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We investigate the nature of the ground-state of the spin- 1
2

Heisenberg antiferromagnet on the
shuriken lattice by complementary state-of-the-art numerical techniques, such as variational Monte
Carlo (VMC) with versatile Gutzwiller-projected Jastrow wave functions, unconstrained multi-
variable variational Monte Carlo (mVMC), and pseudo-fermion/Majorana functional renormaliza-
tion group (PF/PM-FRG) methods. We establish the presence of a quantum paramagnetic ground
state and investigate its nature, by classifying symmetric and chiral quantum spin liquids, and
inspecting their instabilities towards competing valence-bond-crystal (VBC) orders. Our VMC
analysis reveals that a VBC with a pinwheel structure emerges as the lowest-energy variational
ground state, and it is obtained as an instability of the U(1) Dirac spin liquid. Analogous conclu-
sions are drawn from mVMC calculations employing accurate BCS pairing states supplemented by
symmetry projectors, which confirm the presence of pinwheel VBC order by a thorough analysis of
dimer-dimer correlation functions. Our work highlights the nontrivial role of quantum fluctuations
via the Gutzwiller projector in resolving the subtle interplay between competing orders.

Introduction. The kagome lattice, which has played
such a decisive role in the higher echelons of frustrated
magnetism, owes much of its intriguing physics to the
corner-sharing arrangement of triangular motifs. This
geometry leads to only a marginal alleviation of frus-
tration in a system of antiferromagnetically interact-
ing spins, and in essence accounts for the appearance
of novel quantum paramagnetic phases such as quan-
tum spin liquids. In this paper, we consider the much
less explored non-Archimedean [1] variant of the two-
dimensional corner sharing arrangement of triangles,
namely the shuriken lattice [2] (also referred to as the
square-kagome or squagome lattice in literature) [see
Fig. 1]. Following the recent experimental reporting of
a gapless spin liquid in a first material realization of the
shuriken geometry by spin S = 1/2 Cu2+ magnetic ions
in KCu6AlBiO4(SO4)5Cl [3], there is renewed interest in
exploring the nature of frustration induced phases in the
quantum Heisenberg antiferromagnet.

In this work, we investigate the ground state of the
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Heisenberg antiferromagnetic model

Ĥ = J
∑
〈i,j〉

Ŝi · Ŝj (1)

for S = 1/2 operators Ŝi = (Ŝxi , Ŝ
y
i , Ŝ

z
i ) decorated on

the shuriken lattice, where the two symmetry inequiv-
alent exchange couplings, i.e., on the square (J�) and
triangular (J4) bonds (see Fig. 1(a)) are taken as equal
and denoted by J (=J4 = J�) [see Fig. 1(a) and
Ref. [7]]. We employ (i) Variational Monte Carlo (VMC)
with Gutzwiller-projected fermionic wave functions on
large system sizes (up to 2400 sites), (ii) many-variable
Variational Monte Carlo (mVMC) involving an uncon-
strained optimization of a BCS pairing function on sys-
tem sizes up to 384 sites, and (iii) pseudo-fermion func-
tional renormalization group (PFFRG) analysis to firmly
establish the absence of long-range magnetic order in
the ground state of (1), which remained to be conclu-
sively established within exact diagonalization [4, 5, 8–
10], mean-field [11], and perturbative [12, 13] schemes.
To identify the precise nature of the quantum paramag-
netic ground state, we construct symmetric and chiral
U(1) fermionic mean-field Ansätze of quantum spin liq-
uids, compute their projected energies, and investigate

mailto:yiqbal@physics.iitm.ac.in


2

0.000 0.025 0.050 0.075
N
−1/2

sites

0.00

0.02

0.04

0.06

h
A

F

√
3×
√

3

(q = 0)(4π,0)

0.0 0.1 0.2
N
−1/2

sites

0.00

0.02

m
2

0.0 0.5 1.0

Λ

0.2

0.4

0.6

0.8

1.0

1.2

1.4

χ
P

F
R

G
(q
,Λ

)

(q = 0)(2π,2π)

(q = 0)(4π,0)√
3×
√

3

(a) q = 0 order (b)
√

3×
√

3 order (e) PFFRG flow(c) hAF parameter (VMC)

(d) Magnetization (mVMC)

