
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Essential model parameters for nonreciprocal magnons in
multisublattice systems

Satoru Hayami and Takuya Matsumoto
Phys. Rev. B 105, 014404 — Published  4 January 2022

DOI: 10.1103/PhysRevB.105.014404

https://dx.doi.org/10.1103/PhysRevB.105.014404
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Department of Applied Physics, the University of Tokyo, Tokyo 113-8656, Japan

We theoretically investigate the microscopic conditions for emergent nonreciprocal magnons toward uni-

fied understanding on the basis of a microscopic model analysis. We show that the products of the Bogoliubov

Hamiltonian obtained within the linear spin wave approximation is enough to obtain the momentum-space func-

tional form and the key ingredients in the nonreciprocal magnon dispersions in an analytical way even without

solving the eigenvalue problems. We find that the odd order of an effective antisymmetric Dzyaloshinskii-

Moriya interaction and/or the even order of an effective symmetric anisotropic interaction in the spin rotated

frame can be a source of the antisymmetric dispersions. We present possible kinetic paths of magnons con-

tributing to the antisymmetric dispersions in the one- to four-sublattice systems with the general exchange

interactions. We also test the formula for both ferromagnetic and antiferromagnetic orderings in the absence of

spatial inversion symmetry.

I. INTRODUCTION

Conductive phenomena in solids have long been studied in

various fields of condensed matter physics, such as the giant

magnetoresistance [1–5] and the anomalous Hall effect [6–

14]. For these physical phenomena, the electronic band struc-

tures play an important role. The flat band structures give

rise to magnetism, superconductivity, and the fractional quan-

tum Hall effect [15–20], while the linear band dispersions

around the Dirac/Weyl points lead to unconventional topolog-

ical properties [21–25]. Besides, the spin splittings in the band

structure bring about fascinating physical phenomena, such as

the Edelstein effect in noncentrosymmetric systems [26–29],

spin current generation in antiferromagnetic systems without

the relativistic spin-orbit coupling [30–33], and the spin-orbit-

momentum locking in magnetic quadrupole systems [34].

Under space-time inversion symmetry, the electronic band

structures are categorized into four groups: the k-symmetric

band dispersion with the spin degeneracy in the presence of

both spatial inversion (P) and time-reversal (T ) symmetries,

the k-(anti)symmetric spin-split band dispersion without T
(P) while keeping P (T ), and the k-antisymmetric band dis-

persion without both P and T , where k is the wave vector of

electrons. In particular, the k-antisymmetric band dispersion

has been extensively studied in recent years, since it becomes

a source of nonreciprocal conductive phenomena owing to

the inequivalence between k and −k [35]. The nonrecipro-

cal nonlinear optical effect is a typical example [36–39]. The

microscopic origin of the k-antisymmetric band dispersion is

accounted for by the active magnetic toroidal moment, which

corresponds to a polar tensor with time-reversal odd [40–47].

The nonreciprocal phenomena have also been discussed in

magnetic insulators [35, 48–69]. In spite of the absence of car-

riers, the collective excitaions of magnons lead to directional-

dependent dynamical properties, where we refer it to the

nonreciprocal (asymmetric) magnons [35, 62]. Similar to

the electron band dispersion, an appearance of nonrecipro-

cal magnons is attributed to the active magnetic toroidal mo-

ment [70]. Although they were mainly studied for ferromag-

netic slabs [48, 49] and for magnetic orderings in the noncen-

trosymmetric crystals [50, 51, 59, 71, 72], where the magnetic

dipolar interaction and/or the Dzyaloshinskii-Moriya (DM)

interaction are important [73, 74], it was shown that they oc-

cur even via other mechanisms, such as frustrated exchange

interactions [75, 76] and bond-dependent symmetric exchange

interactions [77, 78]. The nonreciprocal magnons have a po-

tential to exhibit further intriguing nonreciprocal phenomena,

such as the magneto-optical effect [79–81] and spin Seebeck

effect [82], which avoid Joule heating.

Engineering asymmetric band deformations in the systems

without P and T symmetries is important for nonreciprocal

conductive phenomena irrespective of electrons and magnons.

Meanwhile, the microscopic conditions have not been fully

clarified yet, although active magnetic toroidal multipoles are

necessary from the symmetry aspect [47, 83–85]. Recently, a

useful framework to extract essential model parameters for the

asymmetric band structure in the electron systems has been

proposed on the basis of augmented multipoles [86]. Similar

approach has also been performed in the magnon systems by

introducing the bond-type magnetic toroidal dipole degree of

freedom, which is only applied to the mechanism induced by

the DM interaction [72]. It is desired to have a simple for-

mula to investigate which model parameters contribute to the

asymmetric band deformations in magnon systems with arbi-

trary spin interactions.

In the present study, we investigate the microscopic condi-

tions for emergent nonreciprocal magnons in multi-sublattice

systems in an analytical way. We show that the product of the

Bogoliubov Hamiltonian after the linear spin wave approx-

imation provides two important information for nonrecipro-

cal magnons without the cumbersome Bogoliubov transfor-

mation. One is the momentum-space functional form and the

other is the essential model parameters to cause the antisym-

metric band deformations. We demonstrate that our scheme

ubiquitously accounts for the microscopic key ingredients ir-

respective of the mechanisms by analyzing a spin Hamilto-

nian with the general exchange interactions in the one- to

four-sublattice systems. We discuss the important magnon-

hopping processes that arise from the exchange interactions

in real space. We also test our scheme for both ferromagnetic

and antiferromagnetic orderings with the DM interaction and

the symmetric anisotropic interaction. Our results will be use-

ful to extract the significant model parameters in inducing the

nonreciprocal magnons under complicated noncollinear mag-

netic orderings.
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The remaining of the paper is organized as follows. In

Sec. II, we present a general method of extracting the es-

sential model parameters from the Bogoliubov Hamiltonian.

We present a general expression contributing to nonreciprocal

magnons on the basis of the spin Hamiltonian with both sym-

metric and antisymmetric exchange interactions in the one-

to four-sublattice systems in Sec. III. We apply the method

for the ferromagnetic ordering in the breathing kagome lattice

structure and the collinear/noncollinear antiferromagnetic or-

derings in the honeycomb and breathing kagome lattice struc-

tures in Sec. IV. Section V is devoted to a summary of the

present paper. Appendix A provides lengthy expressions in

terms of momentum-space functions in the three- and four-

sublattice cases.

II. APPROACH

Let us start a general spin Hamiltonian, which is given by

H =
∑

ll′

∑

αβ

Sα
l J αβ

ll′ Sβ
l′ , (1)

with

Jll′ =





J⊥
ll′ + Jv

ll′ Jxy
ll′ +Dz

ll′ Jzx
ll′ −Dy

ll′

Jxy
ll′ −Dz

ll′ J⊥
ll′ − Jv

ll′ Jyz
ll′ +Dx

ll′

Jzx
ll′ +Dy

ll′ Jyz
ll′ −Dx

ll′ Jz
ll′



 , (2)

where Sα
l is an α (= x, y, and z) component of classical spin

at site l. J⊥
ll′ , J

z
ll′ , J

v
ll′ , J

xy
ll′ , Jyz

ll′ , and Jzx
ll′ are the symmet-

ric exchange interactions, while Dx
ll′ , D

y
ll′ , and Dz

ll′ are the

antisymmetric exchange interactions. The latter corresponds

to the DM interaction. The nonzero components of Jll′ are

determined by point group symmetry of the bond. For later

convenience, the spin is rotated so as to align the local axis

along the z direction:

(Sx
l , S

y
l , S

z
l )

T = Rz(φl)Ry(θl)(S̃
x
l , S̃

y
l , S̃

z
l )

T, (3)

where Rz(φl) and Ry(θl) are the rotation matrices around the

z and y axes, respectively, and T is the transpose of the vector.

Then, the Hamiltonian in Eq. (1) is rewritten as

H =
∑

ll′

∑

αβ

S̃α
l J̃ αβ

ll′ S̃β
l′

=
∑

ll′

(

H⊥
ll′ +HDM

ll′ +Hv
ll′ +Hxy

ll′ +Hz
ll′ +H

yz/zx
ll′

)

,

(4)

where

H⊥
ll′ =

J̃⊥
ll′

2
(S̃+

l S̃−
l′ + S̃−

l S̃+
l′ ), (5)

HDM
ll′ =

iD̃ll′

2
(S̃+

l S̃−
l′ − S̃−

l S̃+
l′ ), (6)

Hv
ll′ =

J̃v
ll′

2
(S̃+

l S̃+
l′ + S̃−

l S̃−
l′ ), (7)

Hxy
ll′ = − iJ̃xy

ll′

2
(S̃+

l S̃+
l′ − S̃−

l S̃−
l′ ), (8)

Hz
ll′ = J̃z

ll′ S̃
z
l S̃

z
l′ . (9)

Hzx
ll′ and Hyz

ll′ consist of the product of S̃xS̃z and S̃yS̃z , re-

spectively. The interaction tensor J̃ll′ is represented by rotat-

ing Jll′ .

We investigate magnon spectra within a linear spin wave

approximation. By applying the Holstein-Primakov transfor-

mation, which is given by S̃+
iη =

√
2Saiη, S̃−

iη =
√
2Sa†iη,

and S̃z
iη = S − a†iηaiη (the subscripts i and η denote the in-

dices for a unit cell and a sublattice, respectively, and aiη is

the boson operator for sublattice η), to the spin Hamiltonian in

Eq. (4), the Bogoliubov Hamiltonian is derived. By perform-

ing the Fourier transformation as aiη → aqη, the resultant

Bogoliubov Hamiltonian in the n-sublattice system is given

by

HB =
S

2

∑

q

Ψ†
qH

B
q Ψq, (10)

HB
q =

(
Xq Yq

Y†
q X ∗

−q

)

, (11)

where Ψ†
q = (a†q1, a

†
q2, · · · , a†qn, a−q1, a−q2, · · · , a−qn) and

Xq and Yq are the n× n matrices.

