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We study non-Hermitian higher-order Weyl semimetals (NHHOWSMs) possessing real spectra
and having inversion I (I-NHHOWSM) or time-reversal symmetry T (T -NHHOWSM). When the
reality of bulk spectra is lost, the NHHOWSMs exhibit various configurations of surface Fermi arcs
and Exceptional Fermi Rings (EFRs), providing a setup to investigate them on an equal footing.
The EFRs only appear in the region between 2nd-order Weyl nodes. We also discover Weyl nodes
originating from non-Hermicity, called non-Hermitian Weyl nodes (NHWNs). Remarkably, we find
T -NHHOWSMs which host only 2nd-order NHWNs, having both surface and hinge Fermi arcs
protected by the quantized biorthogonal Chern number and quadrupole moment, respectively. We
call this intrinsically non-Hermitian phase exceptional HOWSM. In contrast to ordinary Weyl nodes,
the NHWNs can instantly deform to line nodes, forming a monopole comet. The NHWNs also
show exceptional tilt-rigidity, which is a strong resistance towards titling due to attachment to
exceptional structures. This phenomenon can be a promising experimental knob. Finally, we reveal
the exceptional stability of Fermi arcs called exceptional helicity. Surface Fermi arcs having opposite
chirality can live on the same surface without gapping out each other due to the complex nature of
the spectrum. Our work motivates an immediate experimental realization of NHHOWSMs.

Introduction.–Non-Hermitian and higher-order topo-
logical phases are two new branches of topological phases
which have ignited numerous attentions over the last few
years [1–35]. Recently, the interplay of these two have
also been studied [36–49]. However, despite attempts to
understand the role of non-Hermiticity in systems having
higher-order topology the effect of non-Hermitian per-
turbation has yet remains to be explored in 3d higher-
order semimetals. Very recently we have studied the non-
Hermitian higher-order Dirac semimetals (NHHODSMs)
[50].
In this letter, we consider the the effect of C4-symmetric

non-Hermitian perturbations on the higher-order Weyl
semimetals (HOWSMs) [51]. We find I and T sym-
metric models that possess real bulk spectrum up to
a critical strength of non-Hermiticity while respecting
anti-PT symmetry. We show that, when the complex-
ity emerge, these models can host a novel classes of
non-Hermitian Weyl nodes (NHWNs) that are intrinsic
to Non-Hermitian systems. We characterize these new
WNs using biorthogonal Chern number and a new 1D
winding number. Both I, T -symmetric models feature
various configurations of coexisting real and NHWNs in
bulk as well as surface Fermi Arcs (FAs) and excep-
tional Fermi Rings (EFRs) that are protected by sym-
metries of class PAI [52]. Interestingly, the T symmet-
ric model additionally host real hinge FAs having quan-
tized biorthogonal quadrupole moments and protected
by Cz4 symmetry, exhibiting a unique Non-Hermitian
higher-order Weyl semimetal (NHHOWSMs). Strikingly,
we find that by gaping out all the real WNs, a novel
and genuinely non-Hermitian Weyl phase, dubbed as ex-

ceptional HOWSM, emerges which hosts only 2nd-order
NHWNs. Furthermore, we reveal some distinct prop-
erties of NHWNs. First, we show that unlike the real
WNs they can be destabilized in presence of a Hermitian
perturbations such that they can instantly deform to a
novel nodal line structure which we dubbed, monopole
comet, where while maintaining their monopole charges,
they connect on the surface FAs at original position of
NHWNs (head of comet). Second, interestingly, we show
that some classes of NHWNs exhibit strong resistance to-
wards tilting due to presence of ESs in compare to their
real counterparts. A phenomenon that we call excep-
tional tilt-rigidity and can be used as a promising ex-
perimental probe/knob. Finally, we reveal a remarkable
phenomenon that we call it exceptional helicity in which
surface band connectivity can be altered while removing
EFRs in a way that FAs having opposite chirality live in
the same surface without gapping out each other. Fig. 1
summarizes some of the main results of our work.