FIG. 1. (a)-(b) Top row: Illustration of two types of magnetic orders within the ground state manifold of the classical Heisenberg
antiferromagnet on the shuriken lattice [4, 5]. The two symmetry inequivalent nearest-neighbor bonds are labelled as J4 and
J�. The q = 0 (

√
3 ×
√

3) order has an angle of 120° between neighboring spins, and a magnetic unit cell which is identical
(three-times enlarged) compared to the six-site geometrical unit cell is marked by a dashed line in (a). The green ellipses depict
further degrees of freedom present in the classically degenerate ground state manifold. Bottom row: The first (solid line) and
extended (dashed line) Brillouin zones of the shuriken lattice showing the location of the Bragg peaks with the fraction of the
total spectral weight of the classical (a) q = 0 order, at (4π, 0) and (2π, 2π) [and symmetry related points] with equal spectral
weight, and (b)

√
3 ×
√

3 order, at (2π ± q, 2π ∓ q) with q = 4π/3, and leading subdominant peaks at (q,−q) with 36%, i. e.,
λ/Λ = 0.36, of the spectral weight of the dominant ones [6]. The

√
3×
√

3 order breaks the four-fold rotational symmetry. From
(c) VMC, the size scaling of the hAF parameter (fictitious Zeeman field [7]) for q = 0 and

√
3×
√

3 orders on finite clusters of
Nsites = 6L2 sites, with L = 6, 9, 12, 15 and 18 (quadratic fit), (d) mVMC, the size-scaling of the sublattice magnetization for
the q = 0 order finite clusters of Nsites = 6L2 sites, with L = 2, 4, 6 and 8 (quadratic fit), and (e) PFFRG, the RG flow of the
susceptibility tracked at the dominant ordering vectors of the two classical orders.

their potential instability towards competing VBC or-
ders which have been proposed within a quantum dimer
model approach [5, 13] and a large-N analysis [2]. Our
study finds an instability of the U(1) Dirac spin liquid to-
wards a pinwheel (PW) VBC order with a 2×2 expanded,
i. e., 24-site unit cell [5, 13] which emerges as the low-
est energy variational state, in contrast to the findings in
Ref. [13] which claimed for the stabilization of a Loop-
6 (L6) VBC, see also Fig. 2. An unconstrained mVMC
optimization of the BCS pairing function starting from
a random choice of pairing amplitudes is also found to
converge to a long-range dimer ordered ground state with
a PW-VBC type structure, as revealed from the dimer-
dimer correlation functions. These findings are further
corroborated by a PFFRG analysis of the dimer response
functions. The estimates of the ground state energy on
finite-clusters obtained within VMC by the application of
a couple of Lanczos steps to the PW-VBC state supple-
mented by a zero-variance extrapolation, as well as those
obtained from mVMC are found to be in excellent agree-
ment. The respective estimates in the thermodynamic
limit obtained by finite-size scaling are in good agreement
with those obtained from our infinite projected entan-
gled pair state (iPEPS) and pseudo-Majorana functional

renormalization group (PMFRG) calculations, thus lend-
ing strong evidence in favor of a PW-VBC ground state of
the S = 1/2 Heisenberg antiferromagnet on the shuriken
lattice.

Results. We start by employing fermionic VMC [14] to
investigate the possible presence of magnetically ordered
ground states with two different periodicity, (i) a trans-
lationally invariant, i. e., q = 0 state [see Fig. 1 (a)] and

(ii) the so-called
√

3×
√

3 state [see Fig. 1 (b)]. Details on
the form of the variational wave functions are given in the
Supplemental Material [7] (see, also, references [15–31]).
The Zeeman field variational parameter, hAF, extrapo-
lates to zero in the thermodynamic limit [see Fig. 1 (c)],
indicating the absence of long-range magnetic order in
the ground state. Additional evidence is provided by
mVMC calculations (see Supplemental Material [7] and
also references [32–39]), in which the sublattice magneti-
zation m2 is computed by evaluating the spin-spin cor-
relation 〈Ŝi · Ŝj〉 at maximum distance (for two spins i, j
within the same sublattice) [40], where 〈· · · 〉 denotes the
expectation value over the variational state |φpair〉 [7].
The sublattice magnetization is seen to display a similar
size scaling as the hAF parameter of VMC [see Fig. 1 (d)],
thus confirming the absence of magnetic order. These re-



3

TABLE I. For Hamiltonian (1), we present the mean-field
(MF) and Gutzwiller projected (proj) ground-state energy per
site (in units of J) on the 4×4×6 cluster for the different fully
symmetric (FS) and chiral U(1) quantum spin liquid Ansätze
[see Fig. S4 of [7]] labelled by the flux triad (Φ4,Φ.,Φ�) [see
text], as well as dimer states. The (π, 0, 0) and (π, 0, π) Ansatz
have extensively degenerate levels at half-filling which pre-
vents a computation of their energy (as the wave function
cannot be uniquely defined), and are thus marked by “−”.

Ansatz Fluxes MF energy Proj. energy MF spectrum

FS

(0, 0, 0) −0.36570 −0.42714(2) Fermi surface
(0, 0, π) −0.38388 −0.41720(3) Dirac points
(π, 0, 0) −0.36657 − Flat band
(π, 0, π) −0.37130 −0.41362(3) Fermi surface

Chiral

(π
2
, π
2
, 0) −0.35041 − Flat band

(π
2
, π
2
, π) −0.39803 −0.40489(3) Gapped

(π
2
,−π

2
, 0) −0.38040 −0.38702(4) Fermi surface

(π
2
,−π

2
,π) −0.36123 −0.40205(3) Fermi surface

Dimer
L6-VBC −0.41013 −0.43009(1) Gapped
PW-VBC −0.40623 −0.43333(1) Gapped

sults are further corroborated by a PFFRG analysis (see
Supplemental Material [7] and references [41–62]) which
does not find in the RG flow any evidence for a diver-
gence or a breakdown of the susceptibility at the ordering
wave vectors of either the q = 0 or

√
3×
√

3 orders [see
Fig. 1 (e)].

Thus, having established the paramagnetic character
of the ground state, we proceed towards deciphering its
nature. To this end, we construct a family of fully sym-
metric and chiral fermionic mean-field Ansätze with a
U(1) gauge structure based on a symmetry classification
of flux patterns. These Ansätze are completely deter-
mined by specifying the fluxes threading three distinct
plaquettes within the unit cell of the lattice: vertically
oriented triangles (Φ4), horizontally oriented triangles
(Φ.), and squares (Φ�). Henceforth, we label the mean-
field Ansätze by specifying the flux triad (Φ4,Φ.,Φ�).
We obtain four distinct fully symmetric U(1) spin liquids
(see Table I and [7]), and several chiral states out of which
we focus only on those with a π/2 flux through triangles.
In Table I, we present the energies of the (self-consistent)
mean-field and Gutzwiller-projected wave functions for
these states. At the mean-field level, the chiral (π2 ,

π
2 , π)

state has the lowest energy, in complete compliance with
the Rokhsar rules [63] [64]. However, after Gutzwiller
projection, the chiral spin liquid is no longer energeti-
cally competitive, and the (0, 0, 0) flux uniform Ansatz
featuring a spinon Fermi surface (SFS) emerges as the
lowest energy spin-liquid state, followed by the (0, 0, π)
state which is a U(1) Dirac spin liquid (DSL). Since, in
two spatial dimensions, the U(1) SFS and DSL are poten-
tially susceptible to gap opening instabilities [65, 66], we
investigate their instability towards previously proposed
VBC candidates [5, 13].

A quantum dimer model treatment of (1), truncated to

0 100 200 300 400 500

optimization steps

−0.430

−0.425

−0.420

−0.415

E
/J

p
er

si
te

0.000 0.025 0.050

N
−1/2

sites

−0.01625

−0.01600

E
P

W
−
E
U

(1
)

PW–VBC

L6–VBC

(a) Pinwheel VBC (b) Loop-6 VBC

(c) Energies optimization

FIG. 2. Two competing dimer orders, (a) PW-VBC and (b)
L6-VBC on the shuriken lattice. Both dimer states are 8-fold
degenerate. (c) The evolution of the energy per site during
a typical VMC optimization for the VBCs, here shown for
Hamiltonian (1) on the L = 20 cluster. The inset shows the
finite-size scaling of the energy gain of the PW-VBC state
with respect to the U(1) DSL.

