
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Biasing topological charge injection in topological matter
Mostafa Tanhayi Ahari, Shu Zhang, Ji Zou, and Yaroslav Tserkovnyak

Phys. Rev. B 104, L201401 — Published  3 November 2021
DOI: 10.1103/PhysRevB.104.L201401

https://dx.doi.org/10.1103/PhysRevB.104.L201401


Biasing topological charge injection in topological matters

Mostafa Tanhayi Ahari,∗ Shu Zhang,∗ Ji Zou, and Yaroslav Tserkovnyak
Department of Physics and Astronomy, University of California, Los Angeles, California 90095, USA

We explore the interplay between topologies in the momentum and real spaces to formulate a
thermodynamic description of nonequilibrium injection of topological charges under external bias.
We show that the edge modes engendered by the momentum-space topology can play a functional
role of connecting the external reservoirs to the bulk transport of topological charges in the real
space. We illustrate our general results with two examples: the spin-torque injection of skyrmions
in an electrically-biased integer quantum Hall system, and the vortex injection in a topological
p + ip superconductor coupled to heat reservoirs. Based on the universal fractional entropy of the
Majorana zero modes bound to the vortices, their controllable injection proposed in this work could
provide a route for creating and manipulating Majorana fermions.

Introduction.—Topology is ubiquitous. In condensed
matter, topology provides a description for knotted struc-
tures of quasiparticle bands in the momentum space, as
well as various real-space defect configurations in ordered
media. Moreover, the two often coexist. For example, the
interplay between Weyl electrons and magnetic vortices
has attracted much attention in the recently discovered
family of magnetic Weyl semimetals. The new tool of
magnetic topological quantum chemistry will certainly
reveal more materials with coexisting band topology and
magnetic order, where magnetic defects also naturally
dwell. Such systems may exhibit new transport phenom-
ena with applications in electronics and spintronics.

In this Letter, we study the interplay between real- and
momentum-space topologies in two-dimensional gapped
topological phases of matter hosting point-like topologi-
cal defects in the real space. These defects carry quan-
tized topological charges defined by the homotopy map-
ping of the order-parameter fields [1]. Obeying the topo-
logical conservation law, the flow of topological charges
can be particularly robust, enabling long-distance trans-
port useful for information transmission [2]. The bulk
band topology dictates the existence of gapless modes
localized at the edges, according to the bulk-boundary
correspondence [3, 4]. We suggest a general functional
aspect of topological media in addition to their bulk-
edge transport. The gapless edges, when biased by exter-
nal sources, can serve as interconnects for controlling the
bulk topological charges. We illustrate this idea with two
examples: an integer quantum Hall semiconductor and a
two-dimensional topological p + ip superconductor.

The bulk of the integer quantum Hall state at filling
factor ν = 1 is an insulating ferromagnet, if we neglect
the Zeeman energy. Its lowest-lying charged excitation
is a skyrmion [5], which is a real-space topological spin
texture. In response to an electrical bias, the chiral
edge mode develops a ballistic current. This scenario
is geometrically analogous to running an electric current
through a metal in contact with a thin film of magnetic
insulator, which results in skyrmion pumping into the
magnet [6]. In the quantum Hall system, we reduce the
Ohmic energy loss in generating the skyrmion current by

exploiting the otherwise dissipationless edge mode.
In general, depending on the transport aspects of the

edge modes, we can also utilize other means of biasing
instead of an electric voltage. Thermal bias can be gener-
ally applicable to different topological systems with heat
conducting edges, which we explore with our second ex-
ample. The two-dimensional topological p + ip super-
conductor supports chiral Majorana edge states. As a
manifestion of the interplay between momentum- and
real-space topology, a Majorana zero mode (MZM) arises
as a bound state in a vortex excitation of the supercon-
ducting phase [7]. We show in this case that the edge in
contact with an external heat source can facilitate the in-
jection of vortices and their associated Majorana modes
into the bulk. This could potentially provide a method
for controllable creation and manipulation of Majorana
fermions, for the purpose of quantum computing [8].

In both cases, the edge does work on the bulk dynam-
ics and thus becomes dissipative. This is usually unde-
sirable for being detrimental to the quantized transport
properties. In systems with both momentum- and real-
space topology, however, we point to the possibility of
utilizing this interplay to create and manipulate topo-
logical charges, such as skyrmions and vortices, which
are promising candidates proposed for future spintronic
and quantum devices for information storage and pro-
cessing [9]. We also discuss the thermodynamic descrip-
tion of the facilitated defect nucleation in general, as a
nonequilibrium process.
Stimulated nucleation of topological charges.—We fo-

cus on the real-space topology in this section and con-
sider the thermally activated nucleation of dilute topo-
logical charges at the boundaries, which thereafter enter
the bulk as stable particle-like objects protected by topol-
ogy. Let us write the net topological charge flux injected
into the bulk as J = γ − ργ̄, taking into account the
nucleation rate γ, and the escape rate γ̄ per unit charge
density ρ. If in thermal equilibrium J = 0, the ratio γ/γ̄
is given by the equilibrium charge density

ρ0 ∝ e−βF0 , (1)

which is controlled by the Boltzmann factor with F0 �
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kBT being the free energy needed to create a unit of
topological charge and β = 1/kBT at temperature T .

We now take the system out of equilibrium by coupling
it to an external energy source. If a free energy kick
could be provided accompanying the nucleation of the
topological charges, the thermal excitation of them would
become more likely. For example, if a certain amount
of work is done on the bulk order-parameter dynamics
associated with the nucleation, a chemical potential µ can
be defined locally as the work done per unit charge, which
shifts the energy exponent to e−β(F0−µ) in the Boltzmann
factor (1). The ratio between the nucleation and escape
rates is therefore enhanced by the fugacity:

R ≡ γ

γ̄
= ρ0e

βµ. (2)

yielding a nonvanishing J and a locally increasing ρ. A
density gradient then develops across the bulk and drives
the injected topological charges into diffusion. When
they arrive at another unbiased edge, they are allowed
to annihilate, triggering an Onsager-reciprocal pumping
process. Therefore, instead of reaching an equilibrium
with an uniformly shifted charge density, the system
eventually reaches an inhomogeneous steady state with
a finite topological charge current J in the bulk. In the
linear-response regime, J ∝ µ/kBT .

An alternative way to provide a thermodynamic kick
is through a thermal bias, when there is a fixed entropy
change ∆S associated with the injection of a topological
charge. We assume the local temperature at the edge is
Tr in contact with an external thermal reservoir, higher
than the reference (typically phononic) temperature T in
the bulk. To see the nucleation of topological charges
is favored in this situation, we consider a charge passing
into the bulk from the edge adiabatically. The amount
of heat taken from the edge during this process shoud be
Tr∆S, which goes into the work W on the topological
charge. Therefore, we have

R = ρ0e
δT∆S/kBT , (3)

suggesting that the nucleation is favored if δT ≡ Tr−T >
0, where the excitation gap F0 that controls ρ0 remains
unchanged. In the reaction theory, this way to bias the
reaction rate is known as the Erying equation, which pro-
vides an approach to measure the entropy change [10].
Similar to the discussion above, the stimulated injec-
tion results in a topological charge current in the bulk
J ∝ (∆S/kB)δT/T in the steady state.

In the two detailed examples to follow, we show
how the edge modes engendered by the momentum-
space topology can effectively induce the abovementioned
chemical potential µ or the entropy change ∆S under a
nonequilibrium bias. In this way, the edge modes play
the role of connecting the external sources to the bulk
transport.
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is a remarkably general equation that has been used to
describe various physical and chemical phenomena. The
notable examples include: changes in the rate of a chem-
ical reaction against temperature (e.g., Eyring–Polanyi
equation [7]), the phase slips in Josephson junctions [12],
and Anderson-Kim flux-creep theory in superconductors
[13, 19].

While the net free energy change �⌦ is a consequence
of the external reservoirs coupled to the system, in a
nonequilibrium process, however, we get

�⌦  h�E � µ�Ni, (2)

where �E is the energy change in the system due to the
reservoirs and �N is the net change in number of par-
ticles or excitaions with associated chemical potential µ.
Here, the average is over an ensemble of measurements.
The underlying reason for the inequality is the presence
of dissipation in finite-time processes. The dissipation
is a non-negligible stochastic quantity due to the impor-
tance of thermal fluctuations in small-scale systems [14].
As a result, Eq. (2) only provides an upper bound for
change of the free energy �⌦.

A great simplification emerges when the combined
Hamiltonian of the system, the coupling, and the reser-
voirs is time-reversible, which can be interpreted as the
underlying microscopic platform for the Onsager reci-
procity in the system [9]. In the presence of the extra
symmetry, in accordance with the fluctuation theorem
[14, 15], we get:

he(�E�µ�N)/kBT i = e�⌦/kBT . (3)

For an isolated system (Q = 0) and fixed number of
particles this equality reduces to the well known Jarzyn-
ski equality [10]: heW/kBT i = e�F/kBT , where �F is
Helmholtz free energy. The equality in Eq. (3) relates
the average distribution of the fluctuating quantities to
the equilibrium information �⌦ of the system used in
Eq. (1). In other words, after the time interval ti the final
state B need not to be an equilibrium state, nonetheless,
the equilibrium information ⌦B necessary for Eq. (1) can
be extracted from measurements of �E and N over the
time interval ti. As a result, the TC nucleation rate ob-
tains,

R = R0 he(�E�µ�N)/kBT i. (4)

While thermal fluctuations are important in the energy
scale provided by the reservoir coupling, we have never-
theless assumed kBT ⌧ E0 to ignore thermal fluctua-
tions in the activation energy.

III. QH SYSTEM EDGE COUPLED TO A
WORK RESERVOIR

Let us consider an integer QH system with a filled low-
est Landau level that is edge-coupled to two reservoirs

skyrmion flow
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Nonequilibrium transport of topological charges

j1 j2 We study the nonequilibrium nucleation and injection of topological charges in 2D topological
matters. Our work establishes a frame work to explore the edge-reservoir coupling from thermody-
namic perspective that leads to a control over the injection only by exploiting driven edge modes
of the system. The edge modes of a topological system can couple to a work, heat, and angular
momentum, reservoirs, which can be utilized to induce a nonequilibrium state in the bulk. We focus
on the integer quantum Hall systems coupled to a work and the p-wave superconductor coupled to a
heat reservoirs for which the injection of skrmions and vortices harboring Majorana zero-modes are
analyzed. We point out that if the edge-reservoir coupling Hamiltonian does not break time reversal
symmetry, on account of the fluctuation theorem, one can extract the nonequilibrium injection rate
by measuring the external work.

I. INTRODUCTION

Recently, the possibility of achieving protected infor-
mation processes and resilient memory elements for in-
formation storage purposes, has instigated a considerable
amount of theoretical and experimental studies of topo-
logical matters [1, 2]. Owing to a non-trivial topological
order in bulk, low energy physics of topological matters
are characterized by elementary excitations that are re-
silient to unwanted errors due to their topological nature.
In other words, any alteration of the state requires a fi-
nite expenditure of energy due to the energy gap in the
spectrum. However, unwanted couplings to the environ-
ment, over time, can induce thermally activated errors
that often is unavoidable in the real devices. In this pa-
per, in contrast to the conventional antagonistic view on
the coupling to the environment, we utilize it as a tool
that provides us with a finite rate of topological charge
nucleation for transport purposes. As we will show, a sys-
tem in equilibrium with the environment, can be driven
to a non-equilibrium state for which thermally activated
topological charges can be controlled and manipulated by
edge modes at the boundary of the system. The problem
of driving quantum systems by their boundaries has been
addressed in Ref. [14]. A phenomenological approach
adopted in this paper, however, circumvents complexity
of dealing with open quantum systems by employing the
fluctuation theorem [4], which is an exact result for far
from equilibrium processes.

Controlled transport of vorticity by an edge current in
the Heisenberg magnet [12, 13] is an example of topo-
logical excitation’s injection. However, the Joule heat-
ing associated with the flowing current at the edge is a
limiting factor in the Heisenberg magnet’s case. In the
present work, we study topological matters such as quan-
tum Hall (QH) systems and p-wave topological supercon-
ductors (TSCs) with a characteristic feature of gap-less
edge modes, i.e., bulk-boundary correspondence. These
edge modes are robust dissipationless transport channels
(no Joule heating) that are governed by a Hamiltonian
with Dirac-like dispersions.

We show that externally driven edge modes can lead
to an injection of topological charges, i.e., skyrmions for
the QH state and magnetic vortices for the TSC. For
the latter case, vortices can host Majorana zero-modes

whose nucleation timescale is exponentially corrected by
the thermally activated edge modes. This serves as an
example of enthalpy-entropy compensation or the Meyer-
Neldel rule [25] for topological charge nucleation.

II. INJECTION OF TOPOLOGICAL CHARGES

Consider a system with a topological order in the bulk
that vanishes at the edges. Let us denote the equilibrium
nucleation rate (slow) for topological charges (TCs) as
R0. For a system in equilibrium with its environment at
temperature T , rate of thermally activated excitations
is determined by the Arrhenius law, R0 = !0 e�E0/kBT ,
where !0 is the attempt frequency [16]. The activation
energy E0 is the minimum energy needed to thermally
activate an excitation and overcome the energy barrier
to nucleate a TC.

In order to modify the equilibrium rate of the TC nu-
cleation, we drive the system to a nonequilibium state
by coupling its edge to an external reservoir. Let ti be
the time interval during which the coupling is on. The
system begins in an equilibrium state A, or a bare state
and after the time interval ti arrives at some final state
B with nucleated TCs. Denoting �⌦ = ⌦B � ⌦A as
the total free energy di↵erence for a non-cyclic process, a
new nucleation rate associated with the total free energy
di↵erence can be written as

R = R0 e�⌦/kBT . (1)

The free energy ⌦ is the thermodynamic grand potential
that can be reduced to the Helmholtz, F , or the Gibbs,
G, free energies when number of the TCs is fixed. The
nonequilibrium rate expressed in the form of Eq. (1) is
a remarkably general equation that has been used to de-
scribe various physical and chemical phenomena. The
notable examples include: changes in the rate of a chem-
ical reaction against temperature (e.g., Eyring–Polanyi
equation [3]), the phase slips in Josephson junctions [8],
and Anderson-Kim flux-creep theory in superconductors
[9, 15].

In a far from equilibrium process, due to dissipa-
tion, thermodynamic quantities such as work done on
the system W , heat transfer Q, and change in number
of particles N can fluctuate [10]. As a result one gets

Nonequilibrium transport of topological charges

j1 j2 We study the nonequilibrium nucleation and injection of topological charges in 2D topological
matters. Our work establishes a frame work to explore the edge-reservoir coupling from thermody-
namic perspective that leads to a control over the injection only by exploiting driven edge modes
of the system. The edge modes of a topological system can couple to a work, heat, and angular
momentum, reservoirs, which can be utilized to induce a nonequilibrium state in the bulk. We focus
on the integer quantum Hall systems coupled to a work and the p-wave superconductor coupled to a
heat reservoirs for which the injection of skrmions and vortices harboring Majorana zero-modes are
analyzed. We point out that if the edge-reservoir coupling Hamiltonian does not break time reversal
symmetry, on account of the fluctuation theorem, one can extract the nonequilibrium injection rate
by measuring the external work.

I. INTRODUCTION

Recently, the possibility of achieving protected infor-
mation processes and resilient memory elements for in-
formation storage purposes, has instigated a considerable
amount of theoretical and experimental studies of topo-
logical matters [1, 2]. Owing to a non-trivial topological
order in bulk, low energy physics of topological matters
are characterized by elementary excitations that are re-
silient to unwanted errors due to their topological nature.
In other words, any alteration of the state requires a fi-
nite expenditure of energy due to the energy gap in the
spectrum. However, unwanted couplings to the environ-
ment, over time, can induce thermally activated errors
that often is unavoidable in the real devices. In this pa-
per, in contrast to the conventional antagonistic view on
the coupling to the environment, we utilize it as a tool
that provides us with a finite rate of topological charge
nucleation for transport purposes. As we will show, a sys-
tem in equilibrium with the environment, can be driven
to a non-equilibrium state for which thermally activated
topological charges can be controlled and manipulated by
edge modes at the boundary of the system. The problem
of driving quantum systems by their boundaries has been
addressed in Ref. [14]. A phenomenological approach
adopted in this paper, however, circumvents complexity
of dealing with open quantum systems by employing the
fluctuation theorem [4], which is an exact result for far
from equilibrium processes.

Controlled transport of vorticity by an edge current in
the Heisenberg magnet [12, 13] is an example of topo-
logical excitation’s injection. However, the Joule heat-
ing associated with the flowing current at the edge is a
limiting factor in the Heisenberg magnet’s case. In the
present work, we study topological matters such as quan-
tum Hall (QH) systems and p-wave topological supercon-
ductors (TSCs) with a characteristic feature of gap-less
edge modes, i.e., bulk-boundary correspondence. These
edge modes are robust dissipationless transport channels
(no Joule heating) that are governed by a Hamiltonian
with Dirac-like dispersions.

We show that externally driven edge modes can lead
to an injection of topological charges, i.e., skyrmions for
the QH state and magnetic vortices for the TSC. For
the latter case, vortices can host Majorana zero-modes

whose nucleation timescale is exponentially corrected by
the thermally activated edge modes. This serves as an
example of enthalpy-entropy compensation or the Meyer-
Neldel rule [25] for topological charge nucleation.

II. INJECTION OF TOPOLOGICAL CHARGES

Consider a system with a topological order in the bulk
that vanishes at the edges. Let us denote the equilibrium
nucleation rate (slow) for topological charges (TCs) as
R0. For a system in equilibrium with its environment at
temperature T , rate of thermally activated excitations
is determined by the Arrhenius law, R0 = !0 e�E0/kBT ,
where !0 is the attempt frequency [16]. The activation
energy E0 is the minimum energy needed to thermally
activate an excitation and overcome the energy barrier
to nucleate a TC.

In order to modify the equilibrium rate of the TC nu-
cleation, we drive the system to a nonequilibium state
by coupling its edge to an external reservoir. Let ti be
the time interval during which the coupling is on. The
system begins in an equilibrium state A, or a bare state
and after the time interval ti arrives at some final state
B with nucleated TCs. Denoting �⌦ = ⌦B � ⌦A as
the total free energy di↵erence for a non-cyclic process, a
new nucleation rate associated with the total free energy
di↵erence can be written as

R = R0 e�⌦/kBT . (1)

The free energy ⌦ is the thermodynamic grand potential
that can be reduced to the Helmholtz, F , or the Gibbs,
G, free energies when number of the TCs is fixed. The
nonequilibrium rate expressed in the form of Eq. (1) is
a remarkably general equation that has been used to de-
scribe various physical and chemical phenomena. The
notable examples include: changes in the rate of a chem-
ical reaction against temperature (e.g., Eyring–Polanyi
equation [3]), the phase slips in Josephson junctions [8],
and Anderson-Kim flux-creep theory in superconductors
[9, 15].

In a far from equilibrium process, due to dissipa-
tion, thermodynamic quantities such as work done on
the system W , heat transfer Q, and change in number
of particles N can fluctuate [10]. As a result one gets

3

where J = �(1/4⇡)n · [(ẑ ⇥r)n ⇥ ṅ] is the skyrmion
current density, and |ji| = ji. It can be checked that net
positive topological charge of skyrmions N injected into
the bulk is given by

N1 =
1

4⇡

Z
dS n · (@xn ⇥ @yn) . (7)

The inflow of skyrmion current on the left is given by

R1 = R0 he(W1�µ1N1)/kBT i = R0 heN1(eV1�µ1)/kBT i. (8)

After injection, the skyrmion dynamics in the bulk can
be described by a combination of the density driven dif-
fusion and the transverse motion due to its nonzero topo-
logical charge [16, 17].

For the outflow of skyrmion current on the right edge
we get

R2 = R0 he�N2(eV2�µ2)/kBT i. (9)

The extra negative sign is due to the fact that upon an-
nihilation the bulk is performing work on the edge cur-
rent which releases N skyrmions. We conclude that, the
injection rate of the topological charges at a non-zero
temperature T is controlled by the edge current ji and
applied voltage µi/e.

Imposing continuity of skyrmion current, R1 = R2,
approximately yields

... (10)

The nucleated skyrmions that travel between the biased
edges carry electric charges that results in a partially
conductive bulk.

IV. TSC EDGE COUPLED TO A HEAT
RESERVOIR

We consider process of a vortex injection into the topo-
logical region of a p + ip superconductor (SC), which is
due to the coupling of its edges to a heat reservoir at
temperature Tr while its bulk is kept at T < Tr. We
take Tr to be much smaller than the critical tempera-
ture Tc to forbid thermally excited quasi-particles in the
bulk. Following our earlier discussion, a vortex with en-
ergy barrier E0 = Ev will be thermally activated with
an equilibrium rate R0 = !0e

�Ev/kBT . To understand
the influence of the heat reservoir on the injection rate,
we begin with analyzing the low energy single-particle
modes of the topological superconductor (TSC) in the
presence of a vortex.

A spatial variation of the superconducting pair-
potential � leads to a formation of localized fermionic
bound states. On the edges of the TSC, where � ! 0,
these bound states are manifested by a continuum of
available states with a Dirac-like dispersion. For a vortex
harboring these bound states, however, the energy levels

are quantized, E` = (`+ 1/2) �2
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FIG. 2. A sketch of a TSC with temperature T edge cou-
pled to a heat reservoir with temperature Tr. A vortex
with a spacial size comparable to ⇠ is carrying magnetic flux
�B = hc/2e, thus rendering Majorana zero-energy modes
where superconductor gap vanishes, i.e., the edge and the
vortex core. At finite distances d, the Majorana modes �0, �
on the edge and the vortex core have an energy split 2✏ due
to wavefunction overlap.

is an integer and EF is the Fermi energy of the underly-
ing SC [22]. Now, an important characteristic of a TSC,
a Majorana zero-mode, is unveiled once we adiabatically
pierce the vortex with a magnetic flux: �B = hc/2e.
The Berry phase gained during this process shifts en-
ergy levels adiabatically–spectral flow–as following: ` !
` + �B/�0 = ` + 1/2, where �0 = hc/e is the magnetic
flux quantum. Consequently, the energy levels of the
bound states can support zero-energy modes, known as
Majorana zero-modes, localized in the vortex core [21]. It
is important to note that, Majorana zero-modes in TSCs
are chiral modes whose chirality in the bulk is fixed for
p+ip TSC (p�ip TSC corresponds to the opposite chiral-
ity [21]). In other words, this implies that the injection
is due to the “positive charges”. Here, by considering
the temperature limit of kBTr ⌧ �2/EF , we are pri-
marily interested in the nucleation of vortices carrying
a magnetic flux �B whose lowest energy level retains a
zero-energy Majorana bound state–a Majorana vortex in-
jection.

Let us begin with a single vortex adjacent to an edge
at a distance d. The particle-hole symmetry of the TSC
guarantees a two-fold degenerate ground state with exact
zero energy for d � ⇠, where ⇠ is the SC coherence length.
Placing one zero-mode in the vortex core, one can seek
another zero-mode where the SC gap vanishes, i.e., the
edge. For a finite distance, however, the overlap between
bound-state wave functions of the edge and the vortex
core leads to a hybridization and lifting the degeneracy of
Majorana zero-modes given by � / e�d/⇠ [27]. The non-
zero � also can be regarded as the tunneling amplitude
between Majorana states [23]. With an edge coupled to
a heat reservoir a temperature gradient in the direction
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FIG. 1. Skyrmion injection in quantum Hall system with a
2D strip geometry. The left edge is kept at voltage µ1/e and
the right edge is at voltage µ2/e. Such a setup facilitates the
nucleation of skyrmions at the left edge, which are injected
into the bulk.

with voltages V1 and V2, see Fig. 1. At the boundary be-
tween the quantum Hall regime and normal regime (topo-
logically trivial), exists a gapless chiral edge state. The
edge state is dissipationless—when biased by an voltage
V1 on the left and V2 on the right by connecting to a lead
at a particular points the entire edge equilibrates with
the reservoir voltage which establishes a steady QH edge
currents: j1 = ŷV e2/h and j2 = �ŷV2e

2/h, see Fig. 1.
Since the bulk is an insulator, it appears the edge volt-

age is not a↵ecting the bulk. But on second thought,
in the bulk of the QH system exchange interactions be-
tween electrons lead to ferromagnetism with the order
parameter n. In the limit of small Zeeman energy, this
renders skyrmions, carrying charge e, as the low lying
bulk excitation [11]. An electric current ji on the edges
exert a nonequilibrium spin-transfer torque on the order
parameter,

⌧i = (~/2e)(ji · r)n, (5)

that performs work Wi when there is spin dynamics at
the interfaces. The amount of work done on the bulk by
the edge current is given by

Wi =

Z
dSdt⌧i · ṅ⇥n =

h

e

Z
dSdt ẑ · (J ⇥ ji) =

h

e
jiN1 ,

(6)
where J = �(1/4⇡)n · [(ẑ ⇥r)n ⇥ ṅ] is the skyrmion
current density, and |ji| = ji. It can be checked that net
positive topological charge of skyrmions N1 injected into
the bulk is given by

N1 =
1

4⇡

Z
dS n · (@xn ⇥ @yn) . (7)

At a temperature T , the bulk gap can be regarded as the
energy required to nucleate a skyrmion, E0 = Esk. As
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is a remarkably general equation that has been used to
describe various physical and chemical phenomena. The
notable examples include: changes in the rate of a chem-
ical reaction against temperature (e.g., Eyring–Polanyi
equation [7]), the phase slips in Josephson junctions [12],
and Anderson-Kim flux-creep theory in superconductors
[13, 19].

While the net free energy change �⌦ is a consequence
of the external reservoirs coupled to the system, in a
nonequilibrium process, however, we get

�⌦  h�E � µ�Ni, (2)

where �E is the energy change in the system due to the
reservoirs and �N is the net change in number of par-
ticles or excitaions with associated chemical potential µ.
Here, the average is over an ensemble of measurements.
The underlying reason for the inequality is the presence
of dissipation in finite-time processes. The dissipation
is a non-negligible stochastic quantity due to the impor-
tance of thermal fluctuations in small-scale systems [14].
As a result, Eq. (2) only provides an upper bound for
change of the free energy �⌦.

A great simplification emerges when the combined
Hamiltonian of the system, the coupling, and the reser-
voirs is time-reversible, which can be interpreted as the
underlying microscopic platform for the Onsager reci-
procity in the system [9]. In the presence of the extra
symmetry, in accordance with the fluctuation theorem
[14, 15], we get:

he(�E�µ�N)/kBT i = e�⌦/kBT . (3)

For an isolated system (Q = 0) and fixed number of
particles this equality reduces to the well known Jarzyn-
ski equality [10]: heW/kBT i = e�F/kBT , where �F is
Helmholtz free energy. The equality in Eq. (3) relates
the average distribution of the fluctuating quantities to
the equilibrium information �⌦ of the system used in
Eq. (1). In other words, after the time interval ti the final
state B need not to be an equilibrium state, nonetheless,
the equilibrium information ⌦B necessary for Eq. (1) can
be extracted from measurements of �E and N over the
time interval ti. As a result, the TC nucleation rate ob-
tains,

R = R0 he(�E�µ�N)/kBT i. (4)

While thermal fluctuations are important in the energy
scale provided by the reservoir coupling, we have never-
theless assumed kBT ⌧ E0 to ignore thermal fluctua-
tions in the activation energy.

III. QH SYSTEM EDGE COUPLED TO A
WORK RESERVOIR

Let us consider an integer QH system with a filled low-
est Landau level that is edge-coupled to two reservoirs

skyrmion flow

x̂
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Nonequilibrium transport of topological charges

j1 j2 We study the nonequilibrium nucleation and injection of topological charges in 2D topological
matters. Our work establishes a frame work to explore the edge-reservoir coupling from thermody-
namic perspective that leads to a control over the injection only by exploiting driven edge modes
of the system. The edge modes of a topological system can couple to a work, heat, and angular
momentum, reservoirs, which can be utilized to induce a nonequilibrium state in the bulk. We focus
on the integer quantum Hall systems coupled to a work and the p-wave superconductor coupled to a
heat reservoirs for which the injection of skrmions and vortices harboring Majorana zero-modes are
analyzed. We point out that if the edge-reservoir coupling Hamiltonian does not break time reversal
symmetry, on account of the fluctuation theorem, one can extract the nonequilibrium injection rate
by measuring the external work.

