, the z-spin component becomes small owing to the
cancellation between the negative contribution from the
skyrmion core on the layer A (B) and the positive con-
tribution from the vortex core with the same helicity but
different chirality from the skyrmion core on the layer B
(A). Meanwhile, the vortex cores with vorticity −2 on the
layers A and B are located at the same position, which
leads to the meron spin texture with vorticity −2, i.e.,
the skyrmion number −1. Thus, the averaged spin tex-
ture in the FM-coupled SkX is the same as that in the
meron crystal with vorticity −2.

On the other hand, in the case of the AFM-coupled
SkX, the xy spin components of the layers A and B are
cancelled out and only the z spin component remains.
Thus, the averaged spin texture looks like the magnetic
bubble crystal, where the cores with Szi ' −1 form the
triangular lattice, as shown in Fig. 5(f). Nevertheless, it
is noted that the averaged scalar chirality is not cancelled
out, since the SkXs with different helicities induce the
same sign of the scalar chirality. This means that the
AFM-coupled SkX has the skyrmion number of −1, since
both the layers A and B have the equal skyrmion number
of −1 in each layer [see also the right panel of Figs. 5(d)-
5(f)].

While further increasing J‖, the SkX is replaced with
the other 1Q and multiple-Q states: the 1Q, 3Q′ II, and
3Q′ III states for the FM interlayer interaction J‖ < 0
and the 1Q and 3Q′ IV state for the AFM interaction
J‖ > 0 depending on the magnitude of the magnetic field.
The critical value of J‖ to destabilize the SkX is larger
for the FM interaction than the AFM one, both of which
is smaller than the intralayer interaction J . Thus, the
bilayer system coupled via the FM interaction might be
a suitable system to show the SkX in the intermediate
field. We also discuss the stability of the SkX by chang-
ing the DM interaction in Appendix B, where the large
staggered DM interaction tends to favor the SkX like the
noncentrosymmetric system with the uniform DM inter-
action.

B. Low-field triple-Q state

We discuss the low-field magnetic phases, which are
obtained while decreasing H from the SkX phase. For
J‖ = 0, the 1Q cycloidal spiral state is stabilized to
gain the energy of the staggered DM interaction. The
introduction of J‖ leads to the multiple-Q spin modu-
lations from the 1Q state. The resultant spin and chi-
rality structure factors are similar between the FM and
AFM stacked cases, as shown in Figs. 4(c) and 4(d); in
each layer, there are dominant single-Q peaks at any of
(Q1,Q2,Q3) in both xy and z spin components, and
the subdominant double-Q peaks with different intensi-
ties at the remaining two Qν . The smallest peak among
(Q1,Q2,Q3) vanishes at zero field; the zero-field state
corresponds to the double-Q state. The multiple-Q spin
textures in the presence of J‖ are accompanied with the
scalar chirality density waves at Q1-Q3. The dominant
component of Sχη (q) is the second largest Qη in the spin
structure factor. This spin and chirality textures are
similar to the chiral stripe state appearing in the itiner-
ant electron model without the spin-orbit coupling [126–
128], but the origin is different with each other: The
present multiple-Q state is stabilized by the interplay
between the staggered DM and interlayer interactions,
while the chiral stripe state is stabilized by the multiple-
spin interactions arising from the itinerant nature of elec-
trons [127].

There are two characteristic points in the low-field 3Q′

I state as a consequence of the bilayer system. The one
is the layer-dependent q-peak structure. As shown in
Figs. 4(c) and 4(d), the dominant q components are dif-
ferent for the layers A and B in both FM and AFM inter-
actions. For example, in the case of the FM interaction
in Fig. 4(c), the dominant peak in the spin structure fac-
tors SxyA (q) and SzA(q) lies at Q3, while that in SxyB (q)
and SzB(q) lies at Q1. Accordingly, the dominant peak
position in the scalar chirality structure factor SχA(q) is
different from that in SχB(q). The difference is clearly
found in the real-space spin and chirality configurations
in Figs. 6(a) and 6(b).

The different dominant components in Sαη (q) and
Sχη (q) between the layers A and B are attributed to the
staggered DM interaction, since it fixes the helicity of
the spiral in an opposite way for the different layers. In
such a situation, there is a frustration between the xy
and z spin components similar to that in the SkX in
Sec. III A. The present results indicate that the choice of
the different Qν in the layers A and B gains the energy of
the layer-dependent staggered DM and interlayer inter-
actions as much as possible. A similar situation happens
in the case of the AFM interaction, as shown in Figs. 6(d)
and 6(e).

