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Using an end-to-end differentiable implementation of the Kohn-Sham self-consistent field equa-
tions, we obtain a highly accurate neural network-based exchange and correlation (XC) functional
of the electronic density. The functional is optimized using information on both energy and density
while exact constraints are enforced through an appropriate neural network architecture. We eval-
uate our model against different families of XC approximations and show that at the meta-GGA
level our functional exhibits unprecedented accuracy for both energy and density predictions. for
non-empirical functionals, there is a strong linear correlation between energy and density errors. We
use this correlation to define a novel XC functional quality metric that includes both energy and
density errors, leading to a new, improved way to rank different approximations.

Density functional theory (DFT) serves without doubt
as the workhorse method for electronic structure simu-
lations in materials science and physics and has gained
popularity within the chemistry community in recent
decades. This is in no small part due to its favorable scal-
ing, allowing users to tackle system sizes out of reach for
most correlated wavefunction methods. However, infer-
ences made from numerical simulations are only ever as
good as their underlying approximations. This remains
true for DFT, where these approximations are bundled
somewhat opaquely in the elusive exchange-correlation
(XC) functional. The Hohenberg-Kohn theorem guar-
antees that if this functional were known, ground-state
properties of any interacting many-electron system could
be described exactly [1]. In practice, one needs to pick
from a plethora of different approximations, which of-
ten boils down to finding the right functional, cost and
accuracy-wise, for the problem at hand.

It comes as no surprise that developing new and more
accurate density functionals is a field of research on its
own. Practitioners of this field generally have worked fol-
lowing two orthogonal approaches. Going back to Perdew
and Wang [2], one approach tries to develop functionals
from first-principles only, without any empirically-fit pa-
rameters. Some of the most notable functionals from this
family include PBE [3], TPSS [4], and SCAN [5] which
have proven themselves to be both versatile and reliable.
Another approach, pioneered by Becke [6], is to fit func-
tionals containing empirical parameters to either exper-
imental or highly accurate simulated data. The size of
these datasets can range from a few atoms to thousands
of molecules and chemical reactions.

Beyond improving energies, approaching the exact
functional should also lead to more accurate densities.
However, a recent study suggested that most empirically
fitted functionals fall short of this expectation [7]. This
is concerning, not only from a theoretical point of view

but also for practical reasons. For example, the quality
of a functional’s electronic density is related to its ability
to correctly describe a molecule’s response to an external
electric field [8].

A guided approach towards empirical functionals that
produce better densities is clearly needed. This task
poses great challenges, as the Kohn-Sham equations in-
troduce a non-linear relationship between functional form
and self-consistent density. A guided optimization of
such functionals requires knowledge of the gradients of
the functional with respect to changes in the density.
Pioneering work by Nagai et al. [9] circumvented the
problem of missing gradients by adopting a simulated
annealing approach to optimize a functional. DeePKS
[10] uses a Coulomb-like term with randomized prefactor
in its loss function that drives the functional towards the
correct density. A breakthrough solution to this problem
was very recently proposed by Li et al. [11], using dif-
ferentiable programming, a tool that has previously been
used to solve related problems in electronic structure [12].
By implementing the solution to the Kohn-Sham equa-
tions in JAX, a Python library that supports automatic
differentiation on arbitrary operations, they can probe
the electron density response to changes in the functional
parametrization. The authors further showed that incor-
porating physical knowledge in the form of Kohn-Sham
equations into the optimization algorithm has a regu-
larizing effect making the algorithm more data-efficient.
Their work, however, was limited to the study of 1-d
model systems.

Here we optimize a density functional using an end-
to-end differentiable implementation of the Kohn-Sham
equations. In contrast to other approaches that have
used machine learning to approximate the exact func-
tional [9, 10, 13, 14], we impose a set of known constraint
on the functional form. These include a local Lieb-Oxford
bound [15–17] (LOB), which proves to be an important
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ingredient to obtaining a more transferable model.

To make our training process computationally feasi-
ble, we mostly limit our training set to linear systems.
We show that this can be done without loss of gener-
ality, meaning that a thus optimized functional is still
applicable to more complex molecules. With the goal
of obtaining a model with a good balance between com-
putational cost and accuracy, we choose to optimize a
neural network-based meta-GGA functional. We demon-
strate that it shows optimal accuracy at the meta-GGA
level across a diverse selection of datasets both with re-
spect to energy as well as density predictions, in many
cases outerperforming the front-runner SCAN [5] by a
significant margin. Our analysis of different functionals
identifies a high linear correlation between energy and
density errors for non-empirical models. Using this re-
lationship we define a novel compound metric which we
term energy-density error. Ranked by this metric, our
model is competitive even with functionals of the hybrid
family.

At the heart of Kohn-Sham (KS) density functional
theory lie the KS-equations

{
−1

2
∇2 + vs[n](r)

}
ψi(r) = εiψi(r) (1)

In this approach, the electron density n(r) is com-
puted from the occupied one-particle orbitals n(r) =∑N
i |ψi(r)|2, and the potential is given as

vs[n](r) = vext(r) + vH [n](r) + vxc[n,ω](r). (2)

Here, vext(r) is the external potential created by the
ion cores, vH(r) is the Hartree potential capturing the
Coulomb interaction of the density with itself and vxc(r)
is the functional derivative of the exchange-correlation
functional with respect to the electron density vxc(r) =
δExc[n,ω]
δn(r) . As all quantities except for the exchange-

correlation functional are known, the goal of this work
will be to find a parametrization ω of Exc which accu-
rately reproduces reference energies and electron densi-
ties while generalizing well to unseen systems.

As the potential depends on the density and there-
fore implicitly on the eigenstates ψi, the KS equations
need to be solved iteratively. A popular Ansatz used in
chemistry codes, and the one we choose here due to its
efficiency for molecular systems, is to expand the eigen-
states in Eq.1 in terms of atom-centered Gaussian or-
bitals ψi =

∑
µ Ciµφµ. One advantage of using a Gaus-

sian basis is that integrals can be pre-computed analyt-
ically and stored to disk, reducing on-the-fly computa-
tions to simple tensor contractions. For this work, we
have made use of the open-source python code PySCF
[18, 19]. We have re-implemented all routines needed to
solve the Kohn-Sham equations to utilize PyTorch [20],

making them end-to-end differentiable. One and two-
electron integrals were computed with the original ver-
sion of PySCF as the basis sets can be considered fixed
for the purpose of this work.

A fully differentiable implementation of the self-
consistent field (SCF) method necessitates that gradi-
ents occurring for every mathematical operation, at every
SCF iteration, be held in memory until they are used dur-
ing back-propagation. Especially tensor operations that
involve grid points, such as the ones needed to generate
the real-space density on which the XC functional is eval-
uated, contribute a high memory cost. We have chosen
to partially circumvent this problem by largely restrict-
ing our training set to linear closed-shell molecules during
training. We take advantage of their cylindrical symme-
try by evaluating grid integrals on a reduced grid, namely
a disk in the zx-plane. To obtain the radial part of this
grid, we make use of the methods provided by PySCF
to generate Treutler-Ahlrichs type grids. For the angular
part, we use a simple Legendre-Gauss quadrature. The
size of the reduced grid is chosen so that it reproduces
the number of electrons, integrated exchange-correlation
energy as well as the exchange-correlation potential (in
the atomic orbital basis) given by a reference calculation
using a converged three-dimensional grid.

We followed the common practice of defining the ex-
change correlation energy in terms of the energy per
unit particle Exc[n,ω] =

∫
εxc[n,ω](r)n(r)dr. We fur-

ther decompose this energy density into its exchange
and correlation parts εxc[n,ω](r) = εx[n,ωx](r) +
εc[n,ωc](r) which are both independently parametrized.
This allows us to factorize both functionals into fixed
parts describing the behavior of a uniform electron gas
(UEG) eUEG

x/c [n] and parametrized enhancement factors

Fx/c[n,ωx/c] that take into account effects from inho-
mogeneities. The exchange energy density of the UEG
is given as εUEG

x [n](r) = − 3
4 (3/π)1/3n1/3(r), and the

parametrization of εUEG
c by Perdew and Wang [21] was

used. Rather than having our functionals depend on the
electron density and its derivatives directly we define the
following commonly used dimensionless quantities which
will serve as input to our functionals:

x0 = n1/3 (3)

x1 =
1

2

{
(1 + ζ)4/3 + (1− ζ)4/3

}
(4)

x2 = s =
1

2(3π2)1/3
|∇n|
n4/3

(5)

x3 = α =
τ − τW

τunif
(6)

Where τW = |∇n|2/8n, τunif = (3/10)(3π2)2/3n5/3 and
ζ corresponds to the spin polarization.

As neural networks struggle with handling features
that range over multiple orders of magnitude, we further
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FIG. 1. Exchange-correlation enhancement factors Fxc for rs = 1, ζ = 0, and a) α = 1, b) α = 0, c) α = 10

transform our input features x0−3 by applying logarith-
mic transformations

x̃0 = log(x0 + εlog) (7)

x̃1 = log(x1 + εlog) (8)

x̃2 =
{

1− exp(−x22)
}

log(x2 + 1) (9)

x̃3 = log {(x3 + 1)/2} (10)

with εlog = 10−5. x̃2 is designed so that its first derivative
vanishes at x2 = 0. This poses a soft constraint on the
enhancement factors Fx/c to have the same property. We
have found that doing so greatly improves convergence,
especially for periodic systems. Similar reasoning was
applied to x̃3 where the employed transformation lead to
better behaved functionals than the more obvious choice
log(x3 + εlog).

Both Fx and Fc were parametrized by a fully connected
neural network with three hidden layers with 16 nodes
each. As activation function, we have used the Gaus-
sian error linear unit (GELU) [22]. We will denote the
mapping induced by this neural network as F(·).

We modify our neural network models to fulfill certain
constraints and scaling laws that are known about the
exact functional. To make Ex behave correctly under
uniform scaling of the electron density and obey the spin-
scaling relation, we drop the variables x0 and x1 in Fx.
We further introduce a transformation Ia(x) that maps
its input x to a finite interval [−1, a− 1]:

Ia(x) =
a

1 + (a− 1) exp(−x)
− 1 (11)

while maintaining Ia(0) = 0. In the case of Fx, I1.174(x)
is used to strictly enforce a rigorous conjectured local
LOB[16, 17] a = 1.174, following the spirit of SCAN,
whereas for Fc we use I2(x) to ensure non-negativity of
the enhancement factor. Collecting all input features into
a vector x̃, the models can be written as:

Fx(x̃2, x̃3) = 1 + I1.174((x̃2 + tanh2 x̃3)F(x̃2, x̃3,ωx))
(12)

Fc(x̃) = 1 + I2((x̃2 + tanh2 x̃3)F(x̃,ωc)) (13)

The factor (x̃2 + tanh2 x̃3) ensures that the UEG limit
is recovered for s = x2 = 0 (x̃2 = 0) and α = x3 = 1
(x̃3 = 0).

The datasets used in this work for training and vali-
dation consist of 21 atomization energies taken from the
G2/97 set [23], three barrier heights taken from BH76
by Zhao et al [24] and two reference ionization potentials
from IP13 provided in [25]. For the G2/97 dataset, we use
atomization energies that were recalculated by Haunshild
et al. [26] and are considered more reliable than the en-
thalpies of formation given in the original version of the
dataset.

We augmented the G2/97 dataset with ground-state
electron densities that we computed at the CCSD(T)
level using the 6-311++G(3df,2pd) basis set, the same
basis used for training the functionals. Total atomic en-
ergies were taken from Ref. 27 and included in the train-
ing set as well. Atomic electron densities were calculated
and included for H and Li. For model validation, dur-
ing training, we used a disjoint subset of the data listed
above, consisting of 8 atomization energies and densi-
ties from G2/97, and two reference barrier heights from
BH76. A detailed list of the structures used for training
and validation can be found in the SI.

Models were pre-trained to match SCAN [5] on the
21 molecules contained in the training set by randomly
sampling the exchange enhancement factor on molecular
grids and fitting to it. The functional parameters are
then trained to optimize a compound loss, combining er-

rors in total energies E
(i)
j;tot and reaction energies (which

includes atomization energies and barrier heights) E
(i)
j;RE

at SCF iteration j, as well as electron densities n(i).

