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Dirac fermions in 2 + 1 dimensions with dynamically generated anticommuting SO(3) antiferro-
magnetic (AFM) and Z2 Kekulé valence-bond solid (KVBS) masses map onto a field theory with
a topological θ-term. This term provides a mechanism for continuous phase transitions between
different symmetry-broken states: topological defects of one phase carry the charge of the other and
proliferate at the transition. The θ-term implies that a domain wall of the Z2 KVBS order parameter
harbors a spin-1/2 Heisenberg chain, as described by a 1 + 1 dimensional SO(3) non-linear sigma
model with θ-term at θ = π. Using pinning fields to stabilize the domain wall, we show that our
auxiliary-field quantum Monte Carlo simulations indeed support the emergence of a spin-1/2 chain
at the Z2 topological defect. Surprisingly the consequences of the topological term are seen far

from the critical point such that the physics of apparently unrelated model systems are naturally
understood by invoking them. This concept can be generalized to higher dimensions where 2 + 1
dimensional SO(4) or SO(5) theories with topological terms are realized at a domain wall.

Introduction.—Topological terms in field theories play
an important role in our understanding of phases and
critical phenomena. For instance, the differences between
integer and half-integer spin-S chains are a consequence
of the 2πiS pre-factor of the integer-valued θ-term that
counts the winding of a unit vector over the sphere. Dirac
fermions provide a very appealing route to define models
that map onto field theories with topological terms [1–9].
Consider 8-flavored Dirac fermions in 2 + 1 dimensions
akin to graphene. In this case, there is a maximum of five
anti-commuting mass terms that could, for instance, cor-
respond to an antiferromagnet (AFM) with three mass
terms and a Kekulé valence bond solid (KVBS) with two
mass terms [10]. The ten commutators of these mass
terms correspond to the generators of the SO(5) group
so that Dirac fermions Yukawa-coupled to these five mass
terms possess an SO(5) symmetry. In the massive phase,
one can integrate out the fermions to obtain a Wess-
Zumino-Witten (WZW) topological term [1, 2] that is
believed to be at the origin of deconfined quantum crit-
icality (DQC) [11, 12]. In particular, it formalizes the
Levin-Senthil picture [13] of a vortex of the Kekulé order
harboring an emergent spin-1/2 degree of freedom.

The aim of this Letter is to demonstrate numerically
the consequences of topological terms in the correspond-
ing field theory. We will do so by considering a model of
Dirac fermions in 2+1 dimensions with reduced spatial
symmetries such that the three AFM and one of the two
KVBS mass terms are dynamically generated. Contrary
to the generic KVBS state with a spontaneously bro-
ken U(1) symmetry in the continuum, our KVBS state
spontaneously breaks a Z2 symmetry. We will refer to
this state as Z2 KVBS. Starting from the WZW topo-
logical term, this symmetry reduction amounts to set-
ting one component of the five-dimensional field to zero.
This maps the WZW term to a θ-term at θ = π [3].
Let us assume that the phase transition observed nu-

merically between the AFM and the Z2 KVBS is con-
tinuous and captured by the aforementioned field the-
ory. Then, the θ-term leads to the prediction that in the
Z2 KVBS phase close to the transition, a Z2 KVBS do-
main wall harbors a spin-1/2 chain. In what follows, we
will provide a model—amenable to large scale negative-
sign-free auxiliary-field quantum Monte Carlo (QMC)
calculations—that provides compelling results support-
ing this field-theory picture. The consequences of topol-
ogy is seen far from the critical point such that surpris-
ing results on seemingly unrelated model systems become
transparent.

Field theory.—A theory that accounts for the phase di-
agram presented in Ref. [6] (see Fig. 1(a)) contains Dirac
fermions Yukawa-coupled to the AFM and Z2 KVBS
mass terms, as described by

LF= Ψ†

[

∂µ(12 ⊗ γ0γµ) +

(

ηα
χ

)

·

(

σα ⊗ γ0
12 ⊗ iγ0γ5

)]

Ψ .

