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Chiral magnets, which break both spatial inversion and time reversal symmetries, carry a potential
for quadratic optical responses. Despite the possibility of enhanced and controlled responses through
the magnetic degree of freedom, the systematic understanding remains yet to be developed. We here
study nonlinear optical responses in a prototypical chiral magnetic state with a one-dimensional
conical order by using the second-order response theory. We show that the photovoltaic effect
and the second harmonic generation are induced by asymmetric modulation of the electronic band
structure under the conical magnetic order, and the coefficients, including the sign, change drastically
depending on the frequency of incident lights, the external magnetic field, and the strength of spin-
charge coupling. We find that both effects can be enormously large compared to those in the
conventional nonmagnetic materials. Our results would pave the way for next-generation optical
electronic devices, such as unconventional solar cells and optical sensors, based on chiral magnets.

As represented by the development of the laser in
1960s, the research field of optical responses has been
extended from linear to nonlinear effects [1, 2]. In partic-
ular, quadratic optical responses have attracted much at-
tentions in solid state physics. The well-known example
is a photo-induced electric current due to a photovoltaic
effect (PVE) in the p-n junction of semiconductors [3],
which has been applied to photonics devices such as a
solar cell and an optical sensor. The other example is
a second harmonic generation (SHG); two photons with
the same frequency generate a new photon with twice
the frequency [4], which has been used as a wavelength
converter. Such quadratic optical responses can occur in
not only heterostructures but also bulk systems under
breaking of spatial inversion symmetry, such as semicon-
ductors [5–7], ferroelectrics [8–13], and topological mate-
rials [14–20].

Recently, the search for the nonlinear optical responses
has conducted for magnets since they potentially carry
high controllability by an external magnetic field [21–23].
Amongst others, the magnets with noncentrosymmetric
crystalline structures, called the chiral magnets, provide
an excellent platform that meets the symmetry require-
ment. The chiral magnets are known to host peculiar
magnetic textures, e.g., helices [24], skyrmions [25, 26],
and hedgehogs [27], stabilized by the Dzyaloshinskii-
Moriya (DM) interaction originating from the breaking
of spatial inversion symmetry [28, 29]. Although the lin-
ear responses such as the topological Hall effect [25] and
the magnetoelectric effect [30, 31] have been understood
based on the spin Berry mechanism [32], the systematic
investigation of nonlinear ones remains yet to be devel-
oped despite the importance for future application to
next-generation devices.

In this Letter, we theoretically investigate the
quadratic optical responses in electrons coupled with a
prototypical one-dimensional chiral magnet. Our model
exhibits magnetic textures changing from a chiral heli-
magnetic state (CHM) [Fig. 1(a)] to a chiral conical mag-
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FIG. 1. Schematic pictures of (a) a chiral helimagnetic state
(CHM) at m = 0, (b) a chiral conical magnetic state (CCM)
at 0 < m < 1, and (c) a forced ferromagnetic state (FFM) at
m = 1, where m is the magnetization parallel to the z axis.
The blue and green wavy arrows represent incoming linearly
polarized lights oscillating in the z direction with frequency ω1

and ω2, respectively. The cyan arrow represents a nonlinear
electric current generated in the CCM with frequency ω1 +ω2

along the z axis.

netic state (CCM) with spin canting [Fig. 1(b)], and to
a forced ferromagnetic state (FFM) [Fig. 1(c)] while in-
creasing the magnetic field applied to the helical axis (the
z axis in Fig. 1). By using the second-order response the-
ory, we show that the CCM, which breaks both spatial
inversion and time reversal symmetries, induces the PVE
and SHG through the asymmetric modulation of the elec-
tronic band structure. We find that these quadratic
responses vary drastically depending on the frequency
of the incident lights, the magnetization, and the spin-
charge coupling; in particular, the PVE can change its
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sign, meaning that the direction of the photo-induced
current can be switched by these parameters. Further-
more, we find that the PVE and SHG can be colossal
in comparison with the conventional semiconductors and
ferroelectric materials. Our results would lay a corner-
stone for the nonlinear transport and optical responses
in various chiral magnets.

We consider a one-dimensional spin-charge coupled
model, whose Hamiltonian is given by

H =−
∑
l,j,µ

tj(c
†
lµcl+jµ + h.c.)− J

∑
l,µ,ν

c†lµσµνclν · Sl

−
∑
l

D · (Sl × Sl+1)−
∑
l

h · Sl, (1)

where clµ(c†lµ) is an annihilation (creation) operator for a
µ-spin electron at site l on the periodic one-dimensional
chain (µ =↑ or ↓), σ = (σx, σy, σz) are the Pauli ma-
trices, and Sl represents a localized spin at site l, which
is treated as a three-component vector with normalized
length |Sl| = 1.

