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Systems with strong electron-phonon couplings typically exhibit various forms of charge order,
while strong electron-electron interactions lead to magnetism. We use determinant quantum Monte
Carlo (DQMC) calculations to solve a model on a square lattice with a caricature of these inter-
actions. In the limit where electron-electron interactions dominate it has antiferromagnetic (AF)
order, while where electron-phonon coupling dominates there is columnar valence-bond solid (VBS)
order. We find a novel intervening phase that hosts coexisting nematic and antiferromagnetic orders.
We have also found evidence of a Landau-forbidden continuous quantum phase transition with an
emergent O(4) symmetry between the VBS and the nematic antiferromagnetic phases.

Introduction: The interplay of electron-electron
and electron-phonon interactions is crucial in determin-
ing the nature of the ground state in electronic sys-
tems. While electron-electron interactions conventionally
give rise to magnetism, a large electron-phonon coupling
can give rise to, among other things, superconductivity,
charge or bond density wave orders, as well as nematic
order. It is also possible that the interplay between the
two sorts of interactions can stabilize novel intermediate
quantum phases, including spin-liquids, or exotic “de-
confined quantum critical” transitions between otherwise
conventional broken-symmetry phases.

In this work we consider fermions on the two dimen-
sional square lattice with repulsive electron-electron in-
teractions, as well as a coupling to local pseudo-spin de-
grees of freedom that are a caricature of optical phonons.
We compute thermodynamic correlation functions using
determinant quantum Monte Carlo (DQMC) [1, 2] and
restrict our attention to the case in which the average
electron density is n = 1 electron per site, so the simula-
tions are free of the famous fermion minus sign problem.

Our model is conceived to exhibit two previously stud-
ied phases in extremal limits, an antiferromagnetic (AF)
and a columnar valence-bond-solid (VBS) phase [3, 4]
(shown in cartoons in Fig. 1) both of which are incom-
pressible at temperature T → 0, and hence insulating.
In addition to these two phases we find a novel insulat-
ing nematic antiferromagnetic (NAF) phase, in which the
lattice C4 rotation symmetry is broken down to C2 (as it
is in the VBS phase) but the only translation symmetry
breaking is associated with the AF order.

There are a number of phase transitions of interest in
this phase diagram. Most notably, along a portion of
the phase boundary between the VBS and NAF phases
(dashed line in the figure), the transition is continuous
and exhibits an emergent O(4) symmetry that unifies the
AF and VBS order parameters. This is an example of a
deconfined quantum critical point (DQCP) [5] at which
larger symmetries are predicted to emerge. Beyond a
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FIG. 1. Phase diagram in the h− V plane with α = 0.7, Ṽ =
0.5. Data points in the VBS, NAF and AF phases are shown
in blue, green, and orange, respectively. The density of the
symbols reflects the frequency of the numerical experiments
and carries no physical meaning. The lines are a guides to the
eye. Solid (dashed) lines indicate first (second) order tran-
sitions. The insets illustrate the ground state deep in the
ordered phases. Blue lines represent strong bonds, and the
arrows represent the spin orientations. The data presented in
Figs. 2, 4(a) 4(b), and 5 correspond to the black filled cir-
cle, filled square, empty square and empty circle, respectively.
Fig. 3 examines the phase transition indicated by the dark
red arrow.

tricritical point, this transition becomes first order (as
indicated by the solid line). Our results are in line with
previous numerical studies [6–26] of various DQCPs. In
particular, the emergent O(4) symmetry in our study is
similar to that found in studies [16, 27] of the DQCP
between an AF and a Kekulé phase or between an AF and
a nematic paramagnetic phase. Interestingly, in these
cases the transition cannot be described in terms of the
proliferation of topological point defects in either the Z2

or the O(3) orders. In constrast, such a description is
possible for the closely related case of a DQCP between
phases with a U(1) and a Z4 order, for which there is
good theoretical [5, 28] and numerical evidence [15, 22]
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of an emergent O(4) symmetry.
More generally, these considerations are reminiscent

of earlier theories of a DQCP between VBS and AF
phases, where duality arguments [5, 28] suggested an
O(5) symmetry that unifies Néel (O(3)) and VBS (Z4)
order parameters. However, rigorous bounds on criti-
cal exponents obtained from conformal bootstrap calcu-
lations [29] have raised doubts about the existence of such
a DQCP. Indeed, elsewhere in the phase diagram we find
a direct transition from an AF to a VBS phase, but this
transition appears always to be first order - we find no
signs of a putative DQCP with emergent O(5) symmetry.