(1)

Here, the Dirac spinors Ψ† carry a sublattice index, a spin
index, and a valley index. The γ-matrices act on the val-
ley and sublattice spaces and satisfy the Clifford algebra
{γa, γb} = 2δab. σα with α = 1, 2, 3 denote the Pauli
spin-1/2 matrices. The fact that the SO(3) AFM mass
terms σα ⊗ γ0 and Z2 KVBS mass terms 12 ⊗ iγ0γ5 anti-
commute results in an SO(4) invariance of the fermionic
action: a global SO(4) rotation of the four-component
field φ = (φ1, φ2, φ3, φ4) = (η, χ) is equivalent to a
canonical transformation of the fermion operators. The
dynamics of the field is governed by a four-component ϕ4

action, LB. While LF has SO(4) symmetry, LB inherits
the SO(3) × Z2 symmetry of the lattice model.
The Lagrangian L = LF + LB can account for many

phase transitions. The Gross-Neveu transitions from
semimetal to AFM or from semimetal to Z2 KVBS in-
volve a closing of the mass gap corresponding to the norm
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of the field φ. On the other hand, QMC simulations
(see Ref. [6] and the Supplemental Material (SM) [14])
point to a continuous transition between the AFM and Z2

KVBS states with an emergent SO(4) symmetry. Impor-
tantly, the numerical results show that the single-particle
gap remains finite across the transition. In the field the-
ory, this implies that amplitude fluctuations of φ are
frozen and only phase fluctuations of the field need to
be retained. Since the fermions remain massive, they
can be integrated out (in the large mass limit) to obtain

S =

∫

dx2dτ
1

g
(∂uφ̂)

2 + iθQ , θ = π (2)

with

Q =
1

12π2

∫

dx2dτǫi,j,kǫα,β,γ,δφ̂α∂iφ̂β∂j φ̂γ∂kφ̂δ. (3)

Here, φ̂(x, τ) = φ/|φ| defines a mapping from 2 + 1 di-
mensional Euclidean space-time to the three-dimensional
sphere S3. For smooth φ̂(x, τ)’s Q is quantized and

counts the winding of the unit four-vector φ̂ on S3.
A domain wall of the Z2 KVBS order parameter is ob-

tained by pinning the field φ̂ at the origin and at infinity:
φ̂(0) = (0, 0, 0, 1) and φ̂(∞) = (0, 0, 0,−1). Let us pa-
rameterize 2+1 dimensional Euclidean space-time with
spherical coordinates, (x, τ) = rn with n a unit vector,
and choose

φ̂(rn) = (sin(f(r))n, cos(f(r)) . (4)

Here, f is a one-to-one smooth function with boundary
conditions f(0) = 0 and f(∞) = π and describes the
profile of the domain wall. As shown in the SM [14], the
integration over r can now be carried out to obtain the
domain-wall action:

SDW =

∫

dxdτ
1

g
(∂un)

2 + iπQDW (n) (5)

with

QDW (n) =
1

4π

∫

dxdτn · ∂τn× ∂xn. (6)

Above we have mapped S2 (on which n is defined) to
R

2. While the topological term is independent of the
choice of the profile of the domain wall, g depends on f .
The action in Eq. (5) corresponds to that of the spin-1/2
Heisenberg chain [21, 22].

Model.—The QMC simulations presented in Ref. [6]
for the honeycomb lattice support a direct and continu-
ous transition between the AFM and Z2 KVBS with an
emergent SO(4) symmetry and, in principle, provide a
case to test the above predictions. However, irrespec-
tive of how one places the pinning fields on the hon-
eycomb lattice, translation symmetry along the domain
wall will be broken. Since gaplessness of the spin-1/2
chain is protected by a mixed anomaly between trans-
lations and time-reversal or spin rotations, dimerization
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FIG. 1. (a) Schematic ground-state phase diagram [6].
Dashed line indicates scans considered here. (b) In our model
fermions acquire a π-flux when circulating around a plaquette
and are coupled to Ising spins on lattice bonds with magni-
tude ±ξ. We consider periodic (open) boundary conditions in
the a1(a2) directions and freeze the Ising spins on the open
boundary to impose the domain wall. (c) Real-space bond

energy change ∆B̂i,al
. Here, L1 = 30 and L2 = 17.

along the domain wall will occur. Hence, even if a spin
chain emerges at the domain wall, it will gap out due to
the choice of lattice discretization. To avoid this, we have
reformulated the model of Ref. [6] on the π-flux square
lattice. This provides a lattice discretization of Dirac
fermions with a C4 symmetry. The model Hamiltonian
reads Ĥ = Ĥf + Ĥs + Ĥfs (see Fig. 1(b)) with

Ĥf=
∑

〈ij〉,σ

tij ĉ
†
iσ ĉjσ + U

∑

i

(n̂i↑ −
1
2 )(n̂i↓ −

1
2 ), (7)

Ĥs= J
∑

〈ij,kl〉

ŝzij ŝ
z
kl − h

∑

〈ij〉

ŝxij , Ĥfs =
∑

〈ij〉,σ

tijξij ŝ
z
ij ĉ

†
iσ ĉjσ.