L = λELE + λRELRE + λnLn (14)

LE = E

 25∑
j=10

{
wj(E

(i)
j;tot,ref − E

(i)
j;tot)

}2

 (15)

LRE = E

 25∑
j=10

{
wj(E

(i)
j;RE,ref − E

(i)
j;RE)

}2

 (16)
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FIG. 2. Weighted mean absolute deviations (WTMAD-2)
(top), density errors (center) and energy-density error (bot-
tom) for several functionals including our model, xc-diff. 28.

Ln = E
[
l(i)n

]
(17)

l(i)n =
1

N2
e

∫
r

(n(i)(r)− n(i)ref (r))2 (18)

with flexible weights λE , λRE , λn and expectation val-
ues taken over the training set. We set the weights to
λRE = 1, λn = 20, λE = 0.01. Rather than including
only converged energies in our loss function, we follow

the approach by Li et. al [11], employing wj =
(
j−10
15

)2
that penalize solutions which lead to slowly converging
SCF calculations.

The functional parameters are optimized using Adam
with an initial learning rate 10−4 which is decayed by a
factor of 0.1 after every ten consecutive epochs without a
decrease in training loss. We employ an l2-regularization
of 10−6 and a batch size of one reaction.

We tested our functional on 140 atomization energies
contained in the W4-11 [29] dataset, 76 barrier heights
from BH76, and 43 decomposition energies of artificial
molecules contained in the MB16-43 [28] dataset. To
achieve a wider assessment of our functional we further
tested it on the diverse diet-GMTKN55 dataset [30].
GMTKN55 consists of 55 subsets that each probe dif-
ferent properties of a given functional. The subsets can
be divided into categories by interaction type. These
categories comprise reaction energies for small systems,
reaction energies for large systems and isomerization re-
actions, barrier heights, intermolecular noncovalent in-
teractions, and intramolecular noncovalent interactions.
Diet-GMTKN55 provides representative sub-samples of
GMTKN55 that have been shown to lead to the same
ranking of DFs as the full dataset, at a significantly re-
duced computational cost.

We choose to evaluate our functional on the proposed
150 samples, the largest ’diet’ dataset, using a weighted

AE BH DE WTMAD-2 ε|n| × 103 ED|n|
RPBE [33] 8.3 9.0 50.8 10.5 8.8 10.0

B97 [34] 4.7 7.3 36.1 8.6 7.0 8.0
OLYP [35] 9.9 8.5 29.0 8.5 10.1 9.6

revPBE [36] 7.6 8.3 27.1 8.4 9.4 9.2
M06L 4.4 3.9 63.3 8.6 9.4 9.3

revTPSS 5.7 8.9 36.7 8.4 7.9 8.5
SCAN 4.1 7.8 17.8 8.0 6.2 7.3

xc-diff 3.5 6.5 22.7 7.3 5.2 6.4
PBE0 3.7 5.0 15.9 6.4 5.7 6.3

B3LYP 3.4 5.7 24.8 6.5 8.3 7.5
M05-2X [37] 4.0 1.7 26.3 4.6 7.5 5.8

ωB97X-V [38] 2.8 1.8 32.5 4.1 5.0 4.7

TABLE I. Mean absolute errors in kcal mol−1 for atomiza-
tion energies (AE) over the W4-11 dataset, barrier heights
(BH) in BH76 and decomposition energies (DE) for MB16-
43. Weighted means WTMAD-2 and ∆ are also given in kcal
mol−1. Mean density error εn is unit-less. A complete list
of functionals is provided in the SI. All models include DFT-
D3 dispersion corrections. Energy errors for all functionals
except xc-diff were taken from Ref. 28.

mean of mean absolute deviations (MAD) across the sub-
sets. The weights are chosen by Gould to reproduce the
WTMAD-2 weighted mean of means proposed by Goerig
et al., which scales the mean absolute energy deviations
MADi of a subset i containing Ni reactions by the inverse
energy range of a given subset |∆E|i

WTMAD-2 = N−1
55∑
i

Ni ·
56.84kcal mol−1

|∆E|i
·MADi,

(19)

with N =
∑55
i Ni. The goal is to give more weight to

datasets with little variation in the energy and to scale
down systems with large variations.