a minimal nearest-neighbor valence bond basis, identified
a PW-VBC with C4 symmetry and loop-4 resonances [5]
[see Fig. 2 (a)]. This picture was subsequently challenged
in Ref. [13] by a L6-VBC with loop-6 resonances [see
Fig. 2 (b)] when accounting for a basis beyond nearest-
neighbors. In particular, it was argued that the virtu-
ally excited long-range singlets that are induced around
defect triangles lead to an enhancement of loop-6 reso-
nances compared to loop-4, helping stabilize the L6-VBC
in lieu of the PW-VBC [13]. Here, we investigate the en-
ergetic competition between PW-VBC and L6-VBC or-
ders within VMC and mVMC wherein the effect of quan-
tum fluctuations is captured via the Gutzwiller projec-
tor. To construct variational VBC states within VMC,
we consider each of the symmetric spin-liquid Ansätze
listed in Table I, and allow the hopping amplitudes to
take different values according to the dimer pattern of
the strong/weak symmetry inequivalent bonds within the
24-site VBC unit cells [67]. Our study reveals that while
the SFS spin liquid remains robust to both these VBC
perturbations, the U(1) Dirac spin liquid destabilizes to-
wards both these VBCs, with the PW-VBC yielding a
lower energy [see Fig. 2 (c) and Table I]. It is interesting
to note that at the self-consistent mean-field level the
L6-VBC has a lower energy compared to the PW-VBC,
but the relative hierarchy is inverted in favor of the PW-
VBC once the Gutzwiller projector is enforced within
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correlation values. An analogous figure with the base bond on the side of a triangle can be found in [7]. (b) Long-range
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VMC, highlighting the role of quantum fluctuations in
resolving the delicate competition of these two dimerized
states. Furthermore, VMC calculations show that the
energy gain of the PW-VBC relative to the U(1) Dirac
spin liquid remains finite in the thermodynamic limit [see
inset of Fig. 2 (c)] indicating the size-consistency of the
PW-VBC state, thereby lending support to it being a sta-
ble variational ground state in the thermodynamic limit.
The energy of the PW-VBC Ansatz is found to be lower
compared to the SFS spin-liquid state, thus representing
the optimal wave function within our VMC calculations.

To obtain competitive wave functions within mVMC,
we impose a 2 × 2 unit cell periodicity on the param-
eters of the variational state |φpair〉. The properties of
the optimized wave function are assessed by measuring
the dimer-dimer correlation function χDb,b′ = 〈D̂bD̂b′〉 −
〈D̂b〉〈D̂b′〉 for all pairs of bonds in the system, 0 6 b, b′ <

Nbonds, where D̂b = Ŝi · Ŝj , with i, j being sites at ends
of the bond b. In Fig. 3 (a), we show the dimer-dimer
correlations between the base (square) bond and other
bonds lying within few unit cells, which display the char-
acteristic pinwheel structure found also within VMC. To
carry on a quantitative assessment of the VBC charac-
ter of the ground state, we need to define suitable scalar
order parameters to perform an infinite-volume extrap-
olation of the dimer order. Thus, we regard χDb,b′ as a
matrix in the bond indices and we diagonalize it; the
resulting set of eigenvalues/eigenvectors pairs (λ, Aλb ) is

used to define the operators Ôλ =
∑
bA

λ
b D̂b, each of

them corresponding to a certain momentum and irre-
ducible representation of the lattice point group. The
tendency to establish a finite expectation value of one of
these operators, and thus spontaneously break the cor-

responding lattice symmetry, is measured by the suscep-

tibility χÔλ
= 〈Ô†λÔλ〉 − 〈Ô

†
λ〉〈Ôλ〉 = λ extrapolated to

thermodynamic limit [68].
This extrapolation requires knowledge of the order pa-

rameter scaling law. We argue that 1/L2, i. e., inverse-
volume scaling is a suitable choice. To check that, in
Fig. 3 (b) we show long-range behavior of correlations
between the base bond (BC in the (0, 0) unit cell) and
bonds in the other unit cells with bond within unit cell
labeled by α (see drawing in Fig. 3 (c)). We observe that
(i) the correlator saturates almost immediately with dis-
tance, suggesting exponential decay finite-range correc-
tions to correlations, and (ii) correlations between the
base bond and bonds with different α converge to dif-
ferent and finite values, which paves the way to finite
susceptibility χÔλ

for some symmetry-breaking operator

Ôλ.
In the illustrations shown to the left and right of

Fig. 3 (c) we depict the leading eigenvectors of χDb,b′ and
show the infinite-volume extrapolation of the correspond-
ing eigenvalues λ (i. e., of the susceptibilities χÔλ

). We
observe that the susceptibilities corresponding to the
Aπ,π1 and Aπ,π2 irreducible representations, which are
reflective of the PW-VBC phase symmetry structure,
clearly extrapolate to finite values, while, the Bπ,π1 irre-
ducible representation susceptibility indicating L6-VBC
phase structure is found to vanish (within error-bars) in
the thermodynamic limit.