HIw Model.—We start by the following I-symmetric
non-Hermitian model,

HIw = HIHODSM (k) + im1Γ0a0(k) + ασ0κ2 (1)

where HHODSM (k) =
∑4
i=1 ai(k)Γi [54], a4(k) =(

γ + 1
2 cos kz + cos kx

)
, a3(k) = sin(kx), a2(k) =(

γ + 1
2 cos kz + cos ky

)
, a1(k) = sin(ky), and γ represent

the intra-cell coupling. {Γα} are direct products of Pauli
matrices, σi, κi, following Γ0 = σ3κ0,Γi = −σ2κi for i =
1, 2, 3, and Γ4 = σ1κ0, a0(k) = (cos(kx)− cos(ky)) and
m1 is a real constant. The amplitudes of inter-cell hop-
pings is set to 1, and we will work in the Cz4 symmet-
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FIG. 1. Summary of main results.(a) Upon the addition
of α to non-Hermitian Dirac semimetallic phase of [50](

H
I(T )
w (α = 0)) having real (complex) spectrum the R-

NHWNs (C-NHWNs) can appear aside from the real WNs
of Hermitian limit. (b) An example of instability of NHWNs
in the bulk: in presence of the perturbation δ1 they deform to
a intrinsically non-Hermitian nodal line structure, monopole
comet, that while maintaining their original monopole charge,
they are connected on the surface only via the original posi-
tion of un-deformed NHWNs (head of comet) [see Fig. 4(c)
for the surface plot]. (c) The surface instability of EFRs:
in presence of the perturbation δ2 they deform by chang-
ing band connectivity of surface FAs generating a region
of counter-propagating FAs a phenomenon that we dubbed
exceptional-helicity.[WNs shifted for visibility] (d) Exceptional
tilt-rigidity : The C-NHWNs show strong resistance towards
tilting due to ESs (red bars) in compare to real WNs and
R-NHWNs. (e) Exceptional NHHOWSMs: A genuinely non-
Hermitian class of T -NHHOWSMs which host only NHWNs
of higher-order topology i.e, all the nodes are connected both
through the surface and hinge. (f) An example of surface
configuration in HI , where EFRs and surface FAs overlap.
Similar configurations are possible for HT , while it can host
HFAs as well. For more surface configurations see Figs. 2,3.

ric limit. For α = 0 but m1 6= 0 the Eq. (1) repre-
sent a NHDSM phase which shows real anti-PT sym-
metric bulk hosting Dirac nodes while the surface is PT
symmetric and complex. The surface become complex
by developing EFRs connecting the projections of two
Dirac nodes on the surface and as a result the original
hinge FAs of HHODSM gap out. On the other hand, for
α 6= 0, m1 = 0, HI

w is a I-HOWSM which can host a
pair of 1st-order or 2nd-order WNs or combination of
both types of WNs [51]. The 2nd-order WNs are defined
as the transition point between a phase having non-zero
Chern number to the one having quantized quadrupole
moment (qxy). Therefore, they show coexistence of sur-
face and Cz4 symmetry protected hinge FAs. When both
m1 and α are non-zero, the bulk is still anti-PT symmet-
ric but chiral symmetry and combination of reciprocity
and I are broken, hence HIw belongs to the class PC† of
non-Hermitian topological phases[52].
Similar to non-Hermitian Dirac semimetallic phases in

[50], interestingly, the bulk spectrum remains real up to
a critical value of m1. The spectrum of Eq. (1) can be

obtained as E±,±(k) = ±
√
f(k) + α2 ± 2α

√
g(k), where

f(k) =
∑4
i a

2
i (k)−m2

1a
2
0(k) and g(k) = a22(k) + a24(k)−

m2
1a

2
0(k). At (kx, ky) = (0, π), (π, 0), a1 = a3 = 0, in-

terestingly, when
√
a22(k) + a24(k)−m2

1a
2
0(k)− |α| = 0 a

new set of WNs may emerge coexisting with real WNs
and are located at cos(kz) = −2γ ±

√
2
√

4m2
1 + α2 − 2.