We conducted all necessary single-point calculations
with PySCF using our in-house code libnxc [31, 32] as a
plug-in to allow for the use of PyTorch XC models. Lib-
nxc is freely available on Github under the MPL-2.0 Li-
cense and provides a straightforward way to users to em-
ploy our functional in electronic structure calculations.
Instructions on how to do so are provided in the doc-
umentation accompanying the code. We employed the
def2-QZVP basis set and augmented it with diffuse func-
tions for the subsets recommended in Ref. 28. A PySCF
grid level of 3 together with an energy convergence tol-
erance of 10−8Eh was chosen.

To ensure the correct treatment of non-covalent inter-
actions, all results reported include the DFT-D3 disper-
sion correction with Becke-Johnson damping [39, 40]. Pa-
rameters for our functional were optimized following the
procedure outlined in Ref. 28 and are summarized in the
SI.

Fig.1 shows a comparison of XC enhancement factors
Fxc = εxc/ε

UEG
x for a set of density functionals. Despite

the small regularization employed, the obtained neural
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network-based functional is smooth and no problems re-
garding convergence during SCF calculations were en-
countered. We accredit this to the optimization proce-
dure and the weighted loss which penalized parametriza-
tions that would lead to slowly converging calculations.
We also show in the supplementary material[41] sec[ix]
(see, also, references[42–45] therein) that the convergence
of our functional with respect to the real space grid size
is as good if not better than that obtained with SCAN.

Comparing the weighted means WTMAD-2 shown in
Fig. 2 and Tab. I, we see that xc-diff outperforms SCAN,
(rev)TPSS [46] , and the empirically fitted Minnesota
functionals M06L, M11L [47] and MN12L [48]. It should
be pointed out that the training sets used to optimize the
Minnesota functionals were about one order of magnitude
larger than the one used in this work.

The datasets W4-11, BH76, and MB16-43 illuminate
the strengths and weaknesses of the respective function-
als. For atomization energies of small systems, xc-diff
outperforms SCAN by 0.6 kcal mol−1 and is comparable
to the global hybrids B3LYP [49] and PBE0 [50]. Being
susceptible to delocalization errors, barrier heights pose a
challenge to semi-local functionals. Here, xc-diff outper-
forms SCAN by more than 1 kcal mol−1 but is outper-
formed by about the same amount by PBE0 and B3LYP.
Not fully shown in Tab. I due to their large WTMAD-2,
the Minnesota functionals provide an excellent treatment
of this dataset with MAEs ranging from 3.9 to 1.7 kcal
mol−1. However, it is worth noting that barrier heights
played a major role in the training sets used to optimize
all Minnesota functionals, so their accuracy comes as no
surprise. MB14-36 plays a special role as it contains arti-
ficial, randomly generated molecules and has proven chal-
lenging especially to empirical functionals. Here, xc-diff
is less accurate than SCAN but shows reasonable perfor-
mance compared to all other functionals considered here.
Beyond tests in general data, we have also tested xc-diff
on a specific data set

Beyond comparing energies, we used the previously
calculated CCSD(T) electron densities across the G2/97
dataset to assess the accuracy of our functional regarding
densities. Mean errors across the dataset were computed
using the metric

ε|n| = E
[

1

Ne

∫
r

|n(i)(r)− n(i)ref (r)|
]

(20)

The methods were identical to those used for the diet-
GMTKN55 dataset except for the basis set, which was
chosen as 6-311++G(3df,2pd) for easier comparison with
our coupled-cluster reference densities.

Fig. 2 shows that xc-diff outperforms all other tested
meta-GGA functionals by a clear margin. We further
included data obtained with global hybrids and GGAs.
While most hybrids improve upon traditional meta-GGA
functionals, xc-diff is still 9% more accurate regarding the
density than PBE0.