In Eq. (4), Hz
ll′ corresponds to the diagonal elements of

Xq , while H⊥
ll′ , H

DM
ll′ , Hv

ll′ , and Hxy
ll′ correspond to the off-

diagonal elements Xq and Yq . In other words, only the spin

components perpendicular to S̃z
l contribute to a magnon hop-

ping process. Meanwhile, H
yz/zx
ll′ does not appear in Eq. (10),

since it consists of the odd number of boson operators.

When HB
q is a positive-definite matrix, the Cholesky de-

composition is possible as HB
q = K†

qKq , where Kq is the

upper triangular matrix. Then, HB
q is transformed into the

Hermitian matrix Hq as

Hq = KqgK
†
q, (12)

where the 2n × 2n matrix g satisfies (g)ηη′ = [Ψqη,Ψ
†
qη′ ].

The eigenvalues ωqm (m is the band index) in Eq. (11) are

obtained by diagonalizing Hq .

Nonreciprocal magnon excitations mean that the eigenval-

ues have an antisymmetric component with respect to q, i.e.,

ωqm 6= ω−qm. To investigate important model parameters for

the nonreciprocal magnons in a systematic way, we introduce

a following quantity as

E(s)
q = Tr[HqHq · · ·Hq

︸ ︷︷ ︸

s

], (13)

= Tr[(HB
q g)(H

B
q g) · · · (HB

q g
︸ ︷︷ ︸

s

)], (14)

which is related to the eigenenergy. A similar quantity has

been discussed in the antisymmetric band modulation and spin

splittings in the electron system [86–88]. The antisymmetric

component is extracted by

F (s)
q =

1

2
(E(s)

q − E
(s)
−q). (15)
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Thus nonzero F
(s)
q signals the appearance of nonreciprocal

magnons.

From the expression of Eq. (14), one can deduce the es-

sential model parameters inducing nonreciprocal magnons, as

detailed in Sec. III. In Eqs. (5)-(9), there are four types of

magnon hoppings and one onsite potential in the real space

Bogoliubov Hamiltonian, which are expressed as

H⊥
ll′ = SJ̃⊥

ll′(ala
†
l′ + a†lal′), (16)

HDM
ll′ = iSD̃ll′(ala

†
l′ − a†l al′), (17)

Hv
ll′ = SJ̃v

ll′(alal′ + a†la
†
l′), (18)

Hxy
ll′ = −iSJ̃xy

ll′ (alal′ − a†l a
†
l′), (19)

Hz
ll′ = SJ̃z

ll′(S − a†l al − a†l′al′). (20)

From theses expressions, one finds that the real (imaginary)

part of the standard hopping a†iηajη′ is related to H⊥
ll′ (HDM

ll′ ),

which corresponds to the off-diagonal part of Xq , while the

real (imaginary) part of the anomalous hopping a†iηa
†
jη′ is re-

lated to Hv
ll′ (Hxy

ll′ ), which corresponds to the off-diagonal

part of Yq . As only the hopping processes to satisfy the

magnon-number conservation are important, one can find that

an even order of J̃v
ll′ and J̃xy

ll′ can contribute to nonrecipro-

cal magnon excitations. In addition, when taking into account

the fact that an odd order of imaginary hopping can also con-

tribute to nonreciprocal magnon excitations, we expect that

the antisymmetric magnon band structure is related to the odd

order of an effective antisymmetric DM interaction or the even

order of an effective symmetric anisotropic interaction. This

indicates that the antisymmetric magnon band structure can be

reversed regarding q by the sign of D̃ll′ , while that is not by

the sign of J̃v
ll′ and J̃xy

ll′ . As we will show the general feature

of F
(s)
q in Sec. III and the specific examples in Sec. IV, the

quantity F
(s)
q gives a microscopic condition of nonreciprocal

magnons irrespective of ferromagnets and antiferromagnets.

III. GENERAL FEATURE OF F
(s)
q

In this section, we discuss a general behavior of F
(s)
q in-

dependent of the lattice structures and the exchange interac-

tions. We show the microscopic processes contributing to

nonreciprocal magnons in the multi-sublattice systems with

n = 1-4: one-sublattice case in Sec. III A, two-sublattice

case in Sec. III B, three-sublattice case in Sec. III C, and four-

sublattice case in Sec. III D. It is noted that the present scheme

can be also applied to the systems with the sublattice n > 4 in

a straightforward way.

A. One-sublattice case

We consider the one-sublattice system with η = A, which

describes only the ferromagnetic state without the sublattice

degree of freedom. In the one-sublattice system, Xq and Yq

A A

FIG. 1. Schematic picture of the magnon-hopping process contribut-

ing to nonreciprocal magnons (F
(1)
q 6= 0) in real space in the one-

sublattice case.

are the 1×1matrices. By using Eqs. (16)-(20), the expressions

of Xq and Yq are given by

Xq = J̃zhz(s)
q + J̃⊥h⊥(s)

q − D̃zhD(as)
q , (21)

Yq = J̃vhv(s)
q + iJ̃xyhxy(s)

q , (22)

where h
ζ(s)
q and h

ζ(as)
q for ζ = z,⊥, D, v, xy are arbitrary

symmetric and antisymmetric functions with respect to q:

h
ζ(s)
q = h

ζ(s)
−q and h

ζ(as)
q = −h

ζ(as)
−q . Owing to the one-

sublattice degree of freedom, h
⊥(as)
q = h

D(s)
q = h

v(as)
q =

h
xy(as)
q = 0 and h

z(s)
q has a q dependence, which are dif-

ferent from the multi-sublattice cases, as will be discussed in

Secs. III B-III D.

Although the magnon dispersions in the one-sublattice case

with the 2×2matrixHB
q are analytically obtained by perform-

ing the Bogoliubov transformation, we test the expressions in

Eqs. (14) and (15) for later complicated multi-sublattice sys-

tems. The lowest contribution of F
(s)
q is given by

F (1)
q = −2D̃zhD(as)

q . (23)

The expression in Eq. (23) indicates that only the effective

DM interaction D̃z contributes to nonreciprocal magnon dis-

persions. When calculating the higher order of F
(s)
q , one finds

that the (2m + 1)th-order terms of F
(s)
q are proportional to

D̃zh
D(as)
q , while the 2mth-order ones vanish for an integer

m. This means that the nonreciprocal magnon in the one-

sublattice system is induced when D̃z 6= 0 irrespective of

other interactions. This result is consistent with that obtained

by the direct diagonalization.

The above result is intuitively understood from the magnon-

hopping process in the real-space picture, as shown in the case

of F
(1)
q in Fig. 1. The process in Fig. 1 gives rise to effective

imaginary magnon hopping that is a source of nonreciprocal

magnons along the hopping direction. Furthermore, the func-

tional form of nonreciprocal magnons are obtained in an ana-

lytic form from Eq. (23). In the crystal system, the q depen-

dence of F
(s)
q is derived to satisfy the magnetic point group

symmetry in the system, as shown in Sec. IV.

B. Two-sublattice case

Hereafter, we examine F
(s)
q in the multi-sublattice case. In

this section, we show F
(s)
q in the two-sublattice case with η =
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A B AA B A

FIG. 2. Schematics of two magnon-hopping processes giving F
(3)
q 6=

0 in real space in the two-sublattice case. The left panel corresponds

to the first term in Eq. (29) and the right panel corresponds to the

second term in Eq. (29).

A and B, where Xq and Yq are the 2 × 2 matrices. By con-

sidering the general exchange interactions between A and B

sublattices, Xq and Yq are represented by

Xq =

(
ZA FABq

F ∗
ABq ZB

)

, (24)

Yq =

(
0 GABq

GAB−q 0

)

, (25)

where

FABq = J̃⊥(h
⊥(s)
ABq + ih

⊥(as)
ABq ) + iD̃z(h

D(s)
ABq + ih

D(as)
ABq ),

(26)

GABq = J̃v(h
v(s)
ABq + ih

v(as)
ABq ) + iJ̃xy(h

xy(s)
ABq + ih

xy(as)
ABq ),

(27)

Zη = Jzzη, (28)

and η = A and B. In contrast to the one-sublattice case,

h
⊥(as)
q 6= 0, h

D(s)
q 6= 0, h

v(as)
q 6= 0, and h

xy(as)
q 6= 0 and

there is no q dependence in Zη; h
z(s)
q corresponds to zη and

h
z(as)
q = 0.

The lowest contribution of F
(s)
q is given by s = 3, whose

expression is represented as

F (3)
q = 12J̃zD̃z J̃⊥(zA + zB)(h

D(s)
ABqh

⊥(as)
ABq − h

⊥(s)
ABqh

D(as)
ABq )

− 12J̃zJ̃vJ̃xy(zA − zB)(h
xy(s)
ABq h

v(as)
ABq − h

v(s)
ABqh

xy(as)
ABq ).

(29)

The first term in Eq. (29) represents the contribution from the

effective DM interaction proportional to D̃z , which is similar

to the result in the one-sublattice case in Sec. III A. Mean-

while, the second term in Eq. (29) represents the contribu-

tion from the effective symmetric anisotropic exchange inter-

action including J̃v and J̃xy, which does not appear in the

one-sublattice case. In other words, the symmetric anisotropic

exchange interaction can become a source of nonreciprocal

magnons in the multi-sublattice system [see also the results

in Eq. (35) in the three-sublattice case (Sec. III C) and in

Eq. (38) in the four-sublattice case (Sec. III D)]. The real-

space pictures in terms of the magnon-hopping processes for

each term are shown in Fig. 2. It is noted that the effective

symmetric anisotropic interaction contributes to the nonrecip-

rocal magnons in the form of J̃vJ̃xy in order to satisfy the

magnon-number conservation and the space-time inversion

symmetry. We also note that the q dependence of nonrecip-

rocal magnons can be different for different mechanisms, as

found in the first and second terms in Eq. (29).