While Ĥf corresponds to the half-filled Hubbard model
on the π-flux square lattice, Ĥs is a ferromagnetic,
transverse-field Ising model defined on the bonds 〈ij〉 of
the square lattice. Ĥfs accounts for the coupling between
Dirac fermions and Ising spins. The Hubbard interaction
and the fermion-spin coupling can dynamically generate
SO(3) AFM order and Z2 KVBS order (ferromagnetic
order of the Ising spins), respectively. For the numeri-
cal simulations we used the ALF (Algorithms for Lattice
Fermions) implementation [23] of the finite-temperature
auxiliary-field QMC method [24, 25]. Our model can be
simulated without encountering the negative sign prob-
lem. Henceforth, we use t = 1 as the energy unit, set
J = −1, ξ = 0.5, and U = 7. An inverse temperature
β = 30 (with Trotter discretization ∆τ = 0.1) yields re-
sults representative of the ground state. QMC results on
torus geometries detailed in the SM [14] suggest a contin-
uous AFM–Z2 KVBS transition with an emergent SO(4)
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symmetry at 1/hc ≈ 0.270.

To pin a domain wall configuration, we consider a
cylindrical geometry and freeze the Ising spins at the
edges to ŝz(i1,−n),(i1,−n+1) = 1 and ŝz(i1,n−1),(i1,n)

= −1
where L2 = 2n+ 1. Taking into account the gauge free-
dom to define the π-flux model, translation symmetry
by a1 is present. The model with pinning fields has a
mirror symmetry corresponding to the combined trans-
formations ĉ†(i1,i2),σ → ĉ†(i1,−i2),σ

and ŝz(i1,i2),(i1,i2+1) →

−ŝz(i1,i2),(i1,−i2−1).

Numerical results.—To detect the profile of the do-
main wall, we measure the bond kinetic energy ∆B̂i,al

=

〈B̂i,al
〉 − 〈B̄〉. Here, B̂i,al

=
∑

σ ti,i+al
(ĉ†iσ ĉi+alσ

+

ĉ†i+alσ
ĉiσ) and B̄ = (2L1L2)

−1
∑

i,l B̂i,al
where l = 1, 2.

Figure 1(c) shows this quantity. The aforementioned
translation and mirror symmetries are readily seen.

As discussed above, the field theory of the domain wall
is described by an SO(3) non-linear sigma model with
θ-term at θ = π in 1+1 dimensions. We expect this
theory to have an emergent SO(4) [26, 27] symmetry re-
flecting the fact that spin-spin and dimer-dimer correla-
tions decay with the same power law but with different
logarithmic corrections: (−1)r(ln r)1/2r−1 for the spin
[28–30] and (−1)r(ln r)−3/2r−1 for the dimer [30]. In

Figs. 2(a-c) we plot the spin [CS(i) = 〈Ŝi · Ŝ0〉], dimer

[CD(i) = 〈(D̂i−〈D̂i〉)·(D̂0−〈D̂0〉)〉] and bond [CB(i) =
〈(B̂i,a1

−〈B̂i,a1
〉)·(B̂0,a1

−〈B̂0,a1
〉)〉] correlators as a func-

tion of the conformal distance x = L1sin(πi1/L1) [31].

Here, Ŝi =
∑

σσ′ ĉ
†
iσσσσ′ ĉiσ′ , and D̂i = Ŝi · Ŝi+a1

.
The bond and dimer correlations share the same sym-
metries so that we expect them to decay with the same
power law. We compare our results with those for the
half-filled Hubbard chain at U/t = 4. While there is re-
markable agreement between the spin correlations (see
Fig. 2(a)) it appears that we have to reach longer length
scales in the domain wall calculation to observe the 1/r
power law decay for the dimer and bond correlations (see
Fig. 2(b),(c)). A possible interpretation of these numer-
ical results is that the Hubbard model is closer to the
emergent SO(4) conformal field theory than the domain
wall SO(3) theory of Eq. (5). Further evidence for the
emergent spin-1/2 chain can be obtained from the dy-
namical spin structure factor at the domain wall that
shows a two spinon continuum (see SM [14]).