6 8 10 12 14 16
|n| × 103

4

6

8

10

12

W
TM

AD
-2

 (k
ca

l/m
ol

)

xc-diff

MN12L

M11L
TPSS

M06L
revTPSS

SCAN

PW91

PBERPBE

B97 OLYP
revPBE

HSE06
B3LYPPBE0

M052X
wB97X-V

meta-GGA
GGA
hybrid

FIG. 3. Correlation plot for density error and total WTMAD-
2. Dotted line indicates best linear fit to non-empirical DFs

We believe that a functional should be judged by both
its accuracy regarding energies as well as densities. A
metric combining both energy and density errors would
therefore be useful to score and rank functionals, however
finding such a metric is no straightforward task.

An important clue might be provided by the high linear
correlation (R2 = 0.87) between WTMAD-2 and density
errors for non-empirical DFs (PW91[2], PBE[3], TPSS[4],
revTPSS[46], SCAN, PBE0[50]). The best fit of a linear
regression model (with zero intercept) is shown in Fig.
3 by a dotted line. Remarkably, regardless of the level
of approximation, non-empirical fuctionals closely follow
this trend-line, while many empirically fitted DFs seem
to deviate significantly from it. We have been able to
confirm that this trend persists for other definitions of
the density error, such as one based on the Kullback-
Leibler divergence (see SI for details). Our functional,
xc-diff, shows a density error that is lower than expected
from this trend.

Inspired by this finding, we propose a new metric ED
that allows us to combine density with energy errors:

ED|n| = 2

(
1

WTMAD-2
+

1

fE(ε|n|)

)−1
. (21)

fE(ε|n|) = γ · ε|n| with γ = 1084.87 kcal mol−1 cor-
responds to the linear regression model used in Fig. 3,
and can be interpreted as the energy error (WTMAD-2)
a fictional non-empirical functional with density error εn
would exhibit according to our model. Fig. 2 shows
ED|n| across density functionals. We see that within
meta-GGAs, the order of functionals remains largely un-
changed but due to xc-diff’s accuracy for densities, it now
outperforms B3LYP and matches the accuracy range of
other popular hybrids such as PBE0. It is out of the scope
of this manuscript to study how xc-diff performs for sys-
tems and problems that SCAN has difficulty with such
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the the self interaction error in water clusters.[51, 52]. We
expect such study to provide results similar to SCAN.
Here, we have computed the optimized geometry of
the water molecule (supplementary material[41] Sec[vii]).

Xc-diff improves the ĤOHxc−diff = 104.5o (same as
experimental[51]) over SCAN (104.3o[51]), while for the

OH-bond length we obtain rxc−diffOH = 0.964 Å, as com-
pared to rexpOH = 0.958 Å, and rSCANOH = 0.960 Å. Addi-
tional results, showing the similarity to SCAN regarding
the self-interaction error in the ionized water dimer [52]
are provided in Supplementary material[41] sec[viii].

Using an end-to-end differentiable implementation of
the Kohn-Sham equations we have successfully optimized
an accurate meta-GGA XC functional. Our results in-
dicate that a highly constrained functional like SCAN
has already almost exhausted the accuracy limit that a
meta-GGA functional can achieve. Nevertheless, within
this narrow window, our method was able to improve
upon SCAN regarding both a diverse set of reaction
energies and electron densities. It has been argued that
such improvement should be achieved in a non-empirical
approach imposing physically motivated exact con-
straints with a minimal number of free parameters [53].
We have shown that a data-driven search using machine
learning combined with an adherence to constraints
can provide an equally valid path. A crucial ingredient
of our method is given by automatic differentiation,
which allows the optimization algorithm to make use of
valuable information contained in the electron density,
effectively enlarging the training set size. It remains to
be tested how a thus optimized functional performs for
solid systems; work that will be the subject of future
research. While we believe that our functional could be
further improved by fitting to larger training sets, its
accuracy is inherently limited by the functional form of
meta-GGAs. This issue particularly emerges when trying
to address systems for which self-interaction errors play
a significant role. We predict that advances in hardware
development along with more efficient implementations
of our code will soon allow us to apply our method to
much larger training sets and higher rungs of DFT’s
Jacob’s ladder [53], opening the path towards functionals
of optimal accuracy, within their rungs of approximation.
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