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We develop a theory for manipulating the effective band structure of interacting helical edge
states realized on the boundary of two-dimensional time-reversal symmetric topological insulators.
For sufficiently strong interaction, an interacting edge band gap develops, spontaneously breaking
time-reversal symmetry on the edge. The resulting spin texture, as well as the energy of the time-
reversal breaking gaps, can be tuned by an external moiré potential (i.e., a superlattice potential).
Remarkably, we establish that by tuning the strength and period of the potential, the interacting
gaps can be fully suppressed and interacting Dirac points re-emerge. In addition, nearly flat bands
can be created by the moiré potential with a sufficiently long period. Our theory provides a novel
way to enhance the coherence length of interacting helical edges by suppressing the interacting gap.
The implications of this finding for ongoing experiments on helical edge states is discussed.

Introduction. — Moiré heterostructures, such as magic-
angle twisted bilayer graphene, provide tunable platforms
to realize novel interaction-driven phases [1-36]. Mi-
croscopically, these interaction-driven phenomena result
from extremely flat bands that are created by the relative
twist of two-dimensional (2D) low-energy Dirac cones to
a magic angle [37, 38|, so that many body interactions
become significant. Recent proposals have extended this
paradigm to other 2D materials [39-49], unconventional
superconductors [50, 51], ultracold atoms in optical lat-
tices [52, 53], and acoustic metamaterials [54]. Engi-
neering flat bands by tuning to a “magic angle” is quite
general and may be induced by external quasiperiodic
potentials and tunneling processes [55-59] that can be
extended to a “magic-continuum” [60].

A moiré superlattice potential can also be used to con-
trol and manipulate a 2D Dirac cone on the surface of a
topological insulator, producing favorable conditions to
realize interacting instabilities such as topological super-
conductivity or quantum anomalous Hall by enhancing
the density of states [61, 62]. However, if the surface
states are protected by time-reversal symmetry, the for-
mation of a flat, gapped, miniband is topologically ob-
structed. Spontaneous symmetry breaking permits an
interaction-driven gap, but an analysis of the strong cou-
pling regime is lacking.

In this letter, by focusing on the helical edge states
of a 2D topological insulator, we utilize the power of
bosonization to provide a clear theoretical demonstra-
tion of how strongly coupled interaction-driven phases
emerge in moiré tuned topological edge states when time-
reversal symmetry is spontaneously broken. In particu-
lar, we study the interplay between interactions and a
moiré potential (specifically, a periodic potential in the
continuum theory) on the 1D helical edge states of a
2D time-reversal-invariant topological insulator [63-78],
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FIG. 1. Setup and band structure manipulation. (a) Illus-
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tration of the setup. A 2D TI edge state is perturbed by
an external periodic potential, V(z) = wcos(Qz). (b) For
a weak repulsive interaction (1/2 < K < 1), the edge band
is unaffected by the external potential. (c) For a strong re-
pulsive interaction (K < 1/2), interaction-induced gaps can
open at both zero energy and finite energies. In addition, for
particular w and @, the interaction-induced gap may vanish,
resulting in a re-emergent gapless edge (middle figure). The
gaps are labeled by m corresponding to E = mvQ/4.

shown in Fig. 1(a). Distinct from previous works on the
interaction-induced helical spin texture [79] and RKKY
induced orders in the external spins [80, 81], we focus
on the band dispersion of the strongly interacting edges,
which can be manipulated by a time-reversal breaking
gap at zero energy that develops due to interaction in-
duced backscattering, i.e. umklapp processes [82, 83] [as
sketched in Fig. 1(b) and (c)]. We show systematically
that the spin textures of the interacting gaps can be con-
trolled by both the oscillation period [79] and the am-
plitude of the periodic potential and exhibit a nontrivial
structure. With the ability to manipulate the gaps in the
band structure, we demonstrate that the edge band can
be engineered such that re-emergent Dirac points and



nearly flat bands can be realized. The re-emergence of
the Dirac point at F = 0 [Fig. 1(c)] indicates that the
periodic potential can enhance the coherence length of
the strongly interacting helical edge state, which is use-
ful for ongoing experiments trying to observe topological
insulator edge states in quantum wells [69-72, 84]. Our
proposed set up depicted in Fig. 1(a) can also be realized
in ultracold Fermi gases subjected to a two-dimensional
spin orbit coupling [85, 86], where the edge potential can
be generated via an additional one-dimensional optical
lattice.