In addition, there is a Landau-allowed continuous tran-
sition along the phase boundary between the AF and
NAF phases. We find no evidence of two-phase coexis-
tence near any of the first order transitions [30].

The Model: Our model is defined on the two dimen-
sional square lattice, with electrons that interact with on-
site repulsive Hubbard interactions. We also introduce
pseudo-spin variables that are a caricature of phonons.
Each pseudo-spin variable lives on a nearest-neighbor
bond and can be thought of as representing the local
lattice distortion.

The Hamiltonian consists of three parts

H = He +Hph +Hint. (1)

He is the Hubbard model for spin- 12 fermions at half-
filling

He = −t
∑
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where i denotes sites and 〈i, j〉 denotes nearest-neighbors.
Hph is the bare phonon piece:
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where the pseudo-spin ~τij = ~τji represents a two-state
“phonon” mode on each nearest-neighbor bond, the sum
over 〈j, i, k〉 is over pairs of bonds with a common vertex,
the various terms proportional to V and Ṽ (both assumed
positive) determine the favored “classical configurations”
of the pseudo-spins, and the transverse field h gives them
dynamics. The classical states can be visualized in a
lattice-gas representation, in which a “strong” bond on
which τzij = 1 is thought to be occupied by a dimer.

The preferred (zero energy) configurations for large Ṽ
correspond to those of the hard-core dimer model [4],
such that no two strong bonds share a common vertex

(i.e. the dimers satisfy a hard-core constraint). Positive
V on the other hand, favors plaquette configurations with
exactly one pair of dimers on opposite sides. The classical
(h → 0) ground-states of Hph for Ṽ > V > 0 are the 4
symmetry-related columnar VBS states of the sort shown
in the lower left inset in Fig. 1 with dimers on the blue
bonds, while for V > Ṽ > 0, they are the 2 nematic
states of the sort shown in the upper inset.

Lastly the electrons are coupled to the pseudo-spins by

Hint = −αt
∑
〈i,j〉,σ

τzij

[
c†i,σcj,σ + h.c.

]
. (4)

The interactions in our model are such that the ground-
state is an AF for h→∞ and a columnar VBS phase as
h→ 0 so long as V � Ṽ and α is sufficiently big [31].
Calculational particulars: In order to use the

DQMC technique without encountering the sign prob-
lem, we restrict ourselves to the case of half-filling of
fermions. We apply a discrete Hubbard-Stratonovich
decoupling in the spin channel to represent the Hub-
bard interaction [30]. We have performed DQMC sim-
ulations at finite temperatures, with imaginary time dis-
cretization ∆τ = 0.1 and systems of linear size up to
L = 18 and down to temperatures T = 1/18. Through-
out this letter we use periodic boundary conditions, and
fix t = 1, U = 3, Ṽ = 0.5, and α = 0.7 unless mentioned
otherwise. As illustrated in Fig. 1, we then explore the
zero temperature phase diagram as a function of h and
V . We identify the different ordered states by the diver-
gence of the appropriate susceptibility as the system size
is increased [30].

Where C4 symmetry is spontaneously broken, in or-
der to avoid complications due to metastable domain
structures, we typically seed our DQMC runs with a con-
figuration obtained by introducing an explicit symmetry
breaking field for an initial 3000 DQMC steps, but then
removing this field so that the model has the requisite
C4 symmetry for all subsequent steps. We illustrate our
most significant findings with representative figures in
the main text, but present more complete data in the
Supplemental Material.

Nematic antiferromagnet: Fig. 1 shows that the
NAF arises as an intermediate phase [32]. In Fig. 2 we
show the spin and pseudo-spin susceptibilities as func-
tions of momentum (q) at a representative point in this
phase. The susceptibilities are defined as

χ(q) =
1

L2

∑
i,j

∫ β

0

dτ 〈~Si(τ) · ~Sj(0)〉eiq·(ri−rj) (5)

Da(q) =
1

L2

∑
〈i,j〉a〈k,l〉a

∫ β

0

dτ 〈τzij(τ)τzkl(0)〉eiq·(rij−rkl),

(6)

where ~Si is the electron spin, rij is the position of the
center of the bond 〈i, j〉, and the subscript a = x or
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y signifies the orientation of the bond. That this is a
magnetically ordered state is shown by the presence of a
Bragg peak in χ(q) as T → 0, as is evident in the figure
and which we have corroborated by finite size scaling.
The fact that both correlation functions depend on the
direction of q shows that the state spontaneously breaks
C4 symmetry down to C2, i.e. that it is nematic.
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FIG. 2. Correlation functions in momentum space q in the
NAF phase (h = 2.0, V = 0.5 - the black filled circle in Fig. