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We show that the onset of quantum chaos at infinite temperature in two many-body 1D lattice
models, the perturbed spin-1/2 XXZ and Anderson models, is characterized by universal behavior.
Specifically, we show that the onset of quantum chaos is marked by maxima of the typical fidelity
susceptibilities that scale with the square of the inverse average level spacing, saturating their
upper bound, and that the strength of the integrability/localization breaking perturbation at these
maxima decreases with increasing system size. We also show that the spectral function below the
“Thouless” energy (in the quantum-chaotic regime) diverges when approaching those maxima. Our
results suggest that, in the thermodynamic limit, arbitrarily small integrability/localization breaking
perturbations result in quantum chaos in the many-body quantum systems studied here.

Quantum chaos and eigenstate thermalization are two
intertwined fields that have been the focus of much re-
cent attention in the context of the emergence of statisti-
cal mechanics and thermodynamics in isolated quantum
systems [1–3]. Those two fields are built on foundational
analytical and computational results [4–14], and they
have been recently linked to typicality ideas that date
back to von Neumann’s work [15–17]. When quantum-
chaotic systems (which are expected to exhibit eigenstate
thermalization) are taken far from equilibrium, few-body
operators (observables) generically equilibrate under uni-
tary dynamics to the predictions of traditional statistical
mechanics (they “thermalize”). This has been verified in
experiments with ultracold quantum gases [18–21]. The
“nonthermalizing” counterpart to quantum-chaotic sys-
tems are integrable [22–26] and disorder-localized [26–
29] systems, which have also been probed in experiments
with ultracold quantum gases [21, 30–35].

In the clean case, a deeper understanding of what hap-
pens when quantum-chaotic systems approach integrable
points is still needed. In finite systems there is a crossover
in which quantum chaos [36–44] and eigenstate thermal-
ization [39, 42, 43, 45, 46] indicators worsen. In the ther-
modynamic limit one expects quantum chaos and eigen-
state thermalization to break down only at the integrable
point [36–44], but the time scale for thermalization to di-
verge approaching that point [1, 47–52]. The latter has
been seen in recent experiments [21], and can be under-
stood in the context of Fermi’s golden rule [52, 53] and
of the scaling of the quantum metric tensor with system
size [44]. In the disorder-localized case, localization was
argued to be perturbatively stable against weak short-
range interactions [54, 55] and against strong interactions
in one-dimension (1D) [56]. Disorder-induced localiza-
tion in interacting systems is known as many-body lo-
calization and has attracted much theoretical and exper-
imental research in the strongly interacting regime [26–
29]. Recent works have argued against and in favor of
the occurrence of many-body localization in that regime

in the thermodynamic limit [57–62].
We explore the onset of quantum chaos at infinite

temperature in perturbed integrable and noninteracting
disorder-localized chains, as well as its destruction upon
approaching trivial classical limits. One of our goals is
to identify universal features and differences between the
clean and disordered cases. We compute fidelity suscep-
tibilities χ [44, 63], which are equivalent to the diago-
nal components of the quantum geometric tensor [64, 65]
or the norm of the adiabatic gauge potential [44], and
spectral functions. Fidelity susceptibilities are commonly
used to detect quantum phase transitions [64–68]. We
find that the departure from quantum chaos is charac-
terized by a higher sensitivity of eigenstates to pertur-
bations [44, 61, 69], which results in maxima of the typ-
ical fidelity susceptibility that scale with the square of
the inverse level spacing. The shifts in the maxima’s
positions with system size are consistent with, at infi-
nite temperature in the thermodynamic limit, quantum
chaos only failing to occur at the unperturbed integrable,
noninteracting disorder-localized, and integrable infinite-
interaction (classical) limits.

We study the (clean) extended spin-1/2 XXZ chain:
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−
i+1 + H.c.

)
+ ∆Ŝzi Ŝ
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with J =

√
2, ∆ = (

√
5+1)/4, and ∆′ ∈ [10−4, 101]. Ĥcln

is Bethe-ansatz integrable for ∆′ = 0, and Ĥcln/∆
′ corre-

sponds to two disconnected Ising chains for ∆′ =∞. We
also study the Anderson chain with added nearest neigh-
bor interactions, which we write in the spin language as
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(2)
with J =

√
2, hi ∈ [−h, h] for h = (

√
5 + 1)/4, and

∆ ∈ [10−3, 101] [70]. Ĥdsr is the Anderson model for
∆ = 0, and Ĥdsr/∆ is the Ising chain for ∆ =∞.
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To probe the eigenkets {|m〉} of the models above,
we compute the typical fidelity susceptibility χtyp(O) =

exp(ln[χm(O)]) (in short, the susceptibility) associated
to observable Ô, where

χm(O) = L
∑
l 6=m

|〈m|Ô|l〉|2

(Em − El)2
. (3)

The average ln[χm(O)] is carried out over the central
50% of eigenstates in the spectrum. We also compute
the average spectral function |fO(ω)|2 = |fOm(ω)|2 over
the same 50% of eigenstates, where

|fOm(ω)|2 = L
∑
l 6=m

|〈m|Ô|l〉|2δ(ω − ωml). (4)

We replace δ(x) → µ/[2π(x2 + µ2)] with µ = 0.9ωmin,
where ωmin is the minimum level spacing. The factor of L
in Eqs. (3) and (4) accounts for the Hilbert-Schmidt norm
of our translationally invariant intensive observables.

The specific observables Ô considered [71] are the near-
est neighbor “kinetic” K̂n and interaction Ûn energies:

K̂n =
1

L

L∑
i=1

(
Ŝ+
i Ŝ
−
i+1 + H.c.

)
, Ûn =

1

L

L∑
i=1

Ŝzi Ŝ
z
i+1,

(5)
and the next-nearest neighbor kinetic energy K̂nn. As
shown recently [44, 72, 73], in integrable systems the
response of eigenstates to perturbations depends on
whether the perturbations do or do not break integra-
bility. Keeping in mind that if Ûn (K̂nn) is added to Ĥcln

integrability is preserved (destroyed), while if K̂n (Ûn)
is added to Ĥdsr localization is preserved (destroyed), in
what follows we show results for Ûn and K̂nn (K̂n and
Ûn) when studying Ĥcln (Ĥdsr).

In Fig. 1 we show χtyp vs ∆′ (strength of the inte-
grability breaking next-nearest neighbor interaction), for
Ûn [Fig. 1(a)] and K̂nn [Fig. 1(b)]. The susceptibilities
are scaled as expected for quantum-chaotic systems, for
which χtyp ∝ LD−1ω−2H (ωH is the mean level spac-
ing and D is the Hilbert space dimension [74]) because
|〈m|Ô|l〉|2 ∝ D−1 for Em − El → ωH [1, 73]. For all
chain sizes, the scaled susceptibilities exhibit an excel-
lent collapse for about a decade in ∆′ when ∆′ ∼ 1.
The region over which the scaled susceptibilities collapse
increases (both towards smaller and larger values of ∆′)
with increasing system size. This highlights a robust, and
increasing with system size, quantum-chaotic regime.

The quantum-chaotic regime in Fig. 1 is separated
from the integrable ones at small and large ∆′ by max-
ima in χtyp [71]. As a result of the trivial nature of the
∆′ = ∞ model, the large-∆′ maxima are more affected
by finite-size effects than the small-∆′ ones. In what fol-
lows we focus on the latter. The inset in Fig. 1(a) shows
that χtyp at the small ∆′ maxima scales as the square of

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

D
(ω

H
)2

χ
ty

p
 /

 L

∆’
-2.55

10
-4

10
-3

10
-2

ω
H

10
2

10
3

10
4

10
5

10
6

χ
ty

p

ω
H

-1.98

10
-4

10
-3

10
-2

10
-1

10
0

10
1

∆’

10
-3

10
-2

10
-1

10
0

10
1

10
2

D
(ω

H
)2

χ
ty

p
 /

 L

L = 18
L = 20
L = 22
L = 24

10
-4

10
-3

10
-2

10
2

10
3

10
4

10
5

10
6

ω
H

-1.99

10
-4

10
-3

10
-2ω

H

10
-1

∆
’
*

ω
H

0.39
10

-1

(a) U
n

(b) K
nn

*

Figure 1. Typical fidelity susceptibility χtyp (scaled
to exhibit collapse in the quantum-chaotic regime) vs the

integrability-breaking parameter ∆′ for observables Ûn (a)

and K̂nn (b) in clean periodic chains. To calculate χtyp and
ωH we average over the central 50% of the eigenstates in the
even-Z2 sector in each total quasimomentum sector consid-
ered. For L < 24, we report the weighted average over all
k 6= (0, π) sectors, while for L = 24 we report results for the
k = π/2 sector. Circles on the y-axis show χtyp at the inte-
grable point (∆′ = 0), and diamonds show the maximal χ∗typ
(at ∆′∗ = −b/2a) obtained from polynomial fits ax2 + bx+ c
(black solid lines about the maxima). The dotted lines on the
right of the first peaks are guide for the eye and depict ∆′−2.55

behavior. Inset in (a): χ∗typ vs ωH for both observables, along
with the results of power-law fits. Inset in (b): ∆′∗ vs ωH for
both observables (the values of ∆′∗ overlap). The dotted line
depicts ω0.39

H behavior.

the inverse average level spacing ωH . This scaling corre-
sponds to the maximum possible sensitivity of quantum
eigenstates to a perturbation [44]. It is exponentially
larger, in system size, than expected from random ma-
trix theory. The position of the maxima, ∆′∗, appears to
move towards ∆′ = 0 exponentially fast with increasing
system size (notice the near equal shift with increasing L
and the log scale in the ∆′-axis). In the inset in Fig. 1(b),
we plot of ∆′∗ vs ωH showing that our numerical results
are consistent with ∆′∗ ∝ (ωH)α, with α ∼ 0.39. We note
that our results in Fig. 1 are robust, ∆′∗ and the scaling
of χ∗typ are nearly identical for both observables [71].

The susceptibility is related to the spectral function
defining the dynamical response of the system [44, 65].
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Figure 2. Spectral functions in clean periodic chains with
L = 24 for observables Ûn [(a) and (b)] and K̂nn [(c) and
(d)] over two decades of the integrability-breaking parameter
∆′ [see labels at the top and legends in (b) and (d)]. In (a)
and (c), the top insets show FO = (ω/∆′)2|fO(ω)|2 vs ω/∆′

at ∆′ = 1.58 × 10−2, while the bottom insets show |fO(ω)|2
vs ω/∆′ at ∆′ = 1.58 × 10−1, for the three largest chains
studied. The insets in (b) and (d) show |fp

O(ω)|2 vs ∆′, where
|fp

O(ω)|2 is the value of |fO(ω)|2 at the plateaus in the main
panels (and for other values of ∆′ for which |fO(ω)|2 is not
shown). The dotted lines are guide for the eye and depict
∆′−2.55 behavior. All computations were done as for Fig. 1.

Indeed, it follows from Eqs. (3) and (4) that

χm(O) =

∫ ∞
−∞

|fOm(ω)|2

ω2
dω. (6)

In integrable systems, |fO(ω → 0)|2 vanishes for in-
tegrability preserving perturbations [44, 71–73], leading
to a polynomial in L scaling of χm(O) [44]. Typical
(integrability breaking) perturbations in contrast have
|fO(ω → 0)|2 = O(1) [44, 71–73] resulting in exponential
in L, ∼ D scaling of the susceptibility χm(O) [44]. As
mentioned before, in quantum-chaotic systems χm(O) ∝
L/[D(ωH)2] ∼ D. The faster scaling at the maxima
χ∗typ ∝ 1/ω2

H ∼ D2 implies that the spectral function
diverges as |fO(ωH)|2 ∼ 1/ωH around ∆′∗.

Figures 2(a) and 2(c) show |fO(ω)|2 vs ω/∆′ for dif-
ferent values of ∆′ about ∆′∗ for L = 24. The data for
both observables collapse at frequencies ω/∆′ . 1 show-
ing that |fO(ω)|2 ∼ (∆′/ω)2 in that regime [75]. In the
top insets, we plot FO = (ω/∆′)2|fO(ω)|2 for different
chain sizes when ∆′ < ∆′∗. The plateaus show that the
|fO(ω)|2 ∼ (∆′/ω)2 behavior is robust to changing L [71].
For ∆′ < ∆′∗, the susceptibilities in Figs. 2(a) and 2(c)
also collapse at lower frequencies showing a nontrivial
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Figure 3. Spectral functions in disordered periodic chains
with L = 18 for observables K̂n [(a) and (b)] and Ûn [(c)
and (d)] over two decades of the interaction strength ∆ [see
labels at the top, and legends in (b) and (d)]. In (a) and
(c), the top insets show FO = (ω/∆′)2|fO(ω)|2 vs ω/∆′ at
∆′ = 1.58 × 10−2, while the bottom insets show |fO(ω)|2 vs
ω/∆′ at ∆′ = 1.58×10−1, for the three largest chains studied.
The insets in (b) and (d) show |fp

O(ω)|2 vs ∆, where |fp
O(ω)|2

is the value of |fO(ω)|2 at the plateaus in the main panels (and
for other values of ∆ for which |fO(ω)|2 is not shown). The
dotted lines are guide for the eye and depict ∆′−2.4 behavior.
To calculate |fO(ω)|2, we average over the central 50% of the
eigenstates in each chain, and then over disorder realizations
(200 for L ≤ 16, 100 for L = 17, and 50 for L = 18).

dependence of ω/∆′ [71], but this collapse gradually dis-
appears as ∆′ approaches ∆′∗.

When ∆′ increases beyond ∆′∗ and the system enters
in the quantum-chaotic regime [Figs. 2(b) and 2(d)], a
plateau develops in the spectral function at low frequen-
cies [76]. The formation and growth of the plateau with
increasing L, at a fixed ∆′ & ∆′∗, is illustrated in the
bottom insets in Figs. 2(a) and 2(c). The plateau and
the |fO(ω)|2 ∼ (∆′/ω)2 behavior coexist in the regime
in which ∆′ & ∆′∗, which is consistent with the occur-
rence of thermalization with relaxation rates dictated by
Fermi’s golden rule [51, 71]. In that regime, we find that
the spectral function |fO(ω)|2 at the plateau, |fpO|2, ap-
pears to diverge as (∆′)−β with β ∼ 2.55 [see insets
in Figs. 2(b) and 2(d)], consistent with the divergence
of χtyp in Fig. 1 (see dotted lines in the main panels).
Remarkably, it is possible to relate the scaling of |fpO|2
with ∆′ with the drift of ∆′∗ with L: ∆′∗ ∼ ωαH with
α = 1/β ∼ 0.39 [see inset in Fig. 1(b)].

We can understand this under the following scenario,
let |fO(ω)|2 = |fpO(∆′)|2 for ω < ωp(∆

′) and |fO(ω)|2 ∝
(∆′/ω)κ for ω > ωp(∆

′), with ωp(∆
′) playing the role
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of the so-called Thouless energy, and κ > 1. Then from
the spectral sum rule:

∫
|fO(ω)|2dω = O(1), we infer

that ωp(∆
′) ∝ (∆′)β , with β = κ/(κ− 1), and that

|fpO(∆′)|2 ∝ (∆′)−β . The maximum of χtyp then occurs
when ωp = ωH , i.e., when the maximum of the spectral
function occurs at the Heisenberg scale. This results in
∆′∗ ∼ ωαH with α = 1/β, and χ∗typ ∼ ω−2H . Currently, we
do not know the origin of the values of the exponents sug-
gested by our numerical calculations. Given our obser-
vation of |fO(ω)|2 ∼ (∆′/ω)2 behavior for ∆′ below and
above ∆′∗, which appears to grow in extent with increas-
ing system size [see top insets in Figs. 2(a) and 2(c)], two
scenarios come to mind: (i) the exponents observed nu-
merically are affected by finite-size effects and for larger
systems than those accessible to us κ = 2, β = 2, and
α = 1/2, and (ii) the spectral function develops a power-
law with an exponent 1 < κ < 2 before saturating to a
constant at low frequencies so that β > 2 and α < 1/2.

In Fig. 3, we show results for the spectral function
of disordered chains in the presence of nearest neighbor
interactions. The corresponding typical fidelity suscepti-
bilities are shown in Fig. 4. The results in Figs. 3 and 4
are similar to those in Figs. 2 and 1, respectively. The
similarity is remarkable considering that the unperturbed
models in both cases are strikingly different, the disor-
dered one being a noninteracting localized model and
the clean one being an interacting integrable one. The
slight differences between the results in Figs. 3 and 2 in-
clude a narrower |fO(ω)|2 ∼ (∆′/ω)2 regime in Figs. 3(a)
and 3(c) as compared to Figs. 2(a) and 2(c), and a nar-
rower regime in which |fpO|2 is consistent with a power
law scaling with ∆ in Fig. 3(d). Related to the latter, in
the inset in Fig. 4(b) the dynamical range for ∆∗ vs ωH is
smaller than in the inset in Fig. 1(b). Consequently, and
also keeping in mind that in Fig. 4 we plot typical fidelity
susceptibilities while in Fig. 3 we plot raw averages of the
spectral functions, we cannot establish a relationship be-
tween the scaling of |fpO|2 with ∆′ and the drift of ∆′∗

with L as we did for the clean case. That said, all those
differences are consistent with stronger finite-size effects,
and fluctuations associated to the disorder average, in
the disordered systems. For the latter, the largest chains
studied have L = 18 versus the L = 24 chains considered
for clean systems.

In summary, our results suggest that the onset of quan-
tum chaos at infinite temperature in the models studied,
as well as its destruction when approaching classical lim-
its for very strong interactions, is characterized by uni-
versal behavior. We focused our analysis on the onset
of quantum chaos as finite-size effects (and fluctuations
associated to disorder averages) are smaller. The main
universal feature identified is the divergence of the typi-
cal fidelity susceptibilities as ω−2H when entering (exiting)
the quantum-chaotic regime and the associated diver-
gence of the spectral functions below the Thouless en-
ergy. The latter is potentially universal, and diverges
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Figure 4. Typical fidelity susceptibility χtyp (scaled to ex-
hibit collapse in the quantum-chaotic regime) vs the interac-

tion strength ∆ for observables K̂n (a) and Ûn (b) in disor-
dered periodic chains. Circles on the y-axis show χtyp at the
Anderson-localized point (∆ = 0), and diamonds show the
maximal χ∗typ (at ∆∗ = −b/2a) obtained from polynomial fits
ax2 + bx+ c (black solid lines about the maxima). The inset
in (a) shows χ∗typ vs ωH for both observables, along with the
results of power-law fits. The errorbars are the (propagated)
standard deviation of the average over disorder realizations
(see Ref. [71] for details) at the value of ∆ (for which we car-
ried out a calculation) that is closest to ∆∗. The inset in (b)
shows ∆∗ vs ωH for both observables. The dotted line depicts
ω0.28
H behavior. All computations were done as for Fig. 3.

as ε−β (ε being either the strength of the integrability-
or localization-breaking perturbation) in the quantum-
chaotic regime. Also potentially universal is the shift of
the position ε∗ of the maximum of the fidelity suscep-
tibilities as ε∗ ∼ ωαH , as well as the relation α = 1/β
between the exponents. We note that ε∗ ∼ ωαH supports
the expectation that in clean systems in the thermody-
namic limit quantum chaos and eigenstate thermalization
break down only at the integrable point [36–44], and it
suggests that at infinite temperature the 1D Anderson in-
sulator (for the parameters considered here) is unstable
against adding interactions. An interesting open question
is whether this relates to recent findings that many-body
localization is unstable against the insertion of thermal
“bubbles” if disorder is not strong enough [77, 78].

Much still needs to be explored, such as what happens
at finite temperatures and when one changes the parame-
ters of the unperturbed Hamiltonians (which we selected
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to be O(1) to minimize finite-size effects). In the dis-
ordered case, two parameter regimes to be explored are
the strong disorder and strong interaction regimes. The
contrast between the small ∆ and large ∆ peaks in the
fidelity susceptibilities in Fig. 4 suggest that obtaining
meaningful scalings using full exact diagonalization in
those regimes will be computationally very challenging.
We note that the results reported in this work required
about one million cpu hours of calculations.

We acknowledge discussions with E. Altman, A. Dy-
marsky, S. Gopalakrishnan, D. Huse, M. Pandey, and
L. Vidmar. This work was supported by the National Sci-
ence Foundation under Grants No. PHY-2012145 (T.L.
and M.R.) and DMR-1813499 (A.P.), and by the AFOSR
under Grant No. FA9550-16-1-0334 (A.P.). The compu-
tations were carried out in the Roar supercomputer in the
Institute for Computational and Data Sciences (ICDS) at
Penn State.
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