I. INTRODUCTION

Recently, the possibility of achieving protected infor-
mation processes and resilient memory elements for in-
formation storage purposes, has instigated a considerable
amount of theoretical and experimental studies of topo-
logical matters [1, 2]. Owing to a non-trivial topological
order in bulk, low energy physics of topological matters
are characterized by elementary excitations that are re-
silient to unwanted errors due to their topological nature.
In other words, any alteration of the state requires a fi-
nite expenditure of energy due to the energy gap in the
spectrum. However, unwanted couplings to the environ-
ment, over time, can induce thermally activated errors
that often is unavoidable in the real devices. In this pa-
per, in contrast to the conventional antagonistic view on
the coupling to the environment, we utilize it as a tool
that provides us with a finite rate of topological charge
nucleation for transport purposes. As we will show, a sys-
tem in equilibrium with the environment, can be driven
to a non-equilibrium state for which thermally activated
topological charges can be controlled and manipulated by
edge modes at the boundary of the system. The problem
of driving quantum systems by their boundaries has been
addressed in Ref. [14]. A phenomenological approach
adopted in this paper, however, circumvents complexity
of dealing with open quantum systems by employing the
fluctuation theorem [4], which is an exact result for far
from equilibrium processes.

Controlled transport of vorticity by an edge current in
the Heisenberg magnet [12, 13] is an example of topo-
logical excitation’s injection. However, the Joule heat-
ing associated with the flowing current at the edge is a
limiting factor in the Heisenberg magnet’s case. In the
present work, we study topological matters such as quan-
tum Hall (QH) systems and p-wave topological supercon-
ductors (TSCs) with a characteristic feature of gap-less
edge modes, i.e., bulk-boundary correspondence. These
edge modes are robust dissipationless transport channels
(no Joule heating) that are governed by a Hamiltonian
with Dirac-like dispersions.

We show that externally driven edge modes can lead
to an injection of topological charges, i.e., skyrmions for
the QH state and magnetic vortices for the TSC. For
the latter case, vortices can host Majorana zero-modes

whose nucleation timescale is exponentially corrected by
the thermally activated edge modes. This serves as an
example of enthalpy-entropy compensation or the Meyer-
Neldel rule [25] for topological charge nucleation.

II. INJECTION OF TOPOLOGICAL CHARGES

Consider a system with a topological order in the bulk
that vanishes at the edges. Let us denote the equilibrium
nucleation rate (slow) for topological charges (TCs) as
R0. For a system in equilibrium with its environment at
temperature T , rate of thermally activated excitations
is determined by the Arrhenius law, R0 = !0 e�E0/kBT ,
where !0 is the attempt frequency [16]. The activation
energy E0 is the minimum energy needed to thermally
activate an excitation and overcome the energy barrier
to nucleate a TC.

In order to modify the equilibrium rate of the TC nu-
cleation, we drive the system to a nonequilibium state
by coupling its edge to an external reservoir. Let ti be
the time interval during which the coupling is on. The
system begins in an equilibrium state A, or a bare state
and after the time interval ti arrives at some final state
B with nucleated TCs. Denoting �⌦ = ⌦B � ⌦A as
the total free energy di↵erence for a non-cyclic process, a
new nucleation rate associated with the total free energy
di↵erence can be written as

R = R0 e�⌦/kBT . (1)

The free energy ⌦ is the thermodynamic grand potential
that can be reduced to the Helmholtz, F , or the Gibbs,
G, free energies when number of the TCs is fixed. The
nonequilibrium rate expressed in the form of Eq. (1) is
a remarkably general equation that has been used to de-
scribe various physical and chemical phenomena. The
notable examples include: changes in the rate of a chem-
ical reaction against temperature (e.g., Eyring–Polanyi
equation [3]), the phase slips in Josephson junctions [8],
and Anderson-Kim flux-creep theory in superconductors
[9, 15].

In a far from equilibrium process, due to dissipa-
tion, thermodynamic quantities such as work done on
the system W , heat transfer Q, and change in number
of particles N can fluctuate [10]. As a result one gets
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where J = �(1/4⇡)n · [(ẑ ⇥r)n ⇥ ṅ] is the skyrmion
current density, and |ji| = ji. It can be checked that net
positive topological charge of skyrmions N injected into
the bulk is given by

N1 =
1

4⇡

Z
dS n · (@xn ⇥ @yn) . (7)

The inflow of skyrmion current on the left is given by

R1 = R0 he(W1�µ1N1)/kBT i = R0 heN1(eV1�µ1)/kBT i. (8)

After injection, the skyrmion dynamics in the bulk can
be described by a combination of the density driven dif-
fusion and the transverse motion due to its nonzero topo-
logical charge [16, 17].

For the outflow of skyrmion current on the right edge
we get

R2 = R0 he�N2(eV2�µ2)/kBT i. (9)

The extra negative sign is due to the fact that upon an-
nihilation the bulk is performing work on the edge cur-
rent which releases N skyrmions. We conclude that, the
injection rate of the topological charges at a non-zero
temperature T is controlled by the edge current ji and
applied voltage µi/e.

Imposing continuity of skyrmion current, R1 = R2,
approximately yields

... (10)

The nucleated skyrmions that travel between the biased
edges carry electric charges that results in a partially
conductive bulk.

IV. TSC EDGE COUPLED TO A HEAT
RESERVOIR

We consider process of a vortex injection into the topo-
logical region of a p + ip superconductor (SC), which is
due to the coupling of its edges to a heat reservoir at
temperature Tr while its bulk is kept at T < Tr. We
take Tr to be much smaller than the critical tempera-
ture Tc to forbid thermally excited quasi-particles in the
bulk. Following our earlier discussion, a vortex with en-
ergy barrier E0 = Ev will be thermally activated with
an equilibrium rate R0 = !0e

�Ev/kBT . To understand
the influence of the heat reservoir on the injection rate,
we begin with analyzing the low energy single-particle
modes of the topological superconductor (TSC) in the
presence of a vortex.

A spatial variation of the superconducting pair-
potential � leads to a formation of localized fermionic
bound states. On the edges of the TSC, where � ! 0,
these bound states are manifested by a continuum of
available states with a Dirac-like dispersion. For a vortex
harboring these bound states, however, the energy levels

are quantized, E` = (`+ 1/2) �2
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FIG. 2. A sketch of a TSC with temperature T edge cou-
pled to a heat reservoir with temperature Tr. A vortex
with a spacial size comparable to ⇠ is carrying magnetic flux
�B = hc/2e, thus rendering Majorana zero-energy modes
where superconductor gap vanishes, i.e., the edge and the
vortex core. At finite distances d, the Majorana modes �0, �
on the edge and the vortex core have an energy split 2✏ due
to wavefunction overlap.

is an integer and EF is the Fermi energy of the underly-
ing SC [22]. Now, an important characteristic of a TSC,
a Majorana zero-mode, is unveiled once we adiabatically
pierce the vortex with a magnetic flux: �B = hc/2e.
The Berry phase gained during this process shifts en-
ergy levels adiabatically–spectral flow–as following: ` !
` + �B/�0 = ` + 1/2, where �0 = hc/e is the magnetic
flux quantum. Consequently, the energy levels of the
bound states can support zero-energy modes, known as
Majorana zero-modes, localized in the vortex core [21]. It
is important to note that, Majorana zero-modes in TSCs
are chiral modes whose chirality in the bulk is fixed for
p+ip TSC (p�ip TSC corresponds to the opposite chiral-
ity [21]). In other words, this implies that the injection
is due to the “positive charges”. Here, by considering
the temperature limit of kBTr ⌧ �2/EF , we are pri-
marily interested in the nucleation of vortices carrying
a magnetic flux �B whose lowest energy level retains a
zero-energy Majorana bound state–a Majorana vortex in-
jection.

Let us begin with a single vortex adjacent to an edge
at a distance d. The particle-hole symmetry of the TSC
guarantees a two-fold degenerate ground state with exact
zero energy for d � ⇠, where ⇠ is the SC coherence length.
Placing one zero-mode in the vortex core, one can seek
another zero-mode where the SC gap vanishes, i.e., the
edge. For a finite distance, however, the overlap between
bound-state wave functions of the edge and the vortex
core leads to a hybridization and lifting the degeneracy of
Majorana zero-modes given by � / e�d/⇠ [27]. The non-
zero � also can be regarded as the tunneling amplitude
between Majorana states [23]. With an edge coupled to
a heat reservoir a temperature gradient in the direction
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FIG. 1. Skyrmion injection in quantum Hall system with a
2D strip geometry. The left edge is kept at voltage µ1/e and
the right edge is at voltage µ2/e. Such a setup facilitates the
nucleation of skyrmions at the left edge, which are injected
into the bulk.

with voltages V1 and V2, see Fig. 1. At the boundary be-
tween the quantum Hall regime and normal regime (topo-
logically trivial), exists a gapless chiral edge state. The
edge state is dissipationless—when biased by an voltage
V1 on the left and V2 on the right by connecting to a lead
at a particular points the entire edge equilibrates with
the reservoir voltage which establishes a steady QH edge
currents: j1 = ŷV e2/h and j2 = �ŷV2e

2/h, see Fig. 1.
Since the bulk is an insulator, it appears the edge volt-

age is not a↵ecting the bulk. But on second thought,
in the bulk of the QH system exchange interactions be-
tween electrons lead to ferromagnetism with the order
parameter n. In the limit of small Zeeman energy, this
renders skyrmions, carrying charge e, as the low lying
bulk excitation [11]. An electric current ji on the edges
exert a nonequilibrium spin-transfer torque on the order
parameter,

⌧i = (~/2e)(ji · r)n, (5)

that performs work Wi when there is spin dynamics at
the interfaces. The amount of work done on the bulk by
the edge current is given by

Wi =

Z
dSdt⌧i · ṅ⇥n =

h

e

Z
dSdt ẑ · (J ⇥ ji) =

h

e
jiN1 ,

(6)
where J = �(1/4⇡)n · [(ẑ ⇥r)n ⇥ ṅ] is the skyrmion
current density, and |ji| = ji. It can be checked that net
positive topological charge of skyrmions N1 injected into
the bulk is given by

N1 =
1

4⇡

Z
dS n · (@xn ⇥ @yn) . (7)

At a temperature T , the bulk gap can be regarded as the
energy required to nucleate a skyrmion, E0 = Esk. As
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FIG. 1. Skyrmion injection in quantum Hall system with a
2D strip geometry where the left edge is kept at a constant
bias voltage V . Such a setup facilitates a transport of electric
charge e per skyrmion across the bulk, as shown in the insets.
At the right edge, the current is induced by the outflow of
skyrmions.

The quantum Hall system.—We first test our idea with
the ν = 1 integer quantum Hall system by reproducing
some of its well-known transport properties. To this end,
we consider a quantum Hall strip in contact with a source
electrode held at voltage V , and a grounded drain elec-
trode. See Fig. 1. The left edge state flowing out of the
source electrode carries the Hall current. When the en-
tire edge is equilibrated with the voltage V of the charge
reservoir, the Hall conductance is exactly quantized to
σH = e2/h and the current j = V σH ŷ is dissipationless.

In the bulk, exchange interactions between the electron
spins lead to ferromagnetism with a vectorial order pa-
rameter n, where skyrmion excitations are characterized
by their topological charge

q =
1

4π

∫
d2r n · (∂xn× ∂yn) . (4)

We therefore consider the following dissipation chan-
nel. The spin-polarized electric current j along the edge
exerts a spin-transfer torque on the ferromagnetic order
parameter [11, 12],

τ = − h

4πe
(j · ∇)n. (5)

In the presence of spin dynamics, this torque performs
work [6]

W =

∫
d`dt ṅ ·τ ×n =

h

e

∫
d`dt ẑ ·(J× j) =

h

e
j∆q, (6)

where J = −(1/4π) [(ẑ×∇)n× ṅ] · n is the skyrmion
current density, and the integral is taken along the edge.
This defines a local chemical potential for the skyrmions
µ = δW/δq = (h/e)j. Substituting in j = V (e2/h), we
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FIG. 2. Schematic of a topological superconductor at a tem-
perature T whose edge is coupled to a heat reservoir at tem-
perature Tr = T+δT . The thermal bias instigates an entropy
flow carried by the MZMs, which are bound to the vortex core.

obtain µ = eV > 0, which is precisely the local electro-
chemical potential provided by the charge reservoir. As
expected, each skyrmion, as the lowest-lying charged ex-
citation in the quantum Hall system, carries one electron
charge [5].

The work done by the edge current facilitates the
skyrmion nucleation, as described by Eq. (2),

R = ρ0e
βeV . (7)

The injected skyrmion current in the bulk can be de-
scribed by a combination of the density-driven diffusion
and the transverse gyrotropic motion due to its nonzero
topological charge [6, 13]. At the opposite edge of the
strip, according to the Onsager reciprocity, the spin dy-
namics associated with the skyrmion annihilation induces
an electromotive field [14],

E = − h

4πe
(∇n× ṅ) · n, (8)

which drives the current

j̃ =
e2

h

∫
d` · E = eq̇. (9)

Again recalling each topological charge corresponds to
one electron charge e, the skyrmion transport infers a
partially charge-conductive bulk. This reproduces the
standard picture for the integer quantum Hall leakage
at finite temperatures. The quantization breaks down
as the injected skyrmion current is nonvanishing even in
the macroscopic limit. The electric leakage (and the as-
sociated backflow) is governed by skyrmion diffusion [6],
whose impedance scales with the strip width. From our
perspective, using the edge mode as an interconnect, we
can effectively tune the skyrmion charge current in the
quantum Hall bulk by an external electric charge reser-
voir. More complex multiterminal circuits therefore can
potentially be utilized for skyrmion manipulations.

Topological p+ ip superconductor.—As a second exam-
ple, we consider vortex injection into a two-dimensional

topological p+ ip superconductor, assuming spinless elec-
trons and ordinary vortices with quantized flux hc/2e
(see Fig. 2). Realization of such a topological phase has
been proposed in various heterostructures [15–18].

Here, the edge states due to the momentum-space
topology are gapless (for a thermodynamically-large sys-
tem) chiral Majorana states. While electric bias is no
longer an practical option for these charge-neutral edge
states, they are amenable to thermal bias. As we will
show in the following, the Majorana edge states can me-
diate an entropically favored injection of vortices. This
is made possible by the presence of the Majorana bound
states in the vortex cores. For a vortex far away from
the edges, the energy spectrum of the bound states is
roughly given by En ∼ (∆2/EF )|n| [7, 19], where ∆ is
the superconducting pair potential in the bulk, EF is the
Fermi energy and n takes integer values. There exists
one MZM, separated from the first excited level by the
minigap ω0 = ∆2/EF .

We set the system at a low temperature kBT � ω0 �
∆, such that the excitation of either Andreev bound
states in vortices or Bogoliubov quasiparticles in the bulk
is negligible. In this setting, consider the adiabatic injec-
tion of a single vortex from the edge. After the injection,
the MZM bound to the vortex core contributes an en-
tropy increase ∆S = (1/2)kB ln2 to the bulk, which is
the universal fractional entropy of an MZM [20].

Microscopically, the entropy increase in our scheme can
be captured by a simple impurity model, where an MZM
is coupled to the chiral Majorana edge mode. Within
the energy window of thermal fluctuations, we can safely
treat the edge mode as linearly dispersing, with a con-
stant density of state ν0 ∝ 1/∆ [21]. We consider the
hybridization of the MZM and the edge mode via a local
hopping interaction t, which leads to the MZM density
of states in the Breit-Wigner form:

ν(ω) =
1

π

Γ

ω2 + Γ2
, (10)

where the hybridization energy Γ = πν0t
2. The

entropy contribution can then be evaluated using
SM = −∂FM/∂T with the free energy FM =
−(1/β)

∫∞
0
dων(ω) ln[1 + exp(−βω)]. Note that the in-

tegral is taken only over positive energies. Since the hop-
ping amplitude t is dependent on the distance of the
vortex from the edge d [22], the injection process ef-
fectively tunes the hybridization energy Γ from a large
value at d . ξ to infinitesimal at d � ξ, where ξ is
the coherence length of the superconductor. In these
two limits we have respectively SM (βΓ � 1) → 0 and
SM (βΓ� 1)→ (1/2)kB ln2, which gives the entropy in-
crease ∆S. We focus on the effects due to the Majorana
states here, neglecting other generic contributions to the
entropy, such as the positional configuration of the vor-
tices.

We now turn on the thermal bias by coupling the edge
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to an external heat reservoir at a slightly higher tem-
perature Tr = T + δT , shown in Fig. 2, assuming the
thermalization between the edge and the bulk due to
electron-phonon coupling is relatively slow. Associated
with nucleation of the each vortex, an MZM at temper-
ature Tr is injected into the bulk, delivering an energy
transfer Tr∆S. This heat transfer from the Majorana
edge into vortex motion is closely analogous to the heat
extraction by the adiabatic demagnetization cooling [23].
For this thermally biased topological superconductor, the
tuning parameter that enables the energy transfer is the
hybridization energy between the MZM and the edge
mode during the vortex injection, as discussed above.
We therefore emphasize again on the functionality of the
edge mode as an interconnect between the heat reservoir
and the bulk, which is essential in realizing the facilitated
injection of topological charges.

The energy transfer Tr∆S, compared with that in the
equilibrium T∆S, can effectively lower the energy bar-
rier for vortex injection. The raised ratio between the
nucleation and escape rates is

R = ρ0e
[(1/2) ln2]δT/T = ρ02δT/2T , (11)

as given by Eq. (3). Taking a double-log plot of the vor-
tex injection rate versus δT/T , we obtain a linear func-
tion with the slope governed by the universal fractional
entropy of an MZM. This feature could be measured in
experiments to detect topological phases in superconduc-
tors. Our thermal biasing scheme via the edge states
could also be explored to generate a controllable current
of MZM for braiding purposes, etc.

Discussion.—Our perspective has focused on the in-
terplay between momentum- and real-space topologies,
leaving out of the picture various other dissipation chan-
nels for the edge states, and the rich dynamical effects of
the topological charges themselves, which generally exist
in systems with or without momentum-space topology.
In the following, we examine the experimental relevance
of our perspective.

In order to study the Majorana vortex transport that
is affected by the MZM core state, a superconductor with
a large minigap is required to isolate MZMs from other
midgap states. Moreover, a superconductor with a short
superconducting coherence length ξ can potentially re-
duce vortex pinning by impurity and disorder in the bulk.
At low temperatures, the electron interaction with dilute
thermal phonons leads to the broadening of the Majo-
rana bound state, which is exponential with ∆ [24], i.e.,
∼ exp[−∆/kBT ], and hence unimportant in the regime
of interest, T � Tc. For example, the topological super-
conductor (Li1−xFex)OHFeSe [25] with a small coherence
length ξ ' 1.4 nm, high Tc (42K), and a large supercon-
ducting gap 2∆ ' 20 meV can be robust against tem-
perature fluctuations, which may be an attractive test
bed for our perspective. The small Fermi energy of the
superconductor EF ' 50-60 meV, leads to a relatively

large minigap ω0 ' 1 meV, which unambiguously sepa-
rates MZM from other low-lying core states and impurity
effects at T = 0.4K and magnetic field of 10T [25].

It is clear that in practice, one has to take into account
nonuniversal properties such as contamination from im-
purity states and sample geometry. For example, the
vortex-entry energy barrier in an ordinary type–II super-
conductor can vary with sample size and geometry [26],
which are measured through their effects on the hystere-
sis of the magnetization curves [27, 28]. This suggests a
simple route for exploring macroscopic signatures of the
underlying quantum statistics in driven collective vortex
dynamics through nontrivial geometries. In particular,
to have a more precise control over the nucleation of vor-
tices, one can tailor the edge geometry and the applied
magnetic field to harness the vortex entry barrier.

In addition, the vortex motion is often accompanied
by the spectral flow of the fermionic states bound to its
core [29], which could affect the thermal transport [30].
Here, we consider weak bias at the boundary and thus
slow (quasistatic) vortex dynamics. In this limit, dynam-
ical effects such as the spectral flow of states above the
minigap in the vortex core should not significantly change
our conclusions [31]. With the excitation of antivortices
suppressed by an external magnetic field, only one species
of vortices is assumed. We have also neglected the possi-
ble interactions between vortices, which may be justified
since the Majorana tunneling is exponentially suppressed
as a function the distance between vortices [22]. Depend-
ing on the global geometry, we may also need to keep
track of the winding superflow built up due to vortex flow
and the backaction by the associated free energy [32].