The other characteristic point is the nonzero uniform
scalar chirality χsc, as shown in Fig. 2. Similar to the
SkX, both layers take the same value of χsc

η , as shown
in Figs. 3(b) and 3(d). On the other hand, the chirality
takes a positive value and the skyrmion number is not
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(a) 3Q’ I (FM stacking, layer A)
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(b) 3Q’ I (FM stacking, layer B)
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(c) 3Q’ I (FM stacking, average)
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1

(d) 3Q’ I (AFM stacking, layer A)
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0

1

-1

0

1
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0

1
(e) 3Q’ I (AFM stacking, layer B)

-1

0

1

(f) 3Q’ I (AFM stacking, average)

-1

0

1

-1

0

1

FIG. 6. (Left) Real-space spin configurations of the 3Q′ I state on (a), (d) the layer A and (b), (e) the layer B in (a), (b) the
FM stacked case at J‖ = −0.5 and H = 0.4 and (d), (e) the AFM stacked case at J‖ = 0.5 and H = 0.5. (c), (f) The averaged
spin configurations for the layers A and B in (c) the FM stacked case and (f) the AFM stacked case. The arrows represent the
xy components of the spin moment and the color shows the z component. (Right) Real-space scalar chirality configurations
calculated at each triangle plaquette.

quantized in contrast to the SkX. The nonzero χsc is
clearly seen in the averaged scalar chirality in Fig. 6(c),
where χR is distributed in a checkerboard way. Indeed,
the averaged chirality structure factor is characterized by
the dominant peaks at Q1 and Q3 and the subdominant
peak at Q2. One finds that there is an imbalance between
the regions with the positive and negative chiralities in
a magnetic field. The similar argument holds for the
AFM staking in Fig. 6(f). We note that such a uniform
chirality is not obtained in the single-layer case, J‖ =
0. Thus, the emergent χsc might be due to the layered
structure with the different ordering vectors, which is
brought about by a subtle balance between the staggered
DM and interlayer interactions.

The 3Q′ I state turns into the 1Q state with jumps of
Mz
η and χsc

η by increasing |J‖|, whose critical values are
similar to both FM and AFM interactions. In almost all
the regions, the 3Q′ I state changes into the SkX upon
increasing H. Thus, the appearance of the 3Q′ I phase

below the SkX indicates the importance of the bilayer
nature, which have not been found in the single-layer case
(J‖ = 0). Moreover, the different sign of the topological
Hall signal can be observed in experiments owing to the
different sign of χsc.

C. High-field triple-Q states

We discuss the magnetic phases in the high-field re-
gion, which are obtained by increasing the magnetic field
from the SkX phase. In contrast to the SkX in Sec. III A
and the 3Q′ I state in Sec. III B, the high-field phases are
different for the FM and AFM interactions, as shown in
Fig. 2. In the case of the FM stacking, the 3Q′ II state is
stabilized between the SkX and the fully-polarized state.
In this state, the spin configuration is characterized by
the dominant double-Q peaks at Q1 and Q3 and the sub-
dominant peak at Q2 in both layers A and B, as shown in
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(a) 3Q’ II (layer A)
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1
(b) 3Q’ II (layer B)
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(c) 3Q’ II (average)
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1
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(d) 3Q (layer A)
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(e) 3Q (layer B)

-1

0

1

(f) 3Q (average)

-1

0

1

-1

0

1
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0
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FIG. 7. (Left) Real-space spin configurations on (a), (d) the layer A and (b), (e) the layer B in (a), (b) the 3Q′ II state at
J‖ = −1 and H = 1.6 and (d), (e) the 3Q state at J‖ = 0.5 and H = 2.1. (c), (f) The averaged spin configurations for the
layers A and B in (c) the the 3Q′ II state and (f) the 3Q state. The arrows represent the xy components of the spin moment
and the color shows the z component. (Right) Real-space scalar chirality configurations calculated at each triangle plaquette.