Model. — The edge of a 2D time-reversal-invariant
topological insulator is described by a 1D Dirac Hamil-
tonian perturbed by interaction and an inhomogeneous
potential[64, 82, 83],
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where v, = 4wvp is the Fermi velocity for r = R/L
and Hyp, denotes the forward scattering interactions [87]
whose precise form is not important here. In the above
expressions ¢¥g (¢r) is the right-moving (left-moving)
fermionic field, V(x) is a spatially varying potential, U
encodes the interaction strength, 6G = 4kp — G, kp is
the Fermi wavevector, GG is a reciprocal lattice vector, and
: O : denotes the normal ordering of ©. The right-moving
and the left-moving fermions form a Kramers pair. Un-
der time-reversal, the fermionic fields are transformed as:
Yr — Y, ¥ — —gr, and i — —i. Thus, time-reversal
symmetry forbids elastic single-particle backscattering
(e.g., wsz), but long-wavelength forward scattering
(e.g., 1/1;%1/13) is allowed. In the presence of Rashba spin
orbit coupling, the time-reversal symmetric backscatter-
ing interaction [U term in Eq. (1)] can arise, and spin
is no longer a good quantum number. We focus only on
G = 0 for simplicity, although the results do not rely on
this assumption.

Thus, the interacting inhomogeneous helical edge can
be described by H = Hy + Hy + Hy + Hyy, [88, 89]. To
study the interplay between interactions and an external
periodic potential, we consider

V(x) = wcos (Qx), (2)

where w controls the strength of the potential and @ > 0
dictates the oscillation in space. We assume that 27/Q
is not commensurate with the 2D lattice constant d. We
also assume that the edge physics does not change the
bulk topological phase.

Commensurate-incommensurate transitions.— The in-
teracting helical fermions can be mapped to an interact-
ing bosonic problem [87, 90] with two bosonic fields (¢
and 0) that are related to the density and current oper-
ators of the original fermion degrees of freedom (see [91]

for a detailed discussion.) To incorporate the effect of the
external potential, we perform a linear transformation,
0'(z) = 0(x) + Iv(—g sin(Qx), which yields the bosonized
Hamiltonian
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where v is the velocity of boson, K is the Luttinger pa-
rameter, U = U/(2n%a?)[92], and a is the ultraviolet
length scale in the low-energy theory. We focus only on
repulsive interactions, corresponding to K < 1. Eq. (3)
is the starting point of our work.

In the absence of the external potential (i.e., w = 0),
the Hamiltonian in Eq. (3) maps to the Pokrovsky-
Talapov model for the commensurate-incommensurate
transition [87, 93]. At the Dirac point (i.e., kp = 0), the
model is commensurate, and the cosine term in Eq. (3)
becomes relevant in the renormalization group sense, in-
ducing a spectral gap for K < 1/2 [82, 83, 87]. For fill-
ings that are sufficiently away from the Dirac point, the
model is incommensurate, and the U term is irrelevant,
suggesting a Luttinger liquid behavior.

To study Eq. (3) with a nonzero w, we express the
cosine term (U term) as a Fourier series [94]:

cos |:49’($) - 4520 sin(Qx) + 4kpx
= > |Fnlcos[40'(z) + (4kp — mQ)z + Xm], (4)

where F,, corresponds to the Fourier component of

exp [z 45;;“

itively, Eq. (4) shows that the presence of the potential
has reorganized the interaction into a series of backscat-
tering processes with momentum m(), which, in con-
junction with the Luttinger parameter, can each open
a gap in the excitation spectrum. If such a gap, la-
belled by m, opens, then time reversal symmetry on the
edge must be spontaneously broken, lifting the topologi-
cal obstruction to a gapped boundary. In the following,
we investigate Eqgs. (3) and (4) by adopting the analysis
in Refs. [95, 96], which considered a single cosine term
(w = 0 case) [87, 93], to the case with multiple cosine
terms (w # 0 case). As we will show, the gapped edge
states exhibit a nontrivial magnetic structure. Further,
the magnitude of the gap can be tuned by the strength
and period of the potential, allowing a gapless Dirac cone
to be realized at special points in the phase diagram.
The commensuration condition for each m [i.e. each
cosine term in the summand of Eq. (4)] is 4kp = mQ.
If this condition is satisfied, the F},, term in Eq. (4) can

open a band gap of size 2U6Q£m) for sufficiently strong

sin(Q:z:)] and X, is the phase of Fy,. Intu-
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FIG. 2. Phase diagram and spin texture of the time-reversal
breaking order. (a) The phase diagram for |Q| > 4(5Q£m)
based on bosonization analysis. The yellow region denotes
the metallic phase. For K < 1/2, time-reversal breaking gaps
(green regions) can be induced by the interaction. The energy
of the gap is F = mvQ/4 for an integer m. The half width
of the gap is v5Q™, as discussed in the main text. (b)-(c):
Normalized sy (z) [Eq. (6)] as a function of Qz. The phase
shift (m,n is set to zero for convenience. (b) m = 0. (c)
m = 1. We define the dimensionless parameter & = ZK—“J
In both figures, @ = 0,1, 2,3 correspond to the black dashed
lines, blue lines, green hnes and red lines respectively.