The advantage of considering the topological aspects
is that the quantities of interest are “quantized”, such as
the chemical potential of skyrmions in the quantum Hall
example, and the entropy per MZM in the topological su-
perconductor example. A half quantized entropy change
was recently proposed to be measurable as the finger-
print signature of an MZM by coupling it to a metallic
lead [33]. Here, having these definite quantities could en-
able us to effectively control the biased injection of topo-
logical charges. Furthermore, the nucleation timescale of
the vortices that bind an MZM is exponentially affected
by entropic effects, 1/R = (1/ρ0)2−δT/2T . This serves
as an example of enthalpy-entropy compensation, or the
Meyer-Neldel rule [34, 35] for topological charge nucle-
ation.

Since energy transfer, either in work or heat, is affected
by noise in the leads and the order parameter variations,
it may fluctuate between different realizations of the nu-
cleation process. Fortunately, taking such fluctuations
into consideration, our formalism still applies thanks to
the well-established Jarzynski equality [36]. Instead of
defining a chemical potential through the averaged work
〈W 〉, we can think of the average of the exponentiated
work 〈e−βW 〉 = e−β∆F . The equality holds for nonequi-
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librium states, as well as in the presence of strong system-
environment coupling [37]. The biasing effects of ∆F can
then be discussed similarly to what we have shown.

The examples we have discussed are based on the well-
ordered phase of the bulk. Strong thermal fluctuations,
on the other hand, can sometimes be more favorable for
the injection of topological charges [38], with easily acti-
vated dynamics of the order parameters. For an under-
standing near the critical temperature, a dynamic critical
theory is needed with stochastic terms and nonequilib-
rium drive [39], which is interesting for future studies.
We remark that ν = 1 integer quantum Hall bilayer is
another experimental platform for skyrmionic pseudospin
textures, as well as vortex injection (due to the easy-plane
anisotropy) [40].

In this work, we have presented a framework to trig-
ger and control bulk transport of topological charge by
thermodynamic biasing at the edges, which is governed
by the universal properties of the topological charges.
Along with the discovery of more topological materials,
the interplay between the band topology and the real-
space order-parameter textures takes place in a diverse
range of settings. The edge states, which are relatively
easy to access in experiments, provide a promising route
to bias and control the transport of topological charges
in the bulk.

It is a pleasure to acknowledge discussions with Hector
Ochoa and Pascal Simon. This work was supported by
the U.S. Department of Energy, Office of Basic Energy
Sciences under Award No. DE-SC0012190.

∗ M. T. A. and S. Z. contributed equally to this work.
[1] N. D. Mermin, Rev. Mod. Phys. 51, 591 (1979)
[2] Y. Tserkovnyak, J. Appl. Phys. 124, 190901 (2018)
[3] Z-D. Song, L. Elcoro, and B. A. Bernevig, Science 367,

Issue 6479, (2020)
[4] G. E. Volovik, The Universe in a Helium Droplet, Claren-

don Press, Oxford (2003)
[5] S. L. Sondhi, A. Karlhede, S. A. Kivelson, and E. H.

Rezayi, Phys. Rev. B 47, 16419 (1993)
[6] H. Ochoa, S. K. Kim, and Y. Tserkovnyak, Phys. Rev. B

94, 024431 (2016)
[7] G. E. Volovik, JETP Lett, 70, (1999)
[8] C. Nayak, S. H. Simon, A. Stern, M. Freedman, and S.

Sarma, Rev. Mod. Phys. 80, 1083 (2008)
[9] M. Chauwin, X. Hu, F. Garcia-Sanchez, N. Betrabet,

A. Paler, C. Moutafis, and J. S. Friedman, Phys. Rev.
Applied 12, 064053 (2019)

[10] H. Eyring and M. Polanyi, Z. Phys. Chem. 227, 1221
(2013)

[11] J. C. Slonczewski, J. Magn. Magn. Mater. 159 L1 (1996);
L. Berger, J. Appl. Phys. 49, 2516 (1978)

[12] S. Zhang and Z. Li, Phys. Rev. Lett. 93, 127204 (2004)
[13] J. Zou, S. K. Kim, and Y. Tserkovnyak, Phys. Rev. B

99, 180402(R) (2019)
[14] Y. Tserkovnyak and M. Mecklenburg, Phys. Rev. B 77,

134407 (2008); Y. Tserkovnyak and S. A. Bender, Phys.
Rev. B 90, 014428 (2014)

[15] R. Aguado, La Rivista del Nuovo Cimento 40, 523 (2017)
[16] C-K. Chiu, T. Machida, Y. Huang, T. Hanaguri, and F-C

Zhang, Sci. Adv. 28 (2020)
[17] J-P. Xu, C. Liu, M-X. Wang, and et al, Phys. Rev. Lett.

112, 217001 (2014); H-H. Sun, K-W. Zhang, L-H. Hu,
and et al, Phys. Rev. Lett. 116, 257003 (2016)

[18] J. D. Sau, R. M. Lutchyn, S. Tewari, and S. Das Sarma,
Phys. Rev. Lett. 104, 040502 (2010)

[19] M. Stone, and R. Roy, Phys. Rev. B 69, 184511 (2004)
[20] M. Stone and S-B Chung, Phys. Rev. B 73, 014505 (2006)
[21] J. Alicea, Rep. Prog. Phys., 75, Number 7. (2012)
[22] M. Cheng, R. M. Lutchyn, V. Galitski, and S. Das Sarma,

Phys. Rev. Lett. 103, 107001 (2009)
[23] M. Balli, S. Jandl, P. Fournier, and A. Kedous-Lebouc,

Applied Physics Reviews 4, 021305 (2017)
[24] P. P. Aseev, P. Marra, P. Stano, J. Klinovaja, and D.

Loss, Phys. Rev. B 99, 205435 (2019)
[25] Q. Liu, C. Chen, T. Zhang, and et al, Phys. Rev. X 8,

041056 (2018)
[26] Y. M. Wang and A. Zettl, S. Ooi and T. Tamegai, Phys.

Rev. B, 65, 184506 (2002)
[27] C. P. Bean and J. D. Livingston, Phys. Rev. Lett. 12

(1964); G. R. Berdiyorov, L. R. E. Cabral, and F. M.
Peeters, J. Math. Phys. 46, 095105 (2005)

[28] E. Zeldov, A. I. Larkin, V. B. Geshkenbein, M. Kon-
czykowski, D. Majer, B. Khaykovich, V. M. Vinokur, and
H. Strikhman, Phys. Rev. Lett. 73 1428 (1994)

[29] N. B. Kopnin and M. M. Salomaa, Phys. Rev. B 44, 9667
(1991)

[30] A. Freimuth and M. Zittartz, Phys. Rev. Lett. 84, 4978
(2000)

[31] M. Stone, Phys. Rev. B 54, 18, (1996)
[32] D. Jones, J. Zou, S. Zhang and Y. Tserkovnyak, Phys.

Rev. B 102 140411(R) (2020)
[33] S. Smirnov, Phys. Rev. B 92, 195312 (2015); E. Sela, Y.

Oreg, S. Plugge, N. Hartman, S. Luscher, and J. Folk,
Phys. Rev. Lett. 123, 147702 (2019); S. Smirnov, Phys.
Rev. B 103, 075440 (2021)

[34] A. Yelon and B. Movaghar, Phys. Rev. Lett. 65, 618
(1990)

[35] J. Wild, T. N. G. Meier, S. Pöllath, M. Kronseder, A.
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