Fig. 4(e). The 3Q′ II state is accompanied by the scalar
chirality density waves with the dominant Q2 compo-
nent, whose magnitude is much larger than that of the
subdominant Q1 and Q3 components. Thus, there is a
stripe modulation of the scalar chirality in real space,
as shown in Figs. 7(a) and 7(b). Since the same spin
and chirality configurations are realized in both layers,
as shown in Figs. 7(a) and 7(b), no intriguing averaged
spin and chirality configurations appear in Fig. 7(c).

For the AFM staking, the 3Q state is stabilized be-
tween the SkX and the fully-polarized state. The 3Q
state shows the triple-Q peaks in both xy and z com-
ponents of the spin structure factor with equal intensity.
The real-space spin configurations on the layers A and
B are shown in Figs. 7(d) and 7(e), both of which con-
sist of the triangular lattice of the vortices with Szi > 0.
This 3Q state exhibits nonzero scalar chirality χsc

η in each
layer. As the directions of inplane spins are opposite for
the layers A and B, the xy spin component is canceled out
in the averaged spin configuration, as shown in Fig. 7(f).

The resultant z spin and chirality configurations resemble
those in the AFM-coupled SkX in Fig. 5(f).

IV. SUMMARY

To summarize, we have investigated the multiple-Q
magnetism in the centrosymmetric bilayer structure. We
focused on the layer degree of freedom with the layer-
dependent staggered DM interaction that arises from the
absence of local inversion symmetry. By performing the
simulated annealing for the spin model on the bilayer tri-
angular lattice, we found that the SkXs are stabilized for
both FM and AFM interlayer couplings. The obtained
SkXs in the bilayer system consist of the SkXs with differ-
ent helicities in each layer. Although the real-space spin
and scalar chirality configurations in the SkXs are differ-
ent for the FM and AFM cases, both the SkXs are char-
acterized by the quantized skyrmion number. We also
found various multiple-Q states by changing the layer-
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(a) 1Q (FM stacking, layer A)
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(b) 1Q (FM stacking, layer B)

(c) 1Q (FM stacking, average)
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1

(g) 1Q (AFM stacking, layer A)
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1
(h) 1Q (AFM stacking, layer B)

(i) 1Q (AFM stacking, average)
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1

(d) 3Q’ III (layer A)
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1
(e) 3Q’ III (layer B)

(f) 3Q’ III (average)

-1

0

1

(j) 3Q’ IV (layer A)

-1

0

1

-1

0

1
(k) 3Q’ IV (layer B)

(l) 3Q’ IV (average)

-1

0

1

FIG. 8. (Left) Real-space spin configurations on (a), (d), (g), (j) the layer A and (b), (e), (h), (k) the layer B in (a), (b) the
1Q state at J‖ = −1 and H = 0.4, (d), (e) the 3Q′ III state at J‖ = −1 and H = 1.2, (g), (h) the 1Q state at J‖ = 1 and
H = 0.2, and (j), (k) the 3Q′ IV state at J‖ = 1 and H = 0.8. (c), (f), (i), (l) The averaged spin configurations for the layers
A and B in (c) the the 1Q state, (f) the 3Q′ III state, (i) the 1Q state, and (l) the 3Q′ IV state. The arrows represent the xy
components of the spin moment and the color shows the z component.

dependent DM interaction and the interlayer exchange
coupling. In particular, we showed that the low-field spi-
ral states realized in the single layer are modulated so as
to have the multiple-Q spin components and the scalar
chirality by the interplay between the staggered DM and
the interlayer exchange interactions.

The present result indicates that the layer degree of
freedom can be a source of inducing the SkX and the
other multiple-Q spin states. The key ingredient is the
layer-dependent DM interaction, which exists even in the
centrosymmetric systems. Such a site-dependent DM in-
teraction is found in not only the layered system but
also the bulk system with the sublattice degree of free-
dom, such as the honeycomb and kagome structures. In
addition, the centrosymmetric systems where the mag-
netic ions are located at the Wyckoff position without
spatial inversion symmetry, such as 2e site in the space
group P6/mmm (#191), are promising. Thus, fur-
ther intriguing multiple-Q orderings including the SkX
are expected by taking into account the layer/sublattice-
dependent DM interaction.