The first term describes the kinetic energy of itinerant
electrons, for which we take into account only the nearest-
neighbor hopping t1 and the next-nearest-neighbor hop-
ping t2 in the following calculations. The second term
represents the onsite coupling between the itinerant elec-
trons and the localized classical spins with the coupling
constant J . The third term is the DM interaction with
the DM vector D = Dẑ, where ẑ is the unit vector
along the z axis (see Fig. 1). While the DM interac-
tion arises from the relativistic spin-orbit coupling, we
omit the spin-orbit coupling in the hopping of the itiner-
ant electrons for simplicity. The last term is the Zeeman
coupling to the magnetic field along the z axis, h = hẑ,
which is taken into account only for the localized spins.

We solve the ground state of the model in Eq. (1) in-
cluding both J and D by a variational method [33]. At
zero magnetic field h = 0, the CHM is obtained with a
variable spiral pitch. In an applied magnetic field along
the z direction, h > 0, the spins are canted to the field di-
rection, resulting in the CCM [34]. We therefore assume
a chiral spin configuration given as

Sl = (
√

1−m2 cosQl,
√

1−m2 sinQl,m), (2)

where Q is the wave number specifying the period of the
spiral spin structure and m represents the magnetization
per spin; both Q and m are determined by the model
parameters in Eq. (1). The spin configuration describes
the CHM at m = 0 [Fig. 1(a)], the CCM for 0 < m < 1
[Fig. 1(b)], and the FFM at m = 1 [Fig. 1(c)].

By substituting Eq. (2) to Eq. (1), the Hamiltonian is
reduced into a 2× 2 matrix in the Fourier space up to a

constant as

H =−
∑
k′,j,µ

2tj cos

(
jk′ − jQ

2
σzµµ

)
c†k′µck′µ

− J
∑
k′,µ,ν

(√
1−m2σxµν +mσzµν

)
c†k′µck′ν , (3)

where k′ = k+ Q
2 σ

z
µµ. By the diagonalization, we obtain

two energy bands split by 2J , whose energy dispersions
and eigenstates are denoted as ε±(k′) and |±(k′)〉, respec-
tively, where +(−) represents the higher(lower)-energy
band.

In order to investigate the nonlinear optical responses
in this system, we calculate the optical conductivity by
using the second-order response theory [35]. For two in-
coming linearly polarized lights with frequencies ω1 and
ω2 oscillating in the z direction, denoted by Ez(ω1) and
Ez(ω2), the nonlinear electric current is induced as

Iz(ω1 + ω2) = σzzz(ω1 + ω2;ω1, ω2)Ez(ω1)Ez(ω2),(4)

where the coefficient is the second-order optical conduc-
tivity given by

σzzz(ω1 + ω2;ω1, ω2) =
1

2Nω1ω2

∑
k′,a,b,c

[
f(εa)F zaa

+
2fabJ

z
abT

z
ba

ω1 + iγ − εab
+

fabT
z
abJ

z
ba

ω1 + ω2 + iγ − εab

+
2JzabJ

z
bcJ

z
ca

ω1 + ω2 + iγ − εca

{
fab

ω1 + iγ − εba
+

fcb
ω1 + iγ − εcb

}]
+(ω1 ↔ ω2). (5)

See the schematic in Fig. 1. Here, N is the number of
sites, a, b, c = ±, εab = εa − εb, fab = f(εa) − f(εb),
Jzab = 〈a|∂kH|b〉, T zab = 〈a|∂2kH|b〉, and F zab = 〈a|∂3kH|b〉,
f(εa) is the Fermi distribution function, and γ represents
the relaxation through the electron scattering, which is
assumed to be a positive constant for simplicity. In
Eq. (5), we take the elementary charge e = 1, the re-
duced Planck constant ~ = 1, and the lattice constant
a0 = 1.