In addition, there are three differences from the one-

sublattice case in Eq. (23). The one is the appearance of

J̃z in Eq. (29), which means that J̃z is also important to in-

duce the nonreciprocal magnons. The second is the sublattice-

dependent factor zA + zB and zA − zB; the nonreciprocal

magnons by D̃z (J̃vJ̃xy) vanish when zA = −zB (zA = zB).

The third is the q dependence in the first term in Eq. (29) ow-

ing to nonzero h
⊥(as)
q and h

D(s)
q .

We note that the expression in Eq. (29) does not directly

reduce to that in Eq. (23) when regarding A and B sublattices

as the same sublattice, i.e., zA = zB: The essential model

parameter in Eq. (29) is J̃zD̃zJ̃⊥, while that in Eq. (23) is

D̃z . At first glance this result appears to contradict with each

other, but it is due to the fact that the factor J̃z J̃⊥ is can-

celed out with the denominators when evaluating the energy

spectrum [72]. Hence, from the viewpoint of obtaining the es-

sential model parameters, it is useful to calculate F
(s)
q in the

minimal unit cell.

By using the expression in Eq. (29), one obtains the es-

sential model parameters for the emergence of nonrecipro-

cal magnons in the two-sublattice antiferromagnetic orderings

and the ferromagnetic ordering in the two-sublattice noncen-

trosymmetric structures. We show the example of the stag-

gered antiferromagnetic ordering in the honeycomb lattice

structure in Sec. IV B.

C. Three-sublattice case

We consider a behavior of F
(s)
q in the three-sublattice case

with η = A, B, and C. For the general exchange interactions

between different sublattices, the 3 × 3 matrices, Xq and Yq ,

are represented by

Xq =





ZA FABq FACq

F ∗
ABq ZB FBCq

F ∗
ACq F ∗

BCq ZC



 , (30)

Yq =





0 GABq GACq

GAB−q 0 GBCq

GAC−q GBC−q 0



 , (31)

where

Fηη′q = J̃⊥(h
⊥(s)
ηη′q + ih

⊥(as)
ηη′q ) + iD̃z(h

D(s)
ηη′q + ih

D(as)
ηη′q ),

(32)

Gηη′q = J̃v(h
v(s)
ηη′q + ih

v(as)
ηη′q ) + iJ̃xy(h

xy(s)
ηη′q + ih

xy(as)
ηη′q ),

(33)

Zη = Jzzη, (34)

and η, η′ = A, B, and C.

The lowest contribution of F
(s)
q corresponds to the s = 3
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A B
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C

A B
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A B

C

A B

C

A B

C

A B

C

FIG. 3. Schematics of seven magnon-hopping processes giving

F
(3)
q 6= 0 in real space in the three-sublattice case. Each panel cor-

responds to Hµq (µ = 1-7) in Eq. (35).

term similar to the two-sublattice case, which is given by

F (3)
q =D̃z

[

J̃⊥J̃zH1q + (J̃⊥)2H2q + (J̃v)2H3q

+ (J̃xy)2H4q

]

+ (D̃z)3H5q

+ J̃vJ̃xy(J̃zH6q + J̃⊥H7q), (35)

whereHµq (µ = 1-7) is the antisymmetric function consisting

of odd number of h
ζ(as)
q and even number of h

ζ(s)
q : Hµq =

−Hµ−q . For example, H2q includes h
D(s)
ηη′qh

⊥(s)
η′η′′qh

⊥(as)
η′′ηq for

η 6= η′ 6= η′′. The specific expressions of Hµq are shown in

Appendix A owing to the lengthy expressions.

There are mainly three contributions in the nonreciprocal

magnon dispersions in Eq. (35), which are proportional to

D̃z including H1q-H4q, (D̃z)3 including H5q , and J̃vJ̃xy in-

cluding H6q and H7q . We schematically show the magnon-

A

B

C

D

A B

D C
(a) (b)

FIG. 4. Four-sublattice clusters in the shapes of (a) a tetrahedron and

(b) a square.

hopping processes corresponding to Hµq (µ = 1-7) in Fig. 3.

Among Hµq , H2q , H3q , H4q , H5q , and H7q consist of three

magnon hoppings between three sublattices, while H1q and

H6q consist of two magnon hoppings between two sublattices.

Indeed,H1q andH6q correspond to the left and right panels of

Fig. 2, respectively, while other Hµq have no correspondence

to the two-sublattice case. In other words, this indicates that

contributions from H2q , H3q , H4q , H5q , and H7q can appear

when the exchange interaction path includes the triangle ge-

ometry, such as the triangular and kagome lattices, while those

from H1q and H6q do not need the triangle geometry. Thus,

only the latter processes can contribute to the nonreciprocal

magnons in the case of the one-dimensional three-sublattice

chain in the absence of FACq and GACq .

The general expression in Eq. (35) describes the model

parameter conditions for the nonreciprocal magnons in the

three-sublattice antiferromagnetic orderings, such as the 120◦

antiferromagnetic ordering on the triangular and breathing

kagome lattices. We show three examples in the breathing

kagome system in Secs. IV A, IV C, and IV D.

D. Four-sublattice case

Finally, we consider the four-sublattice case, where Xq and

Yq are represented by

Xq =







ZA FABq FACq FADq

F ∗
ABq ZB FBCq FBDq

F ∗
ACq F ∗

BCq ZC FCDq

F ∗
ADq F ∗

BDq F ∗
CDq ZD







, (36)

Yq =






0 GABq GACq GADq

GAB−q 0 GBCq GBDq

GAC−q GBC−q 0 GCDq

GAD−q GBD−q GCD−q 0




 , (37)

where Fηη′q , Gηη′q , and Zη are the same as Eqs. (32), (33),

and (34), respectively.

Similar to the two- and three-sublattice cases, the lowest

contribution of F
(s)
q in the four-sublattice case is F

(3)
q , which
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is given by

F (3)
q =D̃z

[

J̃⊥J̃zH ′
1q + (J̃⊥)2H ′

2q + (J̃v)2H ′
3q

+ (J̃xy)2H ′
4q

]

+ (D̃z)3H ′
5q

+ J̃vJ̃xy(J̃zH ′
6q + J̃⊥H ′

7q), (38)

where H ′
µq (µ = 1-7) is similar to Hµq in the three-sublattice

case, and the only difference is found in the number of hop-

ping paths due to the different number of the sublattice, as

found in Appendix A. Similar to the three-sublattice case,

H ′
2q , H ′

3q , H ′
4q , H ′

5q , and H ′
7q can appear when exchange in-

teraction path includes the triangle geometry, while H ′
1q and

H ′
6q do not depend on such a geometry. For example, in

the tetrahedron cluster structure shown in Fig. 4(a), all H ′
µq

can contribute to the nonreciprocal magnons, whereas in the

square cluster structure with the nearest-neighbor exchange

interactions in Fig. 4(b), only H ′
1q and H ′

6q can contribute as

F (3)
q = D̃zJ̃⊥J̃zH ′

1q + J̃vJ̃xyJ̃zH ′
6q. (39)

In this way, the expressions in Eqs. (38) and (39) describe the

microscopic process contributing to nonreciprocal magnons

under the four-sublattice antiferromagnetic orderings, such as

the pyrochlore antiferromagnets and the four-sublattice tetrag-

onal antiferromagnets.

IV. APPLICATION TO NONCENTROSYMMETRIC

MAGNETS

In this section, we apply the expression in Eq. (15) to non-

centrosymmetric ferromagnets and antiferromagnets to host

nonreciprocal magnons. As the ferromagnets, we consider the

ferromagnetic ordering in the breathing kagome lattice struc-

ture in Sec. IV A. As the antiferromagnets, we consider three

types of antiferromagnetic orderings: the staggered collinear

antiferromagnetic state in the honeycomb lattice structure in

Sec. IV B, the up-up-down ferrimagnetic state in the breath-

ing kagome lattice structure in Sec. IV C, and the noncollinear

120◦ antiferromagnetic state in the breathing kagome lattice

structure in Sec. IV D. In each section, we first show the Bo-

goliubov Hamiltonian and then we discuss magnon spectra

and essential model parameters.

A. Breathing kagome ferromagnets

1. Model

We consider a breathing kagome lattice structure as an ex-

ample of noncentrosymmetric crystal structures [72]. The

breathing kagome lattice structure consists of upward and

downward triangles with the different sizes, as shown in

Fig. 5(a).

A B

C
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 3

 4
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K’ KΓ M Γ M K’Σ Σ’

 0
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 2

 3

 4

 5

K’ KΓ M Γ M K’Σ Σ’

(a)

(b)

(c)

(d)

K

M

M

Σ

Σ’

0 maxmin

FIG. 5. (a) Breathing kagome lattice structure under the point group

D3h. The red spheres represent the magnetic moments along the

z direction. The different colors for bonds stand for the different

magnitudes of the exchange coupling. (b) The first Brillouin zone

in (a). The color plot represents angle dependence of nonreciprocal

magnons characterized by qx(q
2
x − 3q2y). (c, d) The magnon band

structures under the ferromagnetic ordering for D = 0.2 and Ja = 0
(c) and D = 0 and Ja = 0.5 (d). The other parameters are set as

J⊥ = −0.9, Jz = −1, and γ = 0.5.

