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Symmetry protected topological order in one dimension leads to protected degeneracies between
symmetry blocks of the reduced density matrix. In the presence of periodic driving, topological
Floquet phases can be identified in terms of a cycling of these symmetry blocks between different
charge quantum numbers. We discuss an example of this phenomenon with an Ising Z2 symmetry,
using both analytic methods and real quantum computers. By adiabatically moving along the
phase diagram, we demonstrate that the cycling periodicity is broken in Floquet topological phase
transitions. An equivalent signature of the topological Floquet phase is identified as a computational
power allowing to teleport quantum information.

Introduction:— Floquet symmetry-protected topologi-
cal (FSPT) phases are emergent condensed matter phe-
nomena [1–9] that extend the concept of symmetry-
protected topological (SPT) order to periodically driven
systems [10–13]. A key aspect of one dimensional SPTs is
having ground states with protected degeneracies in their
entanglement spectrum [14–18]. For unitary symme-
tries, these degeneracies can be detected with symmetry-
resolved entanglement (SRE) measures [19–27], and al-
low to use SPTs as universal computational resources
[28–30]. Whether and how these properties show up for
FSPT order is a question that we address in this paper.
In periodically driven systems, the key object that ad-
mits topological features is the unitary Floquet operator
describing the time evolution for one cycle, F = U(T, 0),
where T is the time period. Its eigenvalues, λi = e−iTεi ,
which define the quasienergies ωi = Tεi mod 2π, have
topological characteristics such as protected 0− and/or
π− edge modes [2].

In contrast to static SPTs, the eigenstates of F are
not necessarily entangled, even in nontrivial FSPTs. In-
stead, entanglement in FSPTs is hidden in the time evo-
lution within a period, which is often referred to as mi-
cromotion and is generically characterized by quantized
charge pumping [5, 31]. Here, we study and experi-
mentally observe this phenomenon by focusing on the
dynamics of the SRE, derived from the block diagonal
structure of the reduced density matrix ρA = TrBρ [17].
In the static case, the SRE structure can be used to iden-
tify SPT phases via degeneracies between the symmetry
blocks [16]. Our key observation here is that nontrivial
FSPT order is reflected by an exact cycling of the symme-
try blocks upon Floquet evolution, as illustrated in Fig. 1.
As an experimentally detectable [16, 32] consequence,
the first moment of the SRE, defined as the subsystem
charge, displays cyclic switching. This is demonstrated
for a Z2 FSPT phase on a noisy intermediate-scale quan-
tum (NISQ) computer. We quantify the parity switching
as an order parameter, and observe its dynamics across a
Floquet topological phase transition. We propose a gen-
eralization of measurement-based quantum computation
(MBQC) to the FSPT case. Lastly, static SPT order can

also coexist with nontrivial Floquet order, in which case
the protected entanglement is associated with degenera-
cies between cyclically switching symmetry blocks.

Cohomological classification:— Before discussing our
main result, we put it in the mathematical context of the
classification of 1D bosonic SPTs. A 1D SPT phase pro-
tected by the symmetry group G, is characterized by a
ground state accompanied by a symmetry operator U(g)
representing the group G. While U(g) acts on the full
system as a conventional representation, it acts near the
edges [28, 33] via a projective representation that classi-
fies the different SPT phases intoH2[G,U(1)] classes [13].

One-dimensional bosonic FSPTs are characterized by
an additional discrete symmetry, namely translations in
time by integer multiples of the period, or equivalently,
discrete powers of F . Because this operator commutes
with the static symmetry G, the total system is char-
acterized by a G × Z symmetry. As a result, there are
H2[G×Z, U(1)] bosonic FSPT phases [4, 5, 34]. For finite
Abelian groups G we find that [35] (see, also, references
[36–38] therein)

H2[G× Z, U(1)] = H2[G,U(1)]×G. (1)

One can understand the two factors in Eq. (1) as a bulk
SPT order classified by H2[G,U(1)], which results in de-
generacies between the symmetry blocks of ρA, and ad-
ditional |G| phases that characterize the possible cyclic
permutations of the SRE, after applying F . Importantly,

FIG. 1. FSPT order is characterized by cyclic switching of
symmetry blocks of the reduced density matrix upon applying
the Floquet operator F = U(T, 0).
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even symmetry groups whose cohomology group is triv-
ial and cannot support static SPT phases can protect
nontrivial Floquet topology.