This is particularly interesting as heuristically addition
of non-Hermitian perturbations to Weyl/Dirac nodes re-
sults in deformation of the nodes to exceptional rings[1,
35, 55]. Here, on the other hand, NHWNs are indeed
point-like nodes. We call these new nodes Non-Hermitian
Weyl nodes (NHWNs) and we will show that while they
share some common properties with real WNs, they be-
have distinctly in presence of an external Hermitian per-
turbations. Interestingly, NHWNs can appear in two
types. If we start with a NHDSM phase having real (com-
plex) spectra, the emergent NHWNs can be detached (at-
tached) to bulk exceptional structures (ESs) and hence-
forth and we denote them as R-NHWNS (C-NHWNs)
[53].

Now let us investigate the surface. Fig. 2, shows the
evolution of x-surface states [y-surface is identical] as tun-
ing the α for a fixed value of m1 [56]. By increasing α
from zero the real bulk Dirac nodes split. On the surface,
interestingly, the EFRs survive only between two 2nd-
order WNs, where in the limit of m1 = 0 shows qx,y = 0.5
Fig.2(a). This is because, phenomenologically, the EFRs
emerge by removing hinge FAs, which means that when
HI hosts only 1st-order WNs the EFRs do not appear,
indicating an intimate interplay of non-Hermitian and
higher-order topology. The real WNs (1st and 2nd-order)
similar to the Hermitian limit are connected by conven-
tional surface FAs, providing a platform that hosts both
the conventional FAs and EFRs at different momenta.
When the NHWNs appear, their projections on x-surface
connect at both ky = 0, π and form a region where the
EFRs and surface FAs overlap (Fig. 2(b,e)). Then, as α
increases, through series of surface phase transitions, the
EFRs gaps out between NHWNs and only survive in the
region between the 2nd-order and NHWNs (note they
have same monopole charges) Fig. 2(c). By further in-
creasing of α the NHWNs exchange their positions with
2nd-order WNs, but in doing so, they exchange their
band connectivity at ky = 0 through a surface phase
transition in a way that instead each NHWNs connects
to real 1st-order WNs Fig. 2(d) and all EFRs are gapped
out.
The x-surface possess PT symmetry while the bulk re-
spects anti-PT symmetry then all the models discussed in
this work, present another examples of 3D higher-order
hybrid-PT topological phases [50]. The topological pro-
tection of EFRs can be understood as follows. On the
x-surface, only the TMyMz is preserved and hence ac-
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FIG. 2. (a-d) The real part of x-surface [1 OBC] along kz(ky = 0) for HI having γ = −1,m1 = 0.78 and α = 0.2, 0.35, 0.42, 0.6,
respectively. (e) The corresponding cut along ky(kz = 0) for (b). (f-j) The imaginary counterparts of (a-e). The yellow, green,
red dots and purple shade denote the 1st, 2nd-order, NHWNs and EFRs, respectively. See [53] for plots of their corresponding
ky = π cut and the bulk spectrum.

cording to [52], it belongs to class PAI of gapless non-
Hermitian topological phases. As a result, the EFRs on
the surface are protected by a Z2 topological number[57].
HTw Model.—We consider the following T -symmetric
model,

HTw = HTHODSM (k) + im2Γ0a0(k) sin(kz) + ασ0κ2 sin(kz)
(2)