The interaction matrix corresponding to Eq. (2) is given by

J△
ηη′ =





J⊥ + Ja cosχηη′ D − Ja sinχηη′ 0
−D − Ja sinχηη′ J⊥ − Ja cosχηη′ 0

0 0 Jz



 ,

(40)

J▽
ηη′ = γJ△

ηη′ , (41)

where the superscript △ (▽) denotes the interaction for the

upward (downward) triangles where γ is the breathing param-

eter, and χAB = 0, χBC = 2π/3 and χCA = 4π/3. We

here consider four independent interactions from the sym-

metry analysis: the isotropic inplane interaction J⊥, the

DM interaction D, the bond-dependent anisotropic interac-

tion Ja, and the z spin interaction Jz . The direction of

the DM vector is taken along the +z (−z) direction for the

upward (downward) triangle. The anisotropic interactions,

D, Ja, and Jz − J⊥ originates from the relativistic spin-

orbit coupling and/or dipole-diople interactions. Compared

to Eq. (2), one finds the correspondence of (Jv
ηη′ , J

xy
ηη′) and

(Ja cosχηη′ ,−Ja sinχηη′ ).

In the ferromagnetic state with magnetic moments along

the z direction, we do not need the rotation of the spin

frame, i.e., J̃⊥
ηη′ = J⊥, D̃ηη′ = D, J̃v

ηη′ = Ja cosχηη′ ,

J̃xy
ηη′ = −Ja sinχηη′ , and J̃z

ηη′ = Jz in Eqs. (5)-(9). By per-

forming the Holstein-Primakov transformation and then the

Fourier transformation, the 3 × 3 matrices Xq and Yq in the
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Bogoliubov Hamiltonian matrix HB
q are given by [72]

Xq =





Z FABq F ∗
CAq

F ∗
ABq Z FBCq

FCAq F ∗
BCq Z



 , (42)

Yq =





0 GABq GCA−q

GAB−q 0 GBCq

GCAq GBC−q 0



 , (43)

where

Fηη′q =
(
J⊥ − iD

) (
eiq·ρηη′ + γe−iq·ρ

ηη′

)
, (44)

Gηη′q =Jae−iχ
ηη′

(
eiq·ρηη′ + γe−iq·ρ

ηη′

)
, (45)

Z =− 2(1 + γ)Jz, (46)

where ρηη′ is the displacement vector between η and η′ sub-

lattices in the breathing kagome lattice structure. It is noted

that the length of a side of both the upward and downward

triangles is taken as one for notational simplicity.

2. Result

The ferromagnetic spin configuration becomes stable when

Jz is dominant and ferromagnetic. We show the magnon

dispersions along high symmetry lines in the Brillouin zone

[Fig. 5(b)] in the ferromagnetic state after the numerical Bo-

goliubov transformation. Figure 5(c) shows the magnon spec-

tra ωq for D = 0.2 without Ja, while Fig. 5(d) shows ones

for Ja = 0.5 without D. Both cases clearly exhibit that the

magnon bands are modulated antisymmetrically in the func-

tional form of qx(q
2
x − 3q2y) [72]. The angle dependence

in the limit of |q| → 0 is given by cos 3φ when setting

(qx, qy) = q(cosφ, sinφ), as shown in Fig. 5; the antisym-

metric modulation appears along the K’-Γ-K line, while it

does not along the M(Σ)-Γ-M(Σ′) line.

The above result means that both D and Ja become the

origin of the nonreciprocal magnons. Such model parameter

conditions are easily obtained by evaluating F
(s)
q in Eq. (15)

without solving the eigenvalue problems. For a general case at

D 6= 0 and Ja 6= 0, the lowest-order contribution from F
(s)
q

is of third order as shown in Sec. III C, which is given by

F (3)
q =− 12γ(1− γ)(

√
3J⊥ +D)

× [2D(
√
3J⊥ −D) + 3(Ja)2]f3φ

q , (47)

where

f3φ
q =

(

cos qx − cos
√
3qy

)

sin qx. (48)

Thus, one finds that the antisymmetric functional form of

f3φ
q = (cos qx − cos

√
3qy) sin qx in F

(3)
q is consistent with

that in the magnon dispersions in Figs. 5(c) and 5(d). Further-

more, the expression in Eq. (47) clearly presents the essential

parameters in nonreciprocal magnons: γ, D, and Ja. The

condition of γ 6= 1 represents the importance of the breath-

ing structure, which is reasonable in terms of spatial inver-

sion symmetry; it is recovered for γ = 1. In a similar way,

y

xz

A B

 0

 1

 2

 3

K’ KΓ M Γ M K’Σ Σ’

 0

 1

 2

 3

K’ KΓ M Γ M K’Σ Σ’

(a)

(b)

(c)

(d)K
M

M

Σ

Σ’

0 maxmin

FIG. 6. Honeycomb lattice structure under the point group D6h. The

red (blue) spheres represent the up (down) spins along the z direc-

tion. The three bond vectors, d0, d1, and d2, are also shown. (b) The

first Brillouin zone in (a). The color plot represents angle dependence

of nonreciprocal magnons characterized by qy(q
2
y − 3q2x). (c, d) The

magnon band structures under the staggered antiferromagnetic order-

ing for D = 0.05 and Ja = 0 (c) and D = 0 and Ja = 0.1 (d). The

other parameters are set as J⊥ = 0.99 and Jz = 1.

F
(3)
q shows that no antisymmetric magnon dispersions appear

when D = −
√
3J⊥. This is rather surprising, as such a con-

dition is not obtained by the symmetry argument. Indeed, we

confirmed that the magnon dispersions become symmetric at

D = −
√
3J⊥.

The other essential parameters are D and Ja, as inferred

from the results in Figs. 5(c) and 5(d). In the case of Fig. 5(c)

for nonzero D and Ja = 0, Eq. (47) reduces to

F (3)
q = −24γ(1− γ)D(3J⊥2 −D2)f3φ

q . (49)

The result indicates that asymmetric feature vanishes for D =
0 and D =

√
3J⊥ in addition to γ 6= 0, 1 and D = −

√
3J⊥

in Eq. (47). Thus, D is one of the essential parameters, and its

odd order contributes to the asymmetric dispersions. On the

other hand, for nonzero Ja and D = 0, Eq. (47) turns into

F (3)
q = −36

√
3γ(1− γ)J⊥(Ja)2f3φ

q . (50)

We find that the even order of Ja becomes the essential pa-

rameters in the case of D = 0. These results are consistent

with those obtained from the general expression in Sec. III C.

B. Honeycomb antiferromagnets

1. Model

The honeycomb lattice structure consists of two sublattices

A and B, as shown in Fig. 6(a). From the presence of threefold

rotational symmetry around the z axis and mirror symmetry

perpendicular to the xy plane along the bond direction at each
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local site, the interaction tensor for the nearest-neighbor spins

is given by

J ν
AB =





J⊥ + Ja cosχν −Ja sinχν 0
−Ja sinχν J⊥ − Ja cosχν 0

0 0 Jz



 , (51)

where ν = 0-2 is the bond index for the nearest-neighbor

spins and χν = 0, 2π/3, 4π/3 for ν = 0-2. The three

bond vectors are d0 = (1, 0), d1 = (−1/2,
√
3/2), and

d2 = (−1/2,−
√
3/2). The DM interaction vanishes owing

to inversion symmetry on the A-B bond center. The contribu-

tion of the DM interaction arises in the interaction tensor for

the next-nearest-neighbor spins belonging to the same sublat-

tice, which is given by

J ν′

AA = −J ν′

BB =





0 D 0
−D 0 0
0 0 0



 , (52)

where ν′ = 0-5 is the bond index for the next-nearest-

neighbor spins. We ignore the other symmetric exchange in-

teractions in JAA and JBB. The opposite sign of the DM

interaction for the A and B sublattices is owing to inversion

symmetry in the system.

We consider the staggered antiferromagnetic state with

Sz
A = 1 and Sz

B = −1, as schematically shown in Fig. 6(a). In

contrast to the ferromagnetic ordering in Sec. IV A, the spin

frame is required to be locally rotated according to Eq. (3) in

order to use Eq. (15). After rotating the spin frame, the effec-

tive interactions corresponding to Eqs. (5)-(9) are given by

J̃
⊥(ν)
AB = −Ja cosχν , (53)

J̃v
AB = −J⊥, (54)

J̃z
AB = −Jz, (55)

D̃
(ν)
AB = −Ja sinχν , (56)

D̃AA = D̃BB = D, (57)

for the νth bond (J̃v
AB and J̃z

AB do not depend on ν). Owing to

the π rotation of the spin frame for the sublattice B, the bond-

dependent interaction Ja is transformed into J̃⊥
AB and D̃AB in

Eqs. (53) and (56), and the sublattice-dependent DM interac-

tion turns into the uniform DM interaction in Eq. (57). By

performing the Holstein-Primakov transformation and then

the Fourier transformation, the 2 × 2 matrices Xq and Yq in

Eq. (11) are given by [70, 78]

Xq =

(
Zq Fq

F ∗
q Zq

)

, (58)

Yq =

(
0 Gq

G−q 0

)

, (59)

where

Fq = −Ja
∑

ν

ei(q·dν−χν), (60)

Gq = −J⊥
∑

ν

eiq·dν , (61)

Zq = 3Jz + 4D

(

cos
3qx
2

− cos

√
3qy
2

)

sin

√
3qy
2

. (62)

2. Result

The staggered antiferromagnetic spin configuration is sta-

bilized by supposing that Jz is the dominant antiferromag-

netic interaction. We take Jz = 1 and J⊥ = 0.99, respec-

tively. The magnon dispersions in the antiferromagnetic state

are shown in Figs. 6(c) and 6(d), where the Brillouin zone

is shown in Fig. 6(b). The magnon spectra ωq in Fig. 6(c) are

calculated for D = 0.05 and Ja = 0 and those in Fig. 6(d) are

forD = 0 and Ja = 0.1. Similar to the result in Sec. IV A, the

asymmetric modulations occur in both situations. The anti-

symmetric functional form is given by qy(3q
2
x−q2y), as shown

by the color plot in Fig. 6(b), which means that the angle de-

pendence is expressed as sin 3φ in the limit of |q| → 0.