SRE switching:— For a system characterized by a uni-
tary symmetry G with a conserved charge Qtot, the den-
sity matrix of the reduced system A has a decompo-
sition [39] ρA = ⊕Qρ̃A(Q) associated with subsystem
charge Q ≡ QA. We define the n’th Rényi SRE as
Sn(Q) = Tr[ΠQρ

n
A], where ΠQ projects subsystem A to

charge sector Q. For example, for the symmetry group
G = ZN , the charge Q is an integer, modulo N . This
group has a trivial cohomology group, H2[ZN , U(1)] and,
hence, cannot support static SPTs. According to Eq. 1,
we have exactly |ZN | = N distinct FSPTs phases. Each
phase is labeled by an integer c = 0, 1, ..., N − 1, which
represents the pumped charge of the FSPT phase. Let
us focus on eigenstates of the Floquet operator in the
bulk, but not necessarily on the edges. After one cycle
ρ→ ρ′ = FρF † and, as we now demonstrate,

Sn(Q)→ S′n(Q) = Tr[ρ′A
n
ΠQ] = Sn(Q′), (2)

where Q′ = Q+c. Equation 2 tells us that the symmetry
sector Q goes to Q′ upon acting with F . Being valid for
any n, this relation implies the cycling of the entire spec-
trum of each symmetry block ρ̃A(Q), as schematically
shown in Fig. 1.

We now prove this result using the framework of
Ref. [6]. Assuming that the FSPT phase with symme-
try G is integrable or many-body localized (MBL) (see
Refs. [41–43]), we have an edge-bulk decomposition of
the one-period time evolution operator

F = vLvRe
−if , (3)

where vL (vR) is a unitary operator localized at the left
(right) part of the system and f is a functional of the
symmetric (w.r.t. G) constants of motion associated with
the MBL [6]. Additionally, we have the identity

U(g)vLU
†(g)v†L = κc(g), (4)

U(g)vRU
†(g)v†R = κ−1c (g),

for unitary symmetries represented by U(g), where g ∈ G
and κc(g) is the 1D representation of the FSPT matching
the group element c such that U(c) |g〉 = κc(g) |g〉 [6].
As the state is an eigenstate of F in the bulk, it is an
eigenstate of e−if . If we consider Floquet phases that do
not break any symmetry (including time translations) the
state is an eigenstate of e−if and this phase factor drops

out of the evolved state ρ′ = FρF † = vLvRρv
†
Rv
†
L [6].

We now calculate the first moment S1(Q) = Tr[ΠQρA]
of the SRE, which is the probability that the reduced
system has charge Q. For Abelian unitary finite symme-
tries, the projectors can be written in terms of the group

characters χQ(g) [18, 44],

ΠQ =
1

|G|
∑
g∈G

χQ(g)UA(g), (5)

where UA(g) is the symmetry acting on the reduced sys-
tem A. If subsystem A includes the left but not the right

edge, we have that ρA → ρ′A = vLρAv
†
L and ΠQ com-

mutes with vR. Thus, after one cycle S1(Q)→ S′1(Q) =

Tr[v†LΠQvLρA] = 1
|G|

∑
g∈G χQ(g)Tr[v†LUA(g)vLρA]. Us-

ing the identity v†LUA(g)vL = κc(g)UA(g), which derives
from Eq. 4 by partial tracing, we obtain

v†LΠQvL = ΠQ+c. (6)

Then Eq. (2) follows for the case n = 1. Generalizing
this result to any n is straightforward: After one cy-

cle, we have that ρnA → (vLρAv
†
L)n = vLρ

n
Av
†
L as vL is

unitary and satisfies v†LvL = I. As a result, the n’th
Rényi SRE evolves as Sn(Q) = Tr[ΠQρ

n
A] → S′n(Q) =

Tr[v†LΠQvLρ
n
A] = 1

|G|
∑
g∈G χQ(g)Tr[v†LUA(g)vLρ

n
A]. To-

gether with the assumptions and derivations above, this
proves Eq. 2 for any n.

Parity switching through a phase transition:— The
subsystem charge can serve as a measurable order pa-
rameter of FSPT phases that can be observed even on
small noisy quantum computers. We now study its evo-
lution across a phase transition.

To showcase the use of this order parameter, we con-
sider the kicked Ising model F (α, β) = UZZ(β)UX(α)
where

UX(α) = ei
α
2

∑L
l=1Xl , (7)

UZZ(β) = ei
β
2

∑L−1
l=1 ZlZl+1 ,

and Xl, Zl are Pauli matrices acting on the l’th site of
a chain with open boundary conditions. This model has
a G = Z2 symmetry represented by the parity operator

P =
∏L
l=1Xl. Its phase diagram [40] is displayed in

Fig. 2(a). The four phases are labeled by the number of
single Majorana fermion excitations at quasi-energies 0
and π, see Fig. 2(b). The phases with an odd number
of Majoranas spontaneously break the Ising symmetry,
and correspond to a ferromagnet (0 phase) and to a time
crystal (π phase) [45–48]. The latter phase was realized
using trapped ions [49] and superconducting circuits [48,
50–52]. The Floquet topological phase 0π was realized in
Ref. [8] using cold atoms.

Here we focus on the transition from the FSPT (0π)
phase to the ferromagnetic (0) phase. The former phase
has two interconnected properties: protected edge states
at quasi-energy π and SRE swapping. The probability

of the even subsystem parity S1(even) = 1+〈PA〉
2 (with

S1(odd) = 1 − S1(even)) is obtained by evaluating the
subsystem parity PA =

∏
i∈AXi where A includes LA

sites from the left boundary. In the topological phase,
S1(even) and S1(odd) are expected to swap their val-
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FIG. 2. (a) Phase diagram of the model (7) reproduced from [40]. The phases PM, 0, π, and 0π are, respectively, the
paramagnet, ferromagnet, time crystal, and topological phase. Dark blue represents the topological phase exhibiting SRE
switching. The red curve indicates the adiabatic path which we transverse in Nsteps steps. (b) Single particle quasi-energy
spectrum along the path in (a) exhibiting a π−mode for θ ≤ π/4. (c,d) Exact calculation of subsystem parity probability
S1(even) and 〈Xl〉 for L = 2LA = 50 and Nsteps = 250. S1(even) in (c) displays parity switching in the topological (0π) phase
up to the phase transition at step ∼ Nsteps/2 followed by a beating structure in the (0) ferromagnetic phase. 〈Xl〉 in (d)
displays edge state parity switching (see inset) in the topological phase. (e,f) Same quantities as in (c,d) measured on a NISQ
computer for L = 2LA = 4 and Nsteps = 10.

ues at each time step. This behavior is trivially seen,
for example, at the sweet spot β = π and α = 0 where
UZZ(π) = (−i)L−1Z1ZL and UX = 1. Then the evolu-
tion over one period F = UZZUX simply flips the two
edges from + to − and S1(even) and S1(odd) alternate
between 0 and 1.

To see that this property persists in the entire topologi-
cal phase, but disappears in the ferromagnetic phase, we
adiabatically change the parameters of F . Specifically,
we follow the path α = r0 cos θ and β = π − r0 sin θ,
shown as a red curve in Fig. 2(a), in Nsteps equal steps,
such that the topological phase transition is crossed at
θ = π/4, i.e. at the Nsteps/2 step. We set r0 = 1 through-
out, and initialize the system in the state |+〉 = ⊗l|+〉l.

The switching of S1(even) is shown along an adiabatic
protocol with Nsteps = 250 in Fig. 2(c) for a system with
L = 50 qubits and LA = L/2 [35] (see, also, references
[53–56] therein). Fig. 2(d) gives a real space picture of
〈Xl〉, showing that for small θ, the edge spins are re-
sponsible for the switching. As approaching θ = π/4,
the extent of the switching zone increases, and eventu-
ally the two edges merge at the Floquet topological phase
transition.

For θ > π/4, S1(even) gives rise to a beating structure,
persisting into the ferromagnetic phase. The frequency
of this beating is determined by the difference between
two quasi energies of the instantaneous Floquet opera-
tor F (θ). Specifically, our initial state |+〉 can be com-
bined with the state Z1ZL|+〉 to form a pair of Floquet
eigenstates of F (θ = 0), denoted by |1〉 and |2〉, with
quasienergies ω1 and ω2 = ω1 +π. As we vary θ adiabat-
ically, the quasienergies follow their instantaneous values
ω1,2(θ), see Fig. 2(b) for the single-particle quasienergies.
In the thermodynamic limit (L → ∞), ω2(θ) − ω1(θ) is
pinned to π in the topological phase, giving rise to a pe-
riodic switching of S1(even). For finite systems, there are
small deviations, which become significant near the phase
transition. Moving into the ferromagnetic phase ω2 − ω1

deviates from π and eventually becomes the energy dif-
ference of a domain wall in the ferromagnetic order [35].
This picture allows us to show that the beating amplitude
vanishes in the thermodynamic limit as 1/

√
L [35], imply-

ing that the parity switching is a FSPT order parameter.
The parity switching is observable on a quantum com-
puter as shown in Fig. 2(e,f) for L = 4 and LA = L/2
and Nsteps = 10 steps [35].
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FIG. 3. Teleportation protocol as a probe of FSPT order. A
state |ψ〉 is prepared on the edge. A controlled-F operator
followed by a measurement of an ancilla qubit entangles the
edge states, allowing for teleportation upon measurement of
the first qubit, iff F is topological.

Teleportation through a FSPT phase:— The existence
of a Floquet operator that switches the symmetry blocks
of the reduced density matrix leads to computational
power. In the case of SPTs, computation power relies
on their entanglement [30, 57]; By measuring the state
in specific bases, the correlations that compose the en-
tanglement cause the input information to flow. Here,
we discuss how FSPT order, with generically unentan-
gled eigenstates, allows to teleport a quantum state.