Appendix A: Spin configurations and structure
factors of the other phases

In this Appendix, we show the spin configurations in
the 1Q state, the 3Q′ III state, and the 3Q′ IV state,
which are stabilized only for large |J‖|. Figures 8 show
the real-space spin configurations in (a), (b) the 1Q state
at J‖ = −1 and H = 0.4, (d), (e) the 3Q′ III state at
J‖ = −1 and H = 1.2, (g), (h) the 1Q state at J‖ = 1
and H = 0.2, and (j), (k) the 3Q′ IV state at J‖ = 1 and
H = 0.8, which are obtained by simulated annealing. We
also show the averaged spin configurations over the layers
in Figs. 8(c), 8(f), 8(i), and 8(l) in each state.

The spin and chirality structure factors corresponding
to Fig. 8 are shown in Fig. 9. The spin configurations
in the 1Q state in Figs. 9(a) and 9(c) are characterized
by the single-Q peak in the spin structure factor. The
nonzero Sχη (0) indicates the staggered chirality configu-
ration on upward and downward triangles on the triangu-
lar lattice. The 3Q′ III state in Fig. 9(b) and the 3Q′ IV
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FIG. 9. (Left and second left) The square root of the xy and z components of the spin structure factor, respectively, in (a) the
1Q state at J‖ = −1 and H = 0.4, (b) the 3Q′ III state at J‖ = −1 and H = 1.2, (c) the 1Q state at J‖ = 1 and H = 0.2,
and (d) the 3Q′ IV state at J‖ = 1 and H = 0.8 for the layer A. Black hexagons represent the first Brillouin zone. (Middle
left) The square root of the chirality structure factors for the layerA. The right three panels represent the data for the layer B
corresponding to the left three ones.

state in Fig. 9(d) show the triple-Q peak structures with
different intensities in both xy and z spin components.
Both states show the chirality density waves as shown in
Sχη (q).

Appendix B: Results for different D

We show the results while changing the magnitude of
the DM interaction in the model Hamiltonian H̃. Fig-
ures 10(a)-(d) show the H dependence of Mz

η [(a) and
(c)] and χsc

η [(b) and (d)] for η =A and B for D = 0.1
and 0.3. The results for the FM stacking and the AFM
stacking are shown in Figs. 10(a),(b) and Figs. 10(c),(d),
respectively. The overall behavior against H is similar
to that in Fig. 3. Meanwhile, one finds that the large
DM interaction enhances the stability of the SkX in both
cases, which is common to the case in noncentrosymmet-
ric single-layer systems.
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323, 915 (2009).

[6] Y. Tokura and N. Kanazawa, Chem. Rev. 121, 2857
(2020), pMID: 33164494.

[7] X. Z. Yu, Y. Onose, N. Kanazawa, J. H. Park, J. H.
Han, Y. Matsui, N. Nagaosa, and Y. Tokura, Nature
465, 901 (2010).

[8] X. Z. Yu, N. Kanazawa, Y. Onose, K. Kimoto,
W. Zhang, S. Ishiwata, Y. Matsui, and Y. Tokura, Nat.
Mater. 10, 106 (2011).

[9] S. Seki, X. Z. Yu, S. Ishiwata, and Y. Tokura, Science
336, 198 (2012).

[10] T. Adams, A. Chacon, M. Wagner, A. Bauer, G. Brandl,
B. Pedersen, H. Berger, P. Lemmens, and C. Pfleiderer,
Phys. Rev. Lett. 108, 237204 (2012).

[11] S. Seki, J.-H. Kim, D. S. Inosov, R. Georgii, B. Keimer,
S. Ishiwata, and Y. Tokura, Phys. Rev. B 85, 220406
(2012).

[12] Y. Tokunaga, X. Yu, J. White, H. M. Rønnow,
D. Morikawa, Y. Taguchi, and Y. Tokura, Nature Com-
mun. 6, 7638 (2015).

[13] K. Karube, J. White, N. Reynolds, J. Gavilano, H. Oike,
A. Kikkawa, F. Kagawa, Y. Tokunaga, H. M. Rønnow,
Y. Tokura, et al., Nat. Mater. 15, 1237 (2016).

[14] W. Li, C. Jin, R. Che, W. Wei, L. Lin, L. Zhang, H. Du,
M. Tian, and J. Zang, Phys. Rev. B 93, 060409 (2016).

[15] S. Heinze, K. von Bergmann, M. Menzel, J. Brede,
A. Kubetzka, R. Wiesendanger, G. Bihlmayer, and
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