The field theory interpretation of the domain wall has
consequences. It should be independent of the choice
of the lattice discretization—provided that it does not
break relevant symmetries such as translation along the
domain wall—and the lattice constant should correspond
to a high-energy scale. In the Z2 KVBS phase close to
the critical point, Fig. 3(c)-(d), we check that the do-
main wall extends over many lattice sites in the perpen-
dicular direction. In particular, for the value of trans-
verse field h considered, the domain wall extends over
several lattice spacings and the data are consistent with
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FIG. 2. Real-space correlation functions for (a) spin, (b)
dimer, and (c) bond at the domain wall of Z2 KVBS (solid
symbols). Here L2 = 17 and x = L1sin(πi1/L1) is the con-
formal distance [31]. Open symbols indicates QMC results
for the one-dimensional Hubbard model at U/t = 4 and at
half-filling. The solid line corresponds to x−1.

CS(x, i2) ∼ e−|i2|/ξx−1 where ξ ∼ 4. The profile of the
domain wall is expected to be inversely proportional to
the stiffness. Varying 1/h in the Z2 KVBS will merely
change the profile of the domain wall, thereby changing
the length scale ξ but not the properties of the spin-1/2
chain along the domain wall (see Fig. 3(a), (b)).

In contrast, in the AFM phase, there is no scale that
confines the width of the domain wall other than the
width of the lattice L2. We expect the spin-spin correla-
tions within the domain wall to show the long-range AFM
order. At h = ∞, our model maps onto the pure Hubbard
model on the π-flux lattice and we can choose to impose
or not impose pinning fields on the edge. The Gross-
Neveu transition in this model occurs at Uc = 5.71(1)
[32] so that the value U = 7 underlying Figs. 3 (e)-(h)
places us far from the critical point. As apparent from
the data the profile of the domain wall is flat around
the center of the cylinder. Although the spin correla-
tions (see Fig. 3(f)) show a slight upturn they do not
provide clear evidence of long-range order. This counter
intuitive result—on a rather large lattice—can be under-
stood by thinking in terms of proximity to the DQCP.
The AFM state originates from the binding of spinons,
and this will occur on a confinement length scale. If L2

is comparable to this length scale spinons persist within
the domain wall. Enhancing the interaction to U = 12
(see Figs. 3(i)-(j)) takes us away from the DQCP so that
the confining spinon length scale becomes smaller. In
this case, the profile of the domain wall is again very flat
and spin correlations develop clear signs of ordering. It
is also interesting to note that the data for U = 7 with-
out pinning fields also show very anomalous spin-spin
correlations (see Figs. 3(g)-(h)). Thus, open boundary
conditions effectively generate a KVBS mass along the
edge.

Summary and discussion.—We have shown how to
probe topological terms in lattice realizations of field the-
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FIG. 3. Real-space bond energy change at i = (i1 = 0, i2)
(left panel) and spin-spin correlation functions along the
domain wall of Z2 KVBS (right panel) for L2 = 17 and
x = L1sin(πi1/L1) with L1 = 30. (a)-(b) 1/h = 0.333
[Z2 KVBS phase] and (c)-(d) 1/h = 0.275 [Z2 KVBS phase
close to the critical point] at U = 7. At h = ∞, our model
maps onto the pure Hubbard model on the π-flux lattice and
U > 5.71(1) [32] places us in the AFM phase. In (e)-(f) ((g)-
(h)) we consider this limit with (without) pinning fields at
U = 7 and in (i)-(j) the same limit with pinning fields at
U = 12.

ories by pinning defects. The explicit example provided
in this work is based on a model where the effective field
theory has a θ-term at θ = π in 2+1 dimensions with
emergent SO(4) symmetry. In the lattice realization of
this model, the SO(4) symmetry reduces to SO(3)× Z2

and we consider a domain wall of the Z2 field. The emer-
gent SO(4) symmetry then suggests that the domain wall
harbors a spin-1/2 chain. Our numerical results not only
confirm this point of view but show that topology is im-
portant to understand aspects of the physics of the Hub-
bard model on the π-flux lattice. We note that similar
calculations have been carried out in the realm of the JQ
model [33] with emphasis placed only on defects in the
VBS phase. Furthermore, in Ref. [33], the pinning of the
domain wall is imposed by breaking the symmetry of the

bulk Hamiltonian, thus potentially changing the nature
of the transition. In contrast, the pinning carried out
here involves only boundary conditions.