similar to Eq. (1), HIw belongs to the class PC† and pre-
serves anti-PT, even though it has a broken I symme-
try. For α = 0, HT represents a T -NHHODSM. On the
other hand, in the Hermitian m2 = 0 limit, Eq. (2) is a
T -HOWSM. Due to T , the minimum number of all the
WNs are four. Therefore, on each of (0, π) and (π, 0)
axes, at some finite vale of α four NHWNs emerge. As a
result on the surfaces, there are two separate patches of
EFRs separated by a real gap. Here, again, we observe
that EFRs can only appear in the region between two real
2nd-order WNs. Remarkably, by further opening bound-
ary along the x and y-directions to get a hinge, we find
hinge FAs (HFAs) that survive in a region corresponding
to the gapped region of the surface states 3(a,e). How-
ever, by further increasing of α, the EFRs can be removed
and like the Hermitian limit, the HFAs are connected
to 2nd-order 3(b,f). Strikingly, by removing all the real
WNs via decreasing γ, we obtain a T -NHHOWSM that
possess hinge FAs both in the middle and at the end
of BZ 3(c,d,g). This means all the NHWNs are of 2nd-
order type and so are connected both through surface
and hinges. This is in sharp contrast to the parent Her-
mitian T -HOWSMs which only two out of four WNs are
2nd-order. We emphasize that this is a novel HOWSM
which is intrinsic only to the NH phases as the NHWNs
can only exist in presence of NH perturbation. We call
this new phase exceptional higher-order Weyl semimetal.
In order to characterize the zero-mode at the hinges, we
employ a biorthogonal [9, 58] real-space formula [59–61]

for quadrupole moment, qLRxy , which is shown to correctly
capture the higher-order topology in NHHODSMs [50].
As is evident in the case of exceptional HOWSMs, for
the regions having Cz4 symmetry protected hinge FAs the
qLR = 0.5 (see Fig. 3(h)). Topological charges of WNs.—
We use two methods to characterize the topological char-
acter of WNs. First, we obtain the monopole charge of
each WNs by computing the biorthogonal real-space for-
mula of Chern number (CLR) at each 2D kz-slice [8, 62]
(e.g., see Fig. 3(h)). Second, we introduce a new 1D
winding number. Using the fact that each of ky = 0, π
(kx = 0, π) planes separately respect the sublattice sym-
metry (even though the full 3D Hamiltonian of HI,Tw do
not), HI,Tw can be block-off diagonalized at kx = 0, π
(ky = 0, π) planes having Q1,2 blocks. Note that, in gen-

eral for non-Hermitian systems Q2 6= Q†1. Therefore, we
define a new kz-dependent 1D winding number as follow-
ing,

wl,(1,2)(kz) =

∫ π

−π

1

2πi
∂kx ln det[Q(1,2)] (3)

where l = ky = 0, π. Interestingly, by tuning the kz
the wl changes by ±1 as crossing any WNs. We empha-
size that this is general and can detect both the real and
(C,R)-NHWNs. The total wl = wl,1+wl,2 are zero. How-
ever, the difference w̄l = (wl,2−wl,1)/2 are non-zero and
quantized to ±1. Fig. 4(a), shows the w̄l for ky = 0, π.
For the real WNs on the kx = 0 cut, w̄0 is consistent
with the monopole charges of ±. However, interestingly,
the NHWNs at (0, π) and (π, 0) carry opposite winding
numbers. Therefore, their sum w = w0 + wπ is zero but
their difference reflects the Chern number w̄ = w̄0 − w̄π.
Stability of NHWNs.—Let us now investigate the sta-

bility of NHWNs introduced in this work. The Hermi-
tian/real WNs and their corresponding surface FAs are
stable and only can be gapped or deformed through a
topological phase transition. On the other hand, here
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FIG. 3. The real part of spectrum at x-surface [1 OBC] (ky = 0) (blue) and z-hinge [2 OBC] (green) of HT having (a)
γ = −1,m2 = 0.85, α = 0.3, (b), γ = −1,m2 = 0.85, α = 0.6 (c) γ = 0,m2 = 0.9, α = 0.5. (d) The real part of bulk spectrum
for (c,g) along kz for kx = ky = 0(orange) and kx = 0, ky = π (blue). (e-g) The imaginary counterparts of (a-c)[red:x-surface,
cyan: z-hinge]. (h) The corresponding biorthogonal chern number (CLR, red) and quadrupole momment (qLRxy , blue) of (c,d,g).