We, again, focus on the simplest case of G = Z2. Our
basic procedure is composed of three steps: (i) Start from
a Floquet eigenstate and encode a “qubit” state |ψ〉 =∑
g αg|g〉 at the left edge in the G-symmetry eigenbasis

|g〉 = |±〉. Encode the identity group element state |+〉
in the right edge qubit. (ii) Use an ancilla qubit to apply
I + eiχF with a nonuniversal phase factor eiχ = eif of
the Floquet eigenstate. (iii) Lastly, measure the left edge
qubit in the G-symmetry basis. If the FSPT state is
nontrivial, then the left edge qubit |ψ〉 is teleported to
the right. This property follows generally for the ZN case
[35] directly from the algebra in Eqs. (3) and (4) which
defines the action of F and of the symmetry projectors
in a given FSPT phase.

This protocol is depicted in Fig. 3 for the point θ = 0 in
the topological phase where the edge states are localized
on the edge qubits. In this case the initial quantum state
is |ψ〉1⊗Li=2|+〉i, where |ψ〉1 = α+|+〉1+α−|−〉1. We have
F = Z1ZL with some additional phase χ = α

2 (L− 2). It

is easy to see that after applying I + eiχZ1ZL and then
projecting the left qubit, say to |+〉1, the final state is

⊗L−1i=1 |+〉i|ψ〉L. In Fig. 3 we implement the operator I +
eiχF using a simple quantum circuit. Adding an ancillary
qubit |0〉 and then acting with Hadamard gate H on it
we get the state 1√

2
(|0〉+|1〉). Then, we add the phase by

rotating around the Z-axis with Rz(χ) = e−i
χ
2 Z , which

takes the ancillary qubit to the state 1√
2
(|0〉 + eiχ |1〉).

Next, by applying a controlled-F gate, we only apply
F on the initial state for the |1〉 ancilla state, thus, the
whole circuit is in the state 1√

2
(|0〉⊗|ψ〉+ |1〉⊗eiχF |ψ〉).

Lastly, applying H again on the ancillary qubit, we have
1
2 (|0〉 ⊗ [I + eiχF ] |ψ〉 + |1〉 ⊗ [I − eiχF ] |ψ〉). It is now
clear that in the case of measuring the ancilla in the |0〉
state we implement the operator I + eiχF on the ini-

tial state. As in MBQC, one can correct for the pos-
sible measurement outcomes, and also perform general
rotations by measuring in a rotated basis. In order to
probe any other point in the FSPT phase, one can apply
our adiabatic protocol on the initial state, transforming
θ = 0 → θ1 < π/4, then apply I + F (θ1)eiχ(θ1), and
adiabatically evolve back to θ = 0 where the final mea-
surement is done on the first qubit.

Entanglement switching:— So far, we considered only
unentangled FSPT states with a trivial static cohomol-
ogy group H2[G,U(1)]. For non-trivial groups, the Flo-
quet eigenstates contain protected entanglement linked
with degeneracies of ρA between different symmetry sec-
tors [17]. Consider for example G = ZN × ZN , where
static SPTs are classified by m ∈ H2[G,U(1)] = ZN [13]
(m = 0, . . . N − 1). In the presence of a Floquet drive
classified by an element c = (c1, c2) ∈ G as in Eq. (1),
the block Q turns into Q + c. The degenerate blocks
Q = (q1, q2) are grouped into families whose represen-
tative is q′ = (q′1, q

′
2), defined mod gcd(N,m). The en-

tanglement switching of these families is described by
q′i → q′i + ci mod gcd(N,m) (i = 1, 2) [35]. We discuss
examples of this general formula. If m and N have no
common divisors greater than 1, all the symmetry blocks
are degenerate and there is no nontrivial switching un-
der the action of F . In contrast, in SPT static phases
where m > 1 divides N (for example m = 2, N = 4)
the degeneracy is only partial [17], leading to entangle-
ment, and the degenerate blocks switch from one family
to another [35].

Summary:— The global topological properties of 1D
FSPT phases cannot be revealed by any local measure-
ments in the bulk. Here, we used symmetry resolution
measurements to observe the FSPT order, both on a
small system realized by a NISQ computer, and analyti-
cally on large systems. The latter allowed us to describe
a Floquet phase transition into a topologically trivial
phase. The topological edge excitations of the Floquet
phase, adiabatically evolve to domain wall excitations
of a ferromagnet. Conversely, this property allows one
to prepare adiabatically topological excitations, starting
from local excitations. Finally, we demonstrated the abil-
ity of FSPT order to teleport a quantum state. All these
topological properties, similar to the cohomological clas-
sification, hold for periodically driven interacting bosons
in general and are not limited to our showcase kicked
Ising model which admits a free fermion description.
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