The above argument holds for continuous transitions
with emergent symmetries. There is an ongoing debate
on the nature of the generic DQCP [34–37] with an emer-
gent SO(5) symmetry [38]. Compelling evidence for a
continuous transition with an emergent SO(5) symmetry
has been put forward but critical exponents stand at odds
with bootstrap bounds [39]. To resolve this apparent
contradiction, one can conjecture [40–42] that an SO(5)
conformal field theory indeed exists in spatial dimensions
slightly greater than two that, however, collides with an-
other fixed point and becomes complex upon tuning the
dimension down to two. Proximity to fixed-point colli-
sion is at the origin of a very slow renormalization group
flow and associated very long correlation lengths [40, 43].
In fact, recent simulations of the SO(5) non-linear sigma
model with a WZW topological term support this point
of view [44]. Very similar arguments can be applied to
the present case where weakly first-order transitions were
reported for similar symmetry classes [45–47]. Hence, a
weakly first-order transition does not impair the notion
that topological terms can play a dominant role at inter-
mediate length scales.

Our approach allows for simulations of models previ-
ously inaccessible to Monte Carlo simulations. In two
spatial dimensions, negative sign free QMC simulations
of the SO(5) non-linear sigma model with Wess-Zumino-
Witten geometrical term are possible [44, 50]. As shown
in the SM [14], at a domain wall generated by pinning
one component of the SO(5) vector, a 1+1 dimensional
SO(4) non-linear sigma model with Wess-Zumino-Witten
term emerges. This model is known to capture the low
energy physics of the Heisenberg chain [26, 27]. To the
best of our knowledge, no simulations of this model have
been carried out to date.

Our observation may equally have some utility in three
dimensions, where there are also pairs of ordered phases
for which the disorder operators for one phase are charged
under the symmetry broken by the other. A simple ex-
ample involves a cubic-lattice AFM and a cubic-lattice
VBS [48]. As in two dimensions, the skyrmions carry
lattice-symmetry quantum numbers, and the defects of
the VBS pattern (which are hedgehogs) carry spin. This
can be encoded in a sigma model with a WZW term,
now with softly-broken SO(6) ⊃ SO(3)AFM × SO(3)VBS

symmetry. However, in addition to the usual possibility
of a first-order transition [49], a direct transition between
these two phases can also be preempted by an intermedi-
ate disordered phase for the following reason: in contrast
to two dimensions, compact abelian gauge theory with
small amounts of charged matter (QED) has a (famil-
iar) deconfined phase in three dimensions. But, as in the
above discussion, the WZW term still has consequences
within the ordered phases. For definiteness and similar-
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ity with our example above, consider breaking the cubic
lattice symmetry down to Z2 × Z2, where the second Z2

represents reflections in ẑ, say. The associated sigma
model then has SO(5) ⊃ SO(3)AFM × (Z2 × Z2)VBS sym-
metry with a θ-term at θ = π. In analogy to the case
considered here, the domain wall of the Z2 part of the
VBS order parameter transverse to the ẑ direction will
host an SO(4) non-linear sigma model at θ = π, now
in 2 + 1 dimensions. This is a description of the decon-
fined critical point between AFM and KVBS orders in
two dimensions.
Another possibility is to break the cubic lattice sym-

metry down to C4 × Z2, where again the Z2 represents
reflections in ẑ. The associated sigma model then has
SO(6) ⊃ SO(3)AFM × (SO(2) × Z2)VBS symmetry with
a WZW term. Now, the domain wall of the Z2 part
of the VBS order parameter, transverse to the ẑ direc-
tion, will host an SO(5) non-linear sigma model with a
WZW term, now in 2 + 1 dimensions. This construction

could provide an alternative for the Landau-level projec-
tion formulation of this theory [44, 50].
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