From Eq. (15), the essential model parameters are straight-

forwardly computed. The lowest-order contribution in terms

of D is given by

F (1)
q =8(D̃AA + D̃BB)

(

cos
3qx
2

− cos

√
3qy
2

)

sin

√
3qy
2

(63)

=16D

(

cos
3qx
2

− cos

√
3qy
2

)

sin

√
3qy
2

. (64)

Meanwhile, the lowest-order contribution in terms of Ja is of

third-order, which is given by

F (3)
q =72J̃z

AB

[

sin
√
3qy(D̃

(2)
ABJ̃

⊥(1)
AB − D̃

(1)
ABJ̃

⊥(2)
AB )

− J̃
⊥(0)
AB

{

D̃
(1)
AB sin

(

3qx +
√
3qy

2

)

+ D̃
(2)
AB sin

(

3qx −
√
3qy

2

)}]

(65)

=72
√
3Jz(Ja)2

(

cos
3qx
2

− cos

√
3qy
2

)

sin

√
3qy
2

,

(66)

where we set D = 0. These results are consistent with those

in Eqs. (23) and (29) in Sec. III. Similar to the ferromagnetic

ordering in Sec. IV A, the result obtained from Eq. (15) gives

the same functional form as that in the magnon dispersions in

Figs. 6(c) and 6(d). Furthermore, the expressions in Eqs. (63)

and (65) indicate the odd order of the effective DM interac-

tion causes the asymmetric magnon dispersions as obtained in

Sec. III.
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FIG. 7. Breathing kagome lattice structure under the point group

D3h. The red (blue) spheres represent the up (down) spins along the

z direction. (b) The first Brillouin zone in (a). The color plot repre-

sents angle dependence of nonreciprocal magnons characterized by a

linear combination of qx(q
2
x−3q2y) and qx(q

2
x−q2y)(q

2
x−3q2y). (c, d)

The magnon band structures under the up-up-down magnetic order-

ing for D = 0.2, Ja = 0, and J‖ = −2 (c) and D = 0, Ja = 0.5,

and J‖ = −2.4 (d). The other parameters are set as J⊥ = 0.9,

Jz = 1, and γ = 0.5.

C. Breathing kagome ferrimangets

1. Model

We discuss the other example of the nonreciprocal magnons

in the ferrimagnetic state. We consider the up-up-down mag-

netic ordering in the breathing kagome lattice structure as a

fundamental example. The up-up-down spin configuration is

shown in Fig. 7(a).

The spin Hamiltonian is common to Eqs. (40) and (88) in

Sec. IV A. The effective interaction tensors corresponding to

Eqs. (5)-(9) are modified from those in Sec. IV A for the an-

tiparallel spin pairs, i.e., A-C and B-C spins. The interactions

are given by

J̃ ′
⊥

CA =− Ja cosχCA, (67)

J̃ ′
⊥

BC =− Ja cosχBC, (68)

J̃ ′
v

CA =J̃ ′
v

BC = −J⊥, (69)

J̃ ′
z

CA =J̃ ′
z

BC = −Jz, (70)

J̃ ′
xy

CA =−D, (71)

J̃ ′
xy

BC =D, (72)

D̃′
CA =Ja sinχCA, (73)

D̃′
BC =− Ja sinχBC. (74)

The π rotation of the spin frame around the y axis for the C

sublattice leads to the correspondence between (J̃ ′⊥
ηη′ , D̃′

ηη′ ↔
J ′v
ηη′ , J

′xy
ηη′ ) and (J̃ ′v

ηη′ , J̃
′xy
ηη′ ↔ J ′⊥

ηη′ , D′
ηη′ ).

Then, the 3 × 3 matrices Xq and Yq in the Bogoliubov

Hamiltonian in momentum space are obtained as [72]

Xq =





0 FABq F ′∗
CAq

F ∗
ABq 0 F ′

BCq

F ′
CAq F ′∗

BCq Z



 , (75)

Yq =





0 GABq G′
CA−q

GAB−q 0 G′
BCq

G′
CAq G′

BC−q 0



 , (76)

where

F ′
BCq =− Jae−iχBC

(
eiq·ρBC + γe−iq·ρBC

)
, (77)

F ′
CAq =− JaeiχCA

(
eiq·ρCA + γe−iq·ρCA

)
, (78)

G′
BCq =

(
−J⊥ + iD

) (
eiq·ρBC + γe−iq·ρBC

)
, (79)

G′
CAq =

(
−J⊥ − iD

) (
eiq·ρCA + γe−iq·ρCA

)
, (80)

Z =2(1 + γ)Jz. (81)

FABq and GABq are common to Eqs. (44) and (45), respec-

tively.

2. Result

The up-up-down spin configuration is not simply stabilized

by the spin Hamiltonian owing to the degeneracy arising from

the kagome lattice structure. We here introduce the interlayer

ferromagnetic exchange coupling with the coupling constant

J‖ by supposing the quasi-two-dimensional structure [72].

Then, the diagonal matrix element (Xq)ii = (0, 0, Z) in

Eq. (75) turns into (Xq)ii = (J‖, J‖, Z + J‖), which opens

the gap in the magnon spectra. In the following, we fix

J⊥ = 0.9, Jz = 1, and γ = 0.5.

Figures 7(c) and 7(d) show the magnon dispersions under

the up-up-down magnetic ordering along high symmetry lines

in the Brillouin zone in Fig. 7(b). The data in Fig. 7(c) is

obtained at D = 0.2, Ja = 0, and J‖ = −2 and that in

Fig. 7(d) is D = 0, Ja = 0.5, and J‖ = −2.4. In con-

trast to the magnon dispersions in the ferromagnetic state in

Sec. IV A, threefold rotational symmetry in the dispersions

does not hold, which is consistent with the symmetry of the

magnetic orderings. This result indicates that there is an ad-

ditional angle dependence of cosφ to cos 3φ, whose behavior

is schematically shown as the color plot in Fig. 7(b). We also

confirm that the magnon dispersions in Figs. 7(c) and 7(d) are

characterized by the above angle dependence.

By evaluating F
(s)
q in Eq. (15), the essential model param-

eters are extracted. The lowest-order contribution is given as

the same form of Eq. (47) except for the sign. In other words,

the lowest-order contribution gives the angle dependence of

cos 3φ. The other cosφ dependence is obtained by the second
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lowest-order contribution F
(5)
q . For Ja = 0, F

(5)
q is given by

F (5)
q =10γ2(1 − γ)h1

[

D̃AB(J̃ ′
v

BCJ̃
′
v

CA + J̃ ′
xy

BCJ̃
′
xy

CA)

+ J̃AB(J̃ ′
v

BCJ̃
′
xy

CA − J̃ ′
v

CAJ̃
′
xy

BC)
]

q5 cos(a) (82)

=40γ2(1 − γ)D(3J⊥2 −D2)(J⊥2 +D2)q5 cosφ,
(83)

where h1 = 2D̃2
AB+2J̃2

AB+(J̃ ′
v

BC)
2+(J̃ ′

v

CA)
2+(J̃ ′

xy

BC)
2+

(J̃ ′
xy

CA)
2. On the other hand, for D = 0, F

(5)
q is represented

by

F (5)
q =10γ2(1 − γ)h2

[

D̃′
BC(J̃

⊥
ABJ̃

′
⊥

CA − J̃v
ABJ̃

′
v

CA)

+ D̃′
CA(J̃

⊥
ABJ̃

′
⊥

BC − J̃v
ABJ̃

′
v

BC)
]

q5 cosφ (84)

=60
√
3γ2(1− γ)J⊥(Ja)2[J⊥2 − (Ja)2]q5 cosφ,

(85)

where we omit the irrelevant contributions and h2 = D̃′
2

BC +

D̃′
2

CA−2(J̃⊥
AB)

2+(J̃ ′
⊥

BC)
2+(J̃ ′

⊥

CA)
2+2(J̃v

AB)
2−(J̃ ′

v

BC)
2−

(J̃ ′
v

CA)
2. Thus, the additional antisymmetric modulation in

the up-up-down state is given by q5 cosφ, indicating that the

modulation of cosφ affects the large q region in the Brillouin

zone. Also in these cases in Eqs. (82) and (84), the odd or-

der of the effective DM interaction and the even order of the

effective symmetric anisotropic interaction can be a source of

the antisymmetric dispersions.

Such qn dependence in cosφ depends on the model pa-

rameters. For example, we consider the situation where the

breathing parameter for the DM interaction γDM is different

from γ, γDM 6= γ [72]. In this case, the cosφ dependence

appears in F
(3)
q as

F (3)
q =Dg1(cos qx − cos

√
3qy) sin qx

+Dg2 cos
√
3qy sin qx, (86)

where g1 = −24γDM(1 − γDM)D2 + (γ2 − 2γ + 2γγDM −
γDM)J⊥2 and g2 = −48(1+γ)(γ−γDM)J⊥Jz . The expres-

sion in the form of the effective interaction is omitted due to

its length. Owing to nonzero g2, i.e., γDM 6= γ, F
(3)
q has the

contribution of q cosφ in the limit of |q| → 0, which means

the linear band modulation is found in the small q region [72].

D. Breathing kagome noncollinear 120◦ antiferromagnets

1. Model

Finally, we discuss the nonreciprocal magnons in the non-

collinear antiferromagnetic state. We consider the 120◦ anti-

ferromagnetic ordering in the breathing kagome lattice struc-

ture in Fig. 8(a). Here, we consider the situation where the

horizontal mirror symmetry in the kagome plane is broken

owing to the presence of polar field along the z direction,

which means that the point group symmetry is lowered to C3v .

Then, the spin Hamiltonian is given by

J△
ηη′ =





J⊥ + Ja cosχηη′ D − Ja sinχηη′ −D′ cosχηη′ − J ′a sinχηη′

−D − Ja sinχηη′ J⊥ − Ja cosχηη′ −D′ sinχηη′ + J ′a cosχηη′

D′ cosχηη′ − J ′a sinχηη′ D′ sinχηη′ + J ′a cosχηη′ Jz



 , (87)

J▽
ηη′ = γJ△

ηη′ , (88)

where D′ and J ′a are additional exchange interactions that

arise from the horizontal mirror symmetry breaking under the

polar field.