In the following, we focus on two interesting responses.
One is the PVE which occurs for ω1 = −ω2 = ω,

σzzzPVE = σzzz(0;ω,−ω), (6)

and the other is the SHG for ω1 = ω2 = ω,

σzzzSHG = σzzz(2ω;ω, ω). (7)

In general, σzzzPVE is always real since the photo-induced
current is a direct current, while σzzzSHG is complex because
the output is an alternating current. It is worth noting
that, for the PVE, the fourth term in Eq. (5) with a = c
becomes dominant when γ is small [34]; hence, the main
contribution in Eq. (6) in the limit of γ → 0 is written as

2π

γNω2

∑
k′

f+−|Jz+−|2(Jz−− − Jz++)δ(ω − ε+−), (8)
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FIG. 2. (a) Energy dispersions of itinerant electrons, ε±, and (b) the coefficient in Eq. (8), |Jz
±|2(Jz

−− − Jz
++), as functions

of k′ for several values of m. The data are calculated for the strongly coupled case with J = 8.0, t2 = −0.1, D = 0.12, and
n = 0.7. Contour plots of (c) the photovoltaic coefficient σzzz

PVE in Eq. (6) and (d) the intensity of the SHG |σzzz
SHG| in Eq. (7)

as functions of ω and m. The lower panels show the ω dependences for several m.

where δ(ω) is the delta function. This contribution is so-
called injection current which originates from the group
velocity of the excited carriers and is proportional to the
relaxation time τ = 1

γ in the steady state [5]. Hereafter,

we use the coefficient |Jz+−|2(Jz−− − Jz++) in Eq. (8) as
an indicator of the asymmetry of the energy bands.

In the following calculations, we set t1 = 1 as the en-
ergy unit and we take N = 8192 and γ = 0.01 [36]. We
study two cases: One is the strongly coupled case where
the spin-charge coupling J is larger than the bandwidth
of electrons and the two bands are split by the large J ,
and the other is the weakly coupled case where the split-
ting is small and the two bands overlap with each other.
We take J = 8.0, t2 = −0.1, D = 0.12, and the electron
filling n = 0.7 for the former, while J = 0.2, t2 = −0.2,
D = 0.02, and n = 0.3 for the latter. The parameter sets
are chosen so that the CHM with Q = π/4 in Eq. (2)
is stabilized at zero field. In the CCM for h > 0, m
increases almost linearly with h until m is saturated in
the FFM [? ]. We note that the sign of σzzz is reversed
when Q (m) changes the sign, which is equivalent to the
spatial inversion or mirror operation about the xy plane
(the π-rotation about the x or y axis).

First, we show the results for the strongly coupled case
in Fig. 2. In Fig. 2(a), we plot the energy dispersions
ε±(k′) for several m. The two bands are largely split
by ∼ 2J . While ε±(k′) are symmetric with respect to
k′ in the CHM at m = 0, they show asymmetry in the
CCM for 0 < m < 1 where the spatial inversion and time
reversal symmetries are both broken. This asymmetry
induces the quadratic optical responses. In the FFM with
m = 1, ε±(k′) recovers the symmetry with respect to the

original wave number k = k′ ± Q
2 . Figure 2(b) shows

the coefficient in Eq. (8). While the coefficient is an odd
function with respect to k′ in the CHM at m = 0, it no
longer is in the CCM for 0 < m < 1. In the FFM at
m = 1, the coefficient vanishes. The results indicate that
the injection current in Eq. (8) is induced only in the
CCM.

We show the m and ω dependences of the PVE coeffi-
cient σzzzPVE in Fig. 2(c). As expected from the above re-
sults, σzzzPVE becomes nonzero in the CCM for 0 < m < 1,
while it vanishes in the CHM at m = 0 and the FFM
at m = 1. In the CCM, σzzzPVE shows a sharp negative
peak at ω ∼ 0. This is an intraband contribution from
the coherent motion of the electrons, which leads to the
nonreciprocal electric transport called the electric mag-
netochiral effect [37–40]. This coherent peak diverges as
−ω−2 due to the prefactor in Eq. (5). On the other hand,
σzzzPVE shows an ac response around ω ∼ 2J = 16, orig-
inating from the interband contributions. We find that
this is dominated by the injection current in Eq. (8) [34].
Remarkably, σzzzPVE exhibits the sign change in the large
m region. This suggests that the direction of the photo-
induced current can be switched by the external magnetic
field.

In Fig. 2(d), we also plot the m and ω dependences
of the intensity of the SHG, |σzzzSHG|. Note that the ar-
gument of the complex σzzzSHG gives just a phase delay of
the output alternating current. Similar to σzzzPVE, |σzzzSHG|
becomes nonzero only in the CCM for 0 < m < 1. In
contrast, however, it shows responses at ω ∼ 0, J(= 8),
and 2J(= 16), which correspond to the intraband coher-
ent motion, interband two-photon, and interband one-
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FIG. 3. Similar plots to Fig. 2 for the weakly coupled case with J = 0.2, t2 = −0.2, D = 0.02, and n = 0.3.

photon contributions, respectively.