We also probe, within PFFRG, the tendency towards
PW-VBC and L6-VBC symmetry breaking patterns, and
observe that although the dimer-response functions for
these two orders get enhanced under RG flow indicating
dimerization, they are of similar magnitude [7]. The ab-
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sence of a categorical identification of the dimerization
tendency within PF-FRG is rooted in the fact that one
does not take into account higher-point vertex functions
which ultimately seem to prove decisive in accurately re-
solving the delicate competition between the two VBC
candidates.

Having established, from both VMC and mVMC, that
the ground state of the system possesses long-range dimer
order, we discuss other static quantities, namely the ex-
trapolation of the ground state energy, reported in Fig. 4,
and the equal-time spin structure factor, shown in Fig. 5.
Within VMC, an improved estimate of the ground state
energy on finite clusters can be achieved by applying
a few Lanczos steps to the variational state (here the
PW-VBC), and performing a zero-variance extrapola-
tion [15, 27–31]. The resulting estimate of the ground
state energy is found to be equal (within three error-
bars) with the mVMC energies on the L = 4, 6, and 8
clusters. Furthermore, the finite-size-scaling estimate of
the thermodynamic ground state energy from VMC and
mVMC

E∞mVMC = −0.43696(17), E∞VMC = −0.43730(13) (2)

are equal within two error-bars and in excellent agree-
ment with that obtained from iPEPS (see Ref. [7] and ref-
erences [69–81]) and consistent with PMFRG (see Ref. [7]
and references [82–85]) at finite temperature directly in
the thermodynamic limit. Finally, the (equal-time) static
spin structure factor S(q) [7] for the PW-VBC ground
state obtained from both VMC and mVMC approaches
are shown in Fig. 5. One observes a diffused distribution
of intensity along the extended Brillouin zone boundaries.
We observe that within VMC the estimate of the ground
state S(q) obtained by applying two Lanczos steps on
the bare PW-VBC wave function displays soft maxima
in close vicinity to the pinch points [Fig. 5(a)] seen in
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FIG. 5. The static (equal-time) spin structure factor S(q)
obtained within (a) VMC and (b) mVMC on the L = 8 clus-
ter. The solid (dashed) white lines mark the first (extended)
Brillouin zones.

a large-N analysis [Fig. S2 of [7]] in conformity with
mVMC [Fig. 5(b)].

Conclusions. We have employed state-of-the-art nu-
merical quantum many-body methods to provide com-
pelling evidence that the ground state of the S = 1/2
Heisenberg antiferromagnet on the shuriken lattice fea-
tures long-range dimer-order breaking translational in-
variance, i. e., a VBC. Combining the two variational
methods, (i) VMC with a priori given different QSL
and VBC Ansätze, and (ii) mVMC involving an uncon-
strained optimization of the projected-BCS wave func-
tion, we have revealed a consistent picture of a VBC
with pinwheel structure of correlations as inferred from
a comprehensive analysis of the dimer-dimer correla-
tion function. This finding is at variance with that
obtained within an extended (beyond nearest-neighbor
valence bond basis) quantum dimer model framework
which argued for a loop-6 VBC [13]. Given that
KCu6AlBiO4(SO4)5Cl [3] realizes a gapless spin liquid,
and consideration of a generalized model with J4 6= J�
and further neighbor couplings fails to reproduce the neu-
tron scattering profile as shown in Ref. [3], possibly hints
at the role of nonnegligible Dzyaloshinskii-Moriya inter-
actions at play, and the investigation of these interac-
tions would constitute an important future direction of
research. Finally, given that (lattice) nematic topologi-
cal quantum spin liquids have been proposed as compet-
itive Ansätze [11], a projective symmetry group classifi-
cation [18] of fermionic mean-field Ansätze of symmetric
and nematic Z2 spin liquids, and a subsequent analysis of
the energies and correlation functions of the correspond-
ing Gutzwiller projected spin states would constitute an
important direction for future investigations.
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