The effective interactions in the rotated spin frame are given

by

J̃⊥
ηη′ =− 1

4

(

J⊥ − 2Ja + 2Jz −
√
3D
)

, (89)

J̃v
ηη′ =

1

4

(

J⊥ − 2Ja + 2Jz −
√
3D
)

, (90)

J̃xy
ηη′ =0, (91)

J̃z
ηη′ =− 1

2

(

J⊥ + 2Ja −
√
3D
)

, (92)

D̃z
ηη′ =− 1

2

(√
3J ′a +D′

)

, (93)

where η, η′ = A, B, and C, and we neglect J̃zx
ηη′ and D̃x

ηη′ ow-

ing to the linear spin wave approximation. The expressions

are the same for the different bonds (A-B, B-C, and C-A) ow-

ing to the symmetry.

The 3 × 3 matrices Xq and Yq in the Bogoliubov Hamil-

tonian in momentum space are the same as those in Eqs. (42)

and (43), respectively. Meanwhile, Fηη′q , Gηη′q, and Z have

different forms as

Fηη′q =

[

−J⊥ − 2Ja + 2Jz −
√
3D

4
+

i(
√
3J ′a +D′)

2

]

×
(
eiq·ρηη′ + γe−iq·ρ

ηη′

)
, (94)

Gηη′q =
J⊥ − 2Ja + 2Jz −

√
3D

4

(
eiq·ρηη′ + γe−iq·ρ

ηη′

)
,

(95)
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FIG. 8. (a) Breathing kagome lattice structure in the absence of the

horizontal mirror plane under the polar point group C3v . The arrows

represent the magnetic moments to form the 120◦ antiferromagnetic

ordering. (b) The first Brillouin zone in (a). The color plot repre-

sents angle dependence of nonreciprocal magnons characterized by

qx(q
2
x − 3q2y), which is the same as that in Fig. 5(b). (c, d) The

magnon band structures under the 120◦ antiferromagnetic ordering

for D′ = 0.2 and J ′a = 0 (c) and D′ = 0 and J ′a = 0.2 (d).

The other parameters are set as J⊥ = 1, Jz = 0.8, D = −0.2,

Ja = 0.5, and γ = 0.5.

Z =(1 + γ)
(

J⊥ + 2Ja −
√
3D
)

. (96)

2. Result

The 120◦ spin configuration is obtained as a metastable

state by taking the exchange model parameters as J⊥ = 1,

Jz = 0.8, D = −0.2, Ja = 0.5, and γ = 0.5. Figures 8(c)

and 8(d) show the magnon dispersions under the 120◦ anti-

ferromagnetic ordering along high symmetry lines in the Bril-

louin zone in Fig. 8(b). The data in Fig. 8(c) is obtained at

D′ = 0.2 and J ′a = 0 and that in Fig. 8(d) is at D′ = 0
and J ′a = 0.2. Although the interaction tensor under the

120◦ antiferromagnetic ordering is different from that in the

ferromagnetic ordering in Eq. (40), the functional form of the

antisymmetric dispersions is the same with each other, which

is characterized by qx(q
2
x−3q2y) satisfying threefold rotational

symmetry in both cases in Figs. 8(c) and 8(d).

The lowest-order contribution of F
(s)
q is of third order. In

the case at D′ 6= 0 and J ′a = 0, F
(3)
q is given by

F (3)
q =− 3γ(1− γ)D′f3φ

q

×
[

6Jz
(

J⊥ −
√
3D − 2Ja

)

+D′2
]

, (97)

and in the case at D′ = 0 and J ′a 6= 0, F
(3)
q is given by

F (3)
q =− 9γ(1− γ)J ′af3φ

q

×
{√

3
[
2Jz(J⊥ − 2Ja) + (J ′a)2

]
− 6DJz

}

.

(98)
where we omit the expressions for the effective exchange in-

teractions. The above results indicates that we obtain the dif-

ferent conditions in terms of the essential model parameters

from the ferromagnetic state in Eqs. (49) and (50): The for-

mer are D′ and J ′a, while the latter are D and Ja. In this way,

our scheme can be applied to noncollinear antiferromagnetic

orderings straightforwardly.

V. SUMMARY

To summarize, we have investigated the microscopic con-

ditions for emergent nonreciprocal magnons on the basis of

the model calculations. We presented the useful expression in

Eqs. (14) and (15) to provide essential model parameters for

nonreciprocal magnon excitations in an analytical way. The

method does not require the diagonalization of the bosonic

Hamiltonian. After presenting the generic results in the one-

to four-sublattice cases, we tested the method to four magnetic

systems: the ferromagnetic state on the breathing kagome lat-

tice system, the staggered collinear antiferromagnetic state

on the honeycomb lattice system, the up-up-down ferrimag-

netic state on the breathing kagome lattice system, and the

noncollinear 120◦ antiferromagnetic state on the breathing

kagome lattice system. We found that our scheme extracts

the key model parameters, which are well consistent with the

result by the direct diagonalization.

The present expression can be applied to any magnetic

structures including noncollinear one in the magnetic systems

with any symmetric and antisymmetric bilinear exchange in-

teractions. In particular, this method has an advantage of ob-

taining the analytical expressions for the essential model pa-

rameters in multi-sublattice systems with long-period mag-

netic structures that are difficult to obtain the analytical ex-

pressions of the magnon band dispersions. Moreover, the sys-

tematic analysis provides an insight to construct an effective

spin model so as to include essential model parameters in real

materials, where targeting materials are easily found by using

magnetic structure database, MAGNDATA [89], and cluster

multipole analyses [85, 90], from the symmetry viewpoint. In

this way, our result will not only give a deep understanding

of nonreciprocal magnon excitations in noncentrosymmetric

magnets, such as α-Cu2V2O7 [91–94], but also be a good in-

dicator to examine the microscopic origin under complicated

magnetic orderings.

Appendix A: Expressions of F
(s)
q in three- and four-sublattice

cases

In this Appendix, we show the lengthy expressions of Hµq

(µ = 1-7) in the three-sublattice case in Sec. III C and those

of H ′
µq (µ = 1-7) in the four-sublattice case in Sec. III D.
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For the three-sublattice case, Hµq (µ = 1-7) are given by

H1q =12{zA(hD(s)
ABqh

⊥(as)
ABq + h

D(s)
ACqh

⊥(as)
ACq − h

⊥(s)
ABqh

D(as)
ABq − h

⊥(s)
ACqh

D(as)
ACq )

+ zB(h
D(s)
ABqh

⊥(as)
ABq + h

D(s)
BCqh

⊥(as)
BCq − h

⊥(s)
ABqh

D(as)
ABq − h

⊥(s)
BCqh

D(as)
BCq )

+ zC(h
D(s)
ACqh

⊥(as)
ACq + h

D(s)
BCqh

⊥(as)
BCq − h

⊥(s)
ACqh

D(as)
ACq − h

⊥(s)
BCqh

D(as)
BCq )} (A1)

H2q =12(−h
D(s)
ABqh

⊥(s)
ACqh

⊥(as)
BCq + h

D(s)
ABqh

⊥(s)
BCqh

⊥(as)
ACq + h

D(s)
ACqh

⊥(s)
ABqh

⊥(as)
BCq + h

D(s)
ACqh

⊥(s)
BCqh

⊥(as)
ABq + h

D(s)
BCqh

⊥(s)
ABqh

⊥(as)
ACq

− h
D(s)
BCqh

⊥(s)
ACqh

⊥(as)
ABq − h

⊥(s)
ABqh

⊥(s)
ACqh

D(as)
BCq − h

⊥(s)
ABqh

⊥(s)
BCqh

D(as)
ACq − h

⊥(s)
ACqh

⊥(s)
BCqh

D(as)
ABq − h

D(as)
ABq h

⊥(as)
ACq h

⊥(as)
BCq

+ h
D(as)
ACq h

⊥(as)
ABq h

⊥(as)
BCq − h

D(as)
BCq h

⊥(as)
ABq h

⊥(as)
ACq ) (A2)

H5q =12(−h
D(s)
ABqh

D(s)
ACqh

D(as)
BCq + h

D(s)
ABqh

D(s)
BCqh

D(as)
ACq − h

D(s)
ACqh

D(s)
BCqh

D(as)
ABq − h

D(as)
ABq h

D(as)
ACq h

D(as)
BCq ) (A3)

H6q =12{zA(hv(s)
ABqh

xy(as)
ABq + h

v(s)
ACqh

xy(as)
ACq − h

xy(s)
ABq h

v(as)
ABq − h

xy(s)
ACq h

v(as)
ACq )

+ zB(−h
v(s)
ABqh

xy(as)
ABq + h

v(s)
BCqh

xy(as)
BCq + h

xy(s)
ABq h

v(as)
ABq − h

xy(s)
BCq h

v(as)
BCq )

+ zC(−h
v(s)
ACqh

xy(as)
ACq − h

v(s)
BCqh

xy(as)
BCq + h

xy(s)
ACq h

v(as)
ACq + h

xy(s)
BCq h

v(as)
BCq )} (A4)