Next, we show the results for the weakly coupled case
in Fig. 3. As shown in Figs. 3(a) and 3(b), the en-
ergy bands and the coefficient of the injection current are
asymmetrically distorted in the CCM for 0 < m < 1, sim-
ilar to the strongly coupled case. While this also leads to
the quadratic optical responses, we find that the behav-
iors can be more complicated because of the strong hy-
bridization between the energetically overlapped bands.
As shown in Fig. 3(c), σzzzPVE exhibits coherent and ac re-
sponses at ω ∼ 0 and 2J(= 0.4), respectively, but the sign
change occurs more drastically in wider ranges of m and
ω compared to the strongly coupled case in Fig. 2(c). In
particular, the behavior at ω ∼ 0 is relevant to the field-
induced sign change of the electric magnetochiral effect in
the CCM [39]. On the other hand, as shown in Fig. 3(d),
|σzzzSHG| shows multiple sharp peaks due to the overlap of
the two- and one-photon contributions.

Let us discuss the origin of the sign changes of σzzzPVE in
Figs. 2(c) and 3(c). In both strongly and weakly coupled
cases, the ac responses are dominated by the contribution
from the injection current in Eq. (8). This is given by the
summation of the coefficient plotted in Figs. 2(b) and
3(b) for k′ where the direct gap ε+− coincides with ω;
see Figs. 2(a) and 3(a). Thus, the sign changes in the
optical regions are caused by the detailed balance under
the asymmetrically modulated band structure. On the
other hand, the sign changes occur also in the coherent
region at ω ∼ 0 in the weakly coupled case, as shown in
Fig. 3(c). In this case, they are caused by the competition
among different contributions in Eq. (5). We note that
such competition is not seen in the strongly coupled case,
since all the contributions are negative for the parameters
calculated here [34].

Finally, we estimate the strength of the quadratic op-
tical responses in our system. We assume the energy
scale of the electron hopping t1 ∼ 0.1 eV and the re-
laxation time τ ∼ 0.1 ps (for a typical chiral magnetic
metal such as MnSi [41]). Then, in the strongly cou-
pled case, which mimics, e.g., d-electron systems with
large spin-charge coupling, the ω range of the ac response
corresponds to ∼ 102 THz in the infra-red light region.
In this case, the magnitudes of PVE and SHG reach
∼ 10−5 A/V2 and ∼ 10−6 A/V2, respectively, which
are comparable to those in the conventional ferroelec-
tric material BaTiO3 [8, 12]. On the other hand, in the
weakly coupled case, which mimics, e.g., f -electron sys-
tems with small spin-charge coupling, the ac response
ranges from the transport region to the terahertz light or
microwave region. In this case, the PVE and SHG reach
∼ 10−3 A/V2 and ∼ 10−4 A/V2, respectively, which are
two orders of magnitude larger than those in BaTiO3

and comparable to those for topological materials such as
TaAs [17, 20]; these colossal responses originate from the
small direct gap ε+−. Thus, our results indicate that the
chiral magnets can generate unusually large quadratic op-
tical responses, which can be controlled by the frequency
of incident lights and external magnetic field as well as
the electronic parameters; in particular, the large PVE
coefficient can be controlled including its sign.

In summary, we investigated the quadratic optical
responses, the PVE and SHG, in chiral magnets. We
found that the electronic band structure is modulated
in an asymmetric way in the CCM which breaks both
spatial inversion and time reversal symmetries, and it
gives rise to the PVE and SHG whose magnitudes can
be much larger than those in ferroelectric materials and
comparable to topological materials. In particular, we
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clarified that the PVE changes not only the magnitude
but also the sign depending on the external magnetic
field and the frequency of incoming lights. This is a
unique property of the chiral magnets where the band
structure and the magnetism can be modulated by the
magnetic field; in stark contrast, the PVEs in nonmag-
netic systems, including the large PVE reported in Weyl
semimetals [20], do not show such controllability, and
those in antiferromagnetic systems switch the sign only
at the field-induced phase transition [21]. In realistic
materials, the electronic structure would be more
complicated, and furthermore, the electronic correlation
may affect not only the velocity but also the lifetime of
electrons [42–44]. Such complexity potentially gives rise
to further nontrivial field and temperature dependence of
the nonlinear optical responses. Furthermore, while the
present study is limited to the one-dimensional CCM, we
expect that further nontrivial nonlinear responses can
be observed in other chiral spin textures, for instance,
magnetic skyrmion and hedgehog lattices.
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