we show that the NHWNs can be deformed instantly,
upon applying an external Hermitian perturbation. We
choose a C4-symmetric perturbation, δ1a0(k)σ3κ0 as an
example and for sake of brevity, we only focus on the
inversion symmetric model. Firstly, we note that the δ1
break the symmetries of PAI and so gap out the EFRs.
More importantly, upon application of δ1 in the bulk the
NHWNs deform to a unique nodal line we call monopole
comet that preserves the same monopole charge of orig-

FIG. 4. (a) The winding number w̄l at ky = 0(red) and
ky = π(blue) planes for HIw.[γ = −1, m1 = 0.8, α = 0.3] (b)
The real WNs (dashed blue) and C-NHWNs (solid orange)
of HIw in presence of tilting perturbation 0.8 sin(kz − pi/2)I4
[γ = −0.6, α = 0.3,m1 = 0.8]. (c) The x-surface of HI in
presence of δ1 = 0.05 showing the deformed NHWNs and
gapped EFRs. (d) HI in presence of δ2 = 0.05, monopole
charges and direction of chiralities are denoted by dots and
arrows, respectively (see [53] for plot of Im(E)).

inal NHWNs in Fig. 4(c), but on the surface their cor-
responding FAs are connected at the original position of
NHWNs (i.e, head of comet). This distinct behavior of
NHWNs can be used to distinguish them from real stable
Hermitian WNs [63].

Exceptional Tilt-Rigidity.— Type-II WSMs have dis-
persion that is strongly anisotropic around the Weyl
nodes such that its slope changes sign along some direc-
tions [64]. Interestingly, we find that the C-NHWNs show
strong resistance against tilting due to presence of ESs,
a phenomenon which we call Exceptional tilt-rigidity.
Fig. 4(b), shows the real WNs at (kx = 0, ky = 0) (dashed
blue) and NHWNs at (kx = 0, ky = π) (orange) in pres-
ence of a tilting perturbation. As is evident for the same
amount of tilt strength the C-NHWNs are tilted much
lesser compare to the case of real WNs. This is true
also in compare to the R-NHWNs. This simple but in-
teresting phenomenon provide an experimental knob for
detecting of NHWNs.

Exceptional Helicity.— Now we reveal the intrigu-
ing surface instability of EFRs. In the presence of
δ2a0(k)σ3κ2, remarkably, the EFRs deform and in doing
so the band connectivity of the FAs connecting the WNs
is altered. In Fig. 4(d), as a result of δ2 the two WNs
at opposite k connect to their partner at −k. This lead
to the area on the surface having counter-propagating
FAs. It is noteworthy that this can not occur in Hermi-
tian WSMs. In order to understand this we note that at
ky = 0, π the x-surface respects the anti-PT symmetry
which then enforces that a band with energy E to be
paired with a band with energy −E∗. Therefore, the he-
lical FAs with different Im(E) cannot gap out each other
in the real part of energy. We refer to this intrinsically
non-Hermitian phenomena as exceptional helicity.

Experimental remarks.— The 2d quadrupole insula-
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tors, which are the building blocks of HOWSM models of
our work, have already been realized both in Hermitian
[29–32] and non-Hermitian regimes [65, 66]. Moreover, a
3D realization of non-Hermitian topological phases has
been demonstrated as well [67]. Recently, Hermitian
higher-order semimetals have also been experimentally
realized in multiple platforms [68–70]. In particular,
Ref.[69], have explicitly simulated the HI(T )(m1,(2) = 0)
model. Therefore, we hope that our results will motivate
an experimental realization (specially in electric circuits
[32, 67, 69, 71–78]) of non-Hermitian higher-order Weyl
semimetals.
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Note Added.—During the preparation of this work, an-
other paper appeared on arxiv [79] which discussed a
model hosts Weyl exceptional ring (as oppose to this work
which presents models having new type of non-Hermitian
Weyl nodes). The focus and the physics of two works are
very different.
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