H7q =12(h
⊥(s)
ABqh

v(s)
BCqh

xy(as)
ACq + h

⊥(s)
ACqh

v(s)
BCqh

xy(as)
ABq − h

v(s)
BCqh

xy(s)
ABq h

⊥(as)
ACq − h

v(s)
BCqh

xy(s)
ACq h

⊥(as)
ABq + h

⊥(s)
ABqh

v(s)
ACqh

xy(as)
BCq

− h
⊥(s)
BCqh

v(s)
ACqh

xy(as)
ABq − h

v(s)
ACqh

xy(s)
ABq h

⊥(as)
BCq + h

v(s)
ACqh

xy(s)
BCq h

⊥(as)
ABq − h

⊥(s)
ABqh

xy(s)
ACq h

v(as)
BCq − h

⊥(s)
ABqh

xy(s)
BCq h

v(as)
ACq

− h
⊥(s)
ACqh

v(s)
ABqh

xy(as)
BCq + h

⊥(s)
ACqh

xy(s)
ABq h

v(as)
BCq − h

⊥(s)
ACqh

xy(s)
BCq h

v(as)
ABq − h

⊥(s)
BCqh

v(s)
ABqh

xy(as)
ACq + h

⊥(s)
BCqh

xy(s)
ABq h

v(as)
ACq

+ h
⊥(s)
BCqh

xy(s)
ACq h

v(as)
ABq + h

v(s)
ABqh

xy(s)
ACq h

⊥(as)
BCq + h

v(s)
ABqh

xy(s)
BCq h

⊥(as)
ACq + h

⊥(as)
ABq h

v(as)
ACq h

xy(as)
BCq − h

⊥(as)
ABq h

v(as)
BCq h

xy(as)
ACq

− h
⊥(as)
ACq h

v(as)
ABq h

xy(as)
BCq + h

⊥(as)
ACq h

v(as)
BCq h

xy(as)
ABq + h

⊥(as)
BCq h

v(as)
ABq h

xy(as)
ACq − h

⊥(as)
BCq h

v(as)
ACq h

xy(as)
ABq ), (A5)

where H3q and H4q are obtained by replacing the superscript ⊥ in H2q with v and xy, respectively, and multiplying −1.

For the four-sublattice case, H ′
µq (µ = 1-7) are given by

H ′
1q =12{zA(hD(s)

ABqh
⊥(as)
ABq + h

D(s)
ACqh

⊥(as)
ACq + h

D(s)
ADqh

⊥(as)
ADq − h

⊥(s)
ABqh

D(as)
ABq − h

⊥(s)
ACqh

D(as)
ACq − h

⊥(s)
ADqh

D(as)
ADq )

+ zB(h
D(s)
ABqh

⊥(as)
ABq + h

D(s)
BCqh

⊥(as)
BCq + h

D(s)
BDqh

⊥(as)
BDq − h

⊥(s)
ABqh

D(as)
ABq − h

⊥(s)
BCqh

D(as)
BCq − h

⊥(s)
BDqh

D(as)
BDq )

+ zC(h
D(s)
ACqh

⊥(as)
ACq + h

D(s)
BCqh

⊥(as)
BCq + h

D(s)
CDqh

⊥(as)
CDq − h

⊥(s)
ACqh

D(as)
ACq − h

⊥(s)
BCqh

D(as)
BCq − h

⊥(s)
CDqh

D(as)
CDq )

+ zD(h
D(s)
ADqh

⊥(as)
ADq + h

D(s)
BDqh

⊥(as)
BDq + h

D(s)
CDqh

⊥(as)
CDq − h

⊥(s)
ADqh

D(as)
ADq − h

⊥(s)
BDqh

D(as)
BDq − h

⊥(s)
CDqh

D(as)
CDq )} (A6)

H ′
2q =12(−h

D(s)
ABqh

⊥(s)
ACqh

⊥(as)
BCq − h

D(s)
ABqh

⊥(s)
ADqh

⊥(as)
BDq + h

D(s)
ABqh

⊥(s)
BCqh

⊥(as)
ACq + h

D(s)
ABqh

⊥(s)
BDqh

⊥(as)
ADq + h

D(s)
ACqh

⊥(s)
ABqh

⊥(as)
BCq

− h
D(s)
ACqh

⊥(s)
ADqh

⊥(as)
CDq + h

D(s)
ACqh

⊥(s)
BCqh

⊥(as)
ABq + h

D(s)
ACqh

⊥(s)
CDqh

⊥(as)
ADq + h

D(s)
ADqh

⊥(s)
ABqh

⊥(as)
BDq + h

D(s)
ADqh

⊥(s)
ACqh

⊥(as)
CDq

+ h
D(s)
ADqh

⊥(s)
BDqh

⊥(as)
ABq + h

D(s)
ADqh

⊥(s)
CDqh

⊥(as)
ACq + h

D(s)
BCqh

⊥(s)
ABqh

⊥(as)
ACq − h

D(s)
BCqh

⊥(s)
ACqh

⊥(as)
ABq − h

D(s)
BCqh

⊥(s)
BDqh

⊥(as)
CDq

+ h
D(s)
BCqh

⊥(s)
CDqh

⊥(as)
BDq + h

D(s)
BDqh

⊥(s)
ABqh

⊥(as)
ADq − h

D(s)
BDqh

⊥(s)
ADqh

⊥(as)
ABq + h

D(s)
BDqh

⊥(s)
BCqh

⊥(as)
CDq + h

D(s)
BDqh

⊥(s)
CDqh

⊥(as)
BCq

+ h
D(s)
CDqh

⊥(s)
ACqh

⊥(as)
ADq − h

D(s)
CDqh

⊥(s)
ADqh

⊥(as)
ACq + h

D(s)
CDqh

⊥(s)
BCqh

⊥(as)
BDq − h

D(s)
CDqh

⊥(s)
BDqh

⊥(as)
BCq − h

⊥(s)
ABqh

⊥(s)
ACqh

D(as)
BCq

− h
⊥(s)
ABqh

⊥(s)
ADqh

D(as)
BDq − h

⊥(s)
ABqh

⊥(s)
BCqh

D(as)
ACq − h

⊥(s)
ABqh

⊥(s)
BDqh

D(as)
ADq − h

⊥(s)
ACqh

⊥(s)
ADqh

D(as)
CDq − h

⊥(s)
ACqh

⊥(s)
BCqh

D(as)
ABq

− h
⊥(s)
ACqh

⊥(s)
CDqh

D(as)
ADq − h

⊥(s)
ADqh

⊥(s)
BDqh

D(as)
ABq − h

⊥(s)
ADqh

⊥(s)
CDqh

D(as)
ACq − h

⊥(s)
BCqh

⊥(s)
BDqh

D(as)
CDq − h

⊥(s)
BCqh

⊥(s)
CDqh

D(as)
BDq

− h
⊥(s)
BDqh

⊥(s)
CDqh

D(as)
BCq − h

D(as)
ABq h

⊥(as)
ACq h

⊥(as)
BCq − h

D(as)
ABq h

⊥(as)
ADq h

⊥(as)
BDq + h

D(as)
ACq h

⊥(as)
ABq h

⊥(as)
BCq − h

D(as)
ACq h

⊥(as)
ADq h

⊥(as)
CDq

+ h
D(as)
ADq h

⊥(as)
ABq h

⊥(as)
BDq + h

D(as)
ADq h

⊥(as)
ACq h

⊥(as)
CDq − h

D(as)
BCq h

⊥(as)
ABq h

⊥(as)
ACq − h

D(as)
BCq h

⊥(as)
BDq h

⊥(as)
CDq − h

D(as)
BDq h

⊥(as)
ABq h

⊥(as)
ADq

+ h
D(as)
BDq h

⊥(as)
BCq h

⊥(as)
CDq − h

D(as)
CDq h

⊥(as)
ACq h

⊥(as)
ADq − h

D(as)
CDq h

⊥(as)
BCq h

⊥(as)
BDq ) (A7)

H ′
5q =12(−h

D(s)
ABqh

D(s)
ACqh

D(as)
BCq − h

D(s)
ABqh

D(s)
ADqh

D(as)
BDq + h

D(s)
ABqh

D(s)
BCqh

D(as)
ACq + h

D(s)
ABqh

D(s)
BDqh

D(as)
ADq − h

D(s)
ACqh

D(s)
ADqh

D(as)
CDq

− h
D(s)
ACqh

D(s)
BCqh

D(as)
ABq + h

D(s)
ACqh

D(s)
CDqh

D(as)
ADq − h

D(s)
ADqh

D(s)
BDqh

D(as)
ABq − h

D(s)
ADqh

D(s)
CDqh

D(as)
ACq − h

D(s)
BCqh

D(s)
BDqh

D(as)
CDq

+ h
D(s)
BCqh

D(s)
CDqh

D(as)
BDq − h

D(s)
BDqh

D(s)
CDqh

D(as)
BCq − h

D(as)
ABq h

D(as)
ACq h

D(as)
BCq − h

D(as)
ABq h

D(as)
ADq h

D(as)
BDq − h

D(as)
ACq h

D(as)
ADq h

D(as)
CDq

− h
D(as)
BCq h

D(as)
BDq h

D(as)
CDq ) (A8)
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H ′
6q =12{zA(hv(s)

ABqh
xy(as)
ABq + h

v(s)
ACqh

xy(as)
ACq + h

v(s)
ADqh

xy(as)
ADq − h

xy(s)
ABq h

v(as)
ABq − h

xy(s)
ACq h

v(as)
ACq − h

xy(s)
ADq h

v(as)
ADq )

+ zB(−h
v(s)
ABqh

xy(as)
ABq + h

v(s)
BCqh

xy(as)
BCq + h

v(s)
BDqh

xy(as)
BDq + h

xy(s)
ABq h

v(as)
ABq − h

xy(s)
BCq h

v(as)
BCq − h

xy(s)
BDq h

v(as)
BDq )

+ zC(−h
v(s)
ACqh

xy(as)
ACq − h

v(s)
BCqh

xy(as)
BCq + h

v(s)
CDqh

xy(as)
CDq + h

xy(s)
ACq h

v(as)
ACq + h

xy(s)
BCq h

v(as)
BCq − h

xy(s)
CDq h

v(as)
CDq )

+ zD(−h
v(s)
ADqh

xy(as)
ADq − h

v(s)
BDqh

xy(as)
BDq − h

v(s)
CDqh

xy(as)
CDq + h

xy(s)
ADq h

v(as)
ADq + h

xy(s)
BDq h

v(as)
BDq + h

xy(s)
CDq h

v(as)
CDq )} (A9)

H ′
7q =12(h

⊥(s)
ABqh

v(s)
ACqh

xy(as)
BCq + h

⊥(s)
ABqh

v(s)
ADqh

xy(as)
BDq + h

⊥(s)
ABqh

v(s)
BCqh

xy(as)
ACq + h

⊥(s)
ABqh

v(s)
BDqh

xy(as)
ADq − h

⊥(s)
ABqh

xy(s)
ACq h

v(as)
BCq

− h
⊥(s)
ABqh

xy(s)
ADq h

v(as)
BDq − h

⊥(s)
ABqh

xy(s)
BCq h

v(as)
ACq − h

⊥(s)
ABqh

xy(s)
BDq h

v(as)
ADq − h

⊥(s)
ACqh

v(s)
ABqh

xy(as)
BCq + h

⊥(s)
ACqh

v(s)
ADqh

xy(as)
CDq

+ h
⊥(s)
ACqh

v(s)
BCqh

xy(as)
ABq + h

⊥(s)
ACqh

v(s)
CDqh

xy(as)
ADq + h

⊥(s)
ACqh

xy(s)
ABq h

v(as)
BCq − h

⊥(s)
ACqh

xy(s)
ADq h

v(as)
CDq − h

⊥(s)
ACqh

xy(s)
BCq h

v(as)
ABq

− h
⊥(s)
ACqh

xy(s)
CDq h

v(as)
ADq − h

⊥(s)
ADqh

v(s)
ABqh

xy(as)
BDq − h

⊥(s)
ADqh

v(s)
ACqh

xy(as)
CDq + h

⊥(s)
ADqh

v(s)
BDqh

xy(as)
ABq + h

⊥(s)
ADqh

v(s)
CDqh

xy(as)
ACq

+ h
⊥(s)
ADqh

xy(s)
ABq h

v(as)
BDq + h

⊥(s)
ADqh

xy(s)
ACq h

v(as)
CDq − h

⊥(s)
ADqh

xy(s)
BDq h

v(as)
ABq − h

⊥(s)
ADqh

xy(s)
CDq h

v(as)
ACq − h

⊥(s)
BCqh

v(s)
ABqh

xy(as)
ACq

− h
⊥(s)
BCqh

v(s)
ACqh

xy(as)
ABq + h

⊥(s)
BCqh

v(s)
BDqh

xy(as)
CDq + h

⊥(s)
BCqh

v(s)
CDqh

xy(as)
BDq + h

⊥(s)
BCqh

xy(s)
ABq h

v(as)
ACq + h

⊥(s)
BCqh

xy(s)
ACq h

v(as)
ABq

− h
⊥(s)
BCqh

xy(s)
BDq h

v(as)
CDq − h

⊥(s)
BCqh

xy(s)
CDq h

v(as)
BDq − h

⊥(s)
BDqh

v(s)
ABqh

xy(as)
ADq − h

⊥(s)
BDqh

v(s)
ADqh

xy(as)
ABq − h

⊥(s)
BDqh

v(s)
BCqh

xy(as)
CDq

+ h
⊥(s)
BDqh

v(s)
CDqh

xy(as)
BCq + h

⊥(s)
BDqh

xy(s)
ABq h

v(as)
ADq + h

⊥(s)
BDqh

xy(s)
ADq h

v(as)
ABq + h

⊥(s)
BDqh

xy(s)
BCq h

v(as)
CDq − h

⊥(s)
BDqh

xy(s)
CDq h

v(as)
BCq

− h
⊥(s)
CDqh

v(s)
ACqh

xy(as)
ADq − h

⊥(s)
CDqh

v(s)
ADqh

xy(as)
ACq − h

⊥(s)
CDqh

v(s)
BCqh

xy(as)
BDq − h

⊥(s)
CDqh

v(s)
BDqh

xy(as)
BCq + h

⊥(s)
CDqh

xy(s)
ACq h

v(as)
ADq

+ h
⊥(s)
CDqh

xy(s)
ADq h

v(as)
ACq + h

⊥(s)
CDqh

xy(s)
BCq h

v(as)
BDq + h

⊥(s)
CDqh

xy(s)
BDq h

v(as)
BCq + h

v(s)
ABqh

xy(s)
ACq h

⊥(as)
BCq + h

v(s)
ABqh

xy(s)
ADq h

⊥(as)
BDq

+ h
v(s)
ABqh

xy(s)
BCq h

⊥(as)
ACq + h

v(s)
ABqh

xy(s)
BDq h

⊥(as)
ADq − h

v(s)
ACqh

xy(s)
ABq h

⊥(as)
BCq + h

v(s)
ACqh

xy(s)
ADq h

⊥(as)
CDq + h

v(s)
ACqh

xy(s)
BCq h

⊥(as)
ABq

+ h
v(s)
ACqh

xy(s)
CDq h

⊥(as)
ADq − h

v(s)
ADqh

xy(s)
ABq h

⊥(as)
BDq − h

v(s)
ADqh

xy(s)
ACq h

⊥(as)
CDq + h

v(s)
ADqh

xy(s)
BDq h

⊥(as)
ABq + h

v(s)
ADqh

xy(s)
CDq h

⊥(as)
ACq

− h
v(s)
BCqh

xy(s)
ABq h

⊥(as)
ACq − h

v(s)
BCqh

xy(s)
ACq h

⊥(as)
ABq + h

v(s)
BCqh

xy(s)
BDq h

⊥(as)
CDq + h

v(s)
BCqh

xy(s)
CDq h

⊥(as)
BDq − h

v(s)
BDqh

xy(s)
ABq h

⊥(as)
ADq

− h
v(s)
BDqh

xy(s)
ADq h

⊥(as)
ABq − h

v(s)
BDqh

xy(s)
BCq h

⊥(as)
CDq + h

v(s)
BDqh

xy(s)
CDq h

⊥(as)
BCq − h

v(s)
CDqh

xy(s)
ACq h

⊥(as)
ADq − h

v(s)
CDqh

xy(s)
ADq h

⊥(as)
ACq

− h
v(s)
CDqh

xy(s)
BCq h

⊥(as)
BDq − h

v(s)
CDqh

xy(s)
BDq h

⊥(as)
BCq + h

⊥(as)
ABq h

v(as)
ACq h

xy(as)
BCq + h

⊥(as)
ABq h

v(as)
ADq h

xy(as)
BDq − h

⊥(as)
ABq h

v(as)
BCq h

xy(as)
ACq

− h
⊥(as)
ABq h

v(as)
BDq h

xy(as)
ADq − h

⊥(as)
ACq h

v(as)
ABq h

xy(as)
BCq + h

⊥(as)
ACq h

v(as)
ADq h

xy(as)
CDq + h

⊥(as)
ACq h

v(as)
BCq h

xy(as)
ABq − h

⊥(as)
ACq h

v(as)
CDq h

xy(as)
ADq

− h
⊥(as)
ADq h

v(as)
ABq h

xy(as)
BDq − h

⊥(as)
ADq h

v(as)
ACq h

xy(as)
CDq + h

⊥(as)
ADq h

v(as)
BDq h

xy(as)
ABq + h

⊥(as)
ADq h

v(as)
CDq h

xy(as)
ACq + h

⊥(as)
BCq h

v(as)
ABq h

xy(as)
ACq

− h
⊥(as)
BCq h

v(as)
ACq h

xy(as)
ABq + h

⊥(as)
BCq h

v(as)
BDq h

xy(as)
CDq − h

⊥(as)
BCq h

v(as)
CDq h

xy(as)
BDq + h

⊥(as)
BDq h

v(as)
ABq h

xy(as)
ADq − h

⊥(as)
BDq h

v(as)
ADq h

xy(as)
ABq

− h
⊥(as)
BDq h

v(as)
BCq h

xy(as)
CDq + h

⊥(as)
BDq h

v(as)
CDq h

xy(as)
BCq + h

⊥(as)
CDq h

v(as)
ACq h

xy(as)
ADq − h

⊥(as)
CDq h

v(as)
ADq h

xy(as)
ACq + h

⊥(as)
CDq h

v(as)
BCq h

xy(as)
BDq

− h
⊥(as)
CDq h

v(as)
BDq h

xy(as)
BCq ) (A10)

where H ′
3q and H ′

4q are obtained by replacing the superscript ⊥ in H ′
2q with v and xy, respectively, and multiplying −1.
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Z. Tešanović, Phys. Rev. Lett. 83, 3737 (1999).



14

[7] K. Ohgushi, S. Murakami, and N. Nagaosa, Phys. Rev. B 62,

R6065 (2000).

[8] G. Tatara and H. Kawamura, J. Phys. Soc. Jpn. 71, 2613 (2002).

[9] N. Nagaosa, J. Sinova, S. Onoda, A. H. MacDonald, and N. P.

Ong, Rev. Mod. Phys. 82, 1539 (2010).

[10] N. Nagaosa and Y. Tokura, Nat. Nanotech. 8, 899 (2013).

[11] M. Lee, W. Kang, Y. Onose, Y. Tokura, and N. P. Ong, Phys.

Rev. Lett. 102, 186601 (2009).

[12] S. Nakatsuji, N. Kiyohara, and T. Higo, Nature 527, 212 (2015).

[13] M. Naka, S. Hayami, H. Kusunose, Y. Yanagi, Y. Motome, and

H. Seo, Phys. Rev. B 102, 075112 (2020).

[14] S. Hayami and H. Kusunose, Phys. Rev. B 103, L180407

(2021).

[15] D. C. Tsui, H. L. Stormer, and A. C. Gossard, Phys. Rev. Lett.

48, 1559 (1982).

[16] E. H. Lieb, Phys. Rev. Lett. 62, 1201 (1989).

[17] N. B. Kopnin, T. T. Heikkilä, and G. E. Volovik, Phys. Rev. B
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