interaction (K < 1/2), as shown in Fig. 2(a). The gap-
less state will be restored by sufficiently large incommen-
suration |[4krp — mQ| > 5Q§m) as the integral over the
cosine term in Eq. (3) for this m will vanish. In general,
the threshold of commensuration, 6Q™
cated function of U, w and K [87, 93].
Q > 45@2’”), then the interacting gaps in the TI edge
spectrum are well separated and we can treat the sum-
mand of Eq. (4) as a collection of independent cosine
terms. On the other hand, if Q@ < 46Q£m), the cosine
terms in Eq. (4) interfere with each other; shortly we
will employ an exact mapping at K = 1/4 to study this
case.

, is a compli-
If, for each m,

Interacting gaps and spin texture. — For a helical edge
state with K < 1/2, the commensurate cosine term (i.e.,
satisfying |[4kp — mQ| < (5Q£m)) in Eq. (4) becomes rel-
evant, implying the formation of time-reversal breaking
gaps at the energies F(m) = mv@/4 labelled in Fig. 1(c).
A phase diagram is illustrated in Fig. 2(a). Since the
helical edge state is “spin-momentum locked,” the time-
reversal breaking gaps carry nontrivial magnetic struc-
tures. We discuss the alternative charge picture in [91].

To understand the consequence of spin momentum
locking on the magnetic texture of each gap we compute
the spin densities (s;(z)) and (s,(z)) (see [91] for defi-
nitions). When the backscattering interaction dominates
(i.e., K < 1/2 and commensurate), we employ a mean
field approach: for each mode m in Eq. (4), we solve for
0'(x) by minimizing the corresponding cosine term and

then use ¢'(x) = 0(x) + % sin(Qx) to compute the ex-
pectation values of s, and s, yielding

(s2(2))
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where (N = TN — X;n/2 is an unimportant phase fac-
tor with arbitrary integer N. The expressions in Eqgs. (5)
and (6) reduce to a single frequency oscillation [79] in
the limit 2Kw/(vQ) < 1. Generically, the SDW states
manifest non-sinusoidal oscillations due to the potential
in Eq. (2). As plotted in Figs. 2(b) and (c), the value
of w controls the spin texture of the time-reversal break-
ing order nontrivially, resulting in unusual spin order.
In particular, the ferromagnetic order at £ = 0 (equiv-
alently m = 0) can be deformed to a qualitatively dif-
ferent finite-momentum SDW state in the presence of a
sufficiently large w.

Luther-Emery theory and tunable band structure. -
To go beyond the mean field approximation, we turn
to the exact Luther-Emery refermionization mapping at
K =1/4 [87]. The interacting bosonized Hamiltonian in
Eq. (3) maps to a noninteracting massive fermion Hamil-
tonian:

M, ULv,

(7)
where 9, = +v for r = R/L is the velocity of the Luther-
Emery fermions, V(z) = V(z)/2 + vkp/2, M, = +iM
for r = R/L, M = U/(2wa), 7 denotes the opposite
direction of r, and the Luther-Emery fermionic field is
given by \IIR/L = \/T eil®/2220]  The mass term of the

Hy, — Z/dz \IJT —10,0y +V( ))\ilr—

r=R,L

Luther-Emery fermions arises from the backscattering in-
teraction [U term in Eq. (1)]. The Luther-Emery fields
(Ur and ¥y) are not simply related to the physical low-
energy fermions (R and L). Nevertheless, we can extract
information from the Luther-Emery theory such as the
energy spectrum, density, and current [88].

For the Luther-Emery fermions, the band gap induced
by spontaneous time-reversal symmetry breaking is 2| M|.
The appearance of finite-energy gaps [see Figs. 1(c) and
2(a)] can be understood intuitively by the band fold-
ing due to V(x)/2 and second order perturbation theory
in V(x)/2. Note that the gap opening condition cor-
responds to 4kp — m@Q = 0 with an integer m, which
is consistent with the commensurate condition discussed
previously.

In addition, controlling the magnitude of the periodic
potential can close/reopen the zero-energy and finite-
energy gaps. To see this analytically, we treat the peri-
odic potential as a perturbation and compute the renor-
malized velocity and effective mass, which we find to be
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FIG. 3. Luther-Emery energy bands for vQ)Q = 3M, varying
w = Kw/(vQ) (with K = 1/4). (a) ® =04 (b) @ =1 (c)
@ = 1.25 (d) @ = 2. The Luther-Emery bands contain gaps
due to spontaneous time-reversal symmetry breaking. The
Dirac points at kK = 0 and k = £Q/2 (circled by red dashed
lines) are recovered for particular values of & in (c¢) and (d).
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respectively, where Z = 1/(1 + a?) is the wavefunction
renormalization, and we have introduced a dimensionless

WZ;MZ) . Remarkably, the

Dirac mass can be renormalized to zero (i.e. M = 0)
when o = 1 | suggesting a Dirac point at £ = 0 and
band inversion signalled by the change in sign of M. This
is rather interesting as it implies not only can the Dirac
point re-emerge but this process has the potential to drive
topological transitions on the edge. We confirm the per-
turbative analysis by numerically solving Eq. (7), shown
in Fig. 3, where we plot the energy bands for a few repre-
sentative values of w, demonstrating the re-emergence of
Dirac points at zero energy [Fig. 3(c)] and finite energies
[Fig. 3(d)].

For v@Q < |M], the low-energy bands can become
nearly flat. Because of the narrow bandwidth in the
low-energy minibands, perturbation theory cannot easily
capture the qualitative features in this limit. We present
numerical results in Fig. 4. Interestingly, we still find
the gap closing for particular values of w as shown in
Figs. 4(c) and (d). In summary, the periodic poten-
tial provides a nontrivial way to manipulate the edge
bands, giving rise to finite-energy gaps, flat bands, and
re-emergent Dirac points.

Implication for experiments. — Our theory describes a
novel way to manipulate the emergent spin texture and
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FIG. 4. Luther-Emery energy bands for 3vQ = M, varying
w = Kw/(vQ) (with K = 1/4). (a) ® = 0.5 (b) @ =1 (c)
@ =3.5 (d) @ = 4.05. The energy bands are nearly flat. The
gap size at £ = 0 depends on w. Nearly doubly degenerate
zero energy bands emerge in (¢). Similar nearly degenerate
bands can also happen at finite energies as shown in (d).

edge state dispersion by an external periodic potential,
V(z) = wcos(Qx), for the strongly interacting T1 edges
state (K < 1/2). The existence of novel SDW states
is a manifestation of the spin-momentum locking in the
helical edges. Based on our prediction, the spin texture
can be controlled by both @ and w, and the predicted
results in Egs. (5) and (6) can be tested by scanning
SQUID experiments on quantum wells [97, 98].

Our results also predict that the edge states can be
driven through their own topological transition due to
a band inversion. The stability of the bulk gap as the
topological edge states are manipulated in such a funda-
mental way can be investigated using an ultracold Fermi
gas with a two-dimensional spin orbit coupling, where
both the stability of the bulk gap and the sensitivity to
the edge gap can be seen through radiofrequency spec-
troscopy measurements of the spectral function [99, 100].

Now, we discuss how our setup can enhance edge state
coherence in strongly interacting TI materials. A TT edge
state with K < 1/2 can develop a gap at E = 0 due to
spontaneous time-reversal symmetry breaking [82, 83],
causing the edge state to become insulating at £ = 0.
For finite energies away from the interacting gap, chem-
ical potential disorder generically induces localization in
a 1D massive Dirac model [88, 101], destabilizing the
quantized edge state conduction [69, 70, 72, 84]. Our
work provides a possible resolution to such an almost in-
evitable scenario for strongly interacting TT edge states.
As shown in Fig. 3 and Fig. 4, in the presence of a pe-
riodic potential, the magnitude of the gap depends on
both @ and w; for appropriate parameters, the gap can
be completely suppressed, revealing a re-emergent Dirac



point. Although such parameters are finely tuned, we
have shown that in general, the interacting gap at £ =0
is reduced in the presence of the potential. Since the
transport coherence length (defined by the length scale
at which dissipationless edge states break down) increases
as the gap decreases, this implies that the coherence
length of strongly interacting helical edge states can be
enhanced by an external periodic potential. When the
coherence length is much larger than the system size,
nearly quantized transport will result.

Thus, our work implies that a periodic potential at the
edge of a 2D TT can lead to quantized transport even in
the presence of interactions. Our proposal does not re-
quire precise information about the local potential land-
scape, in contrast to the gate training technique used in
weakly interacting TI systems [102]. Since our theory de-
scribes interaction-driven edge phases, it is particularly
relevant to 2D TT materials exhibiting strongly interact-
ing edge states [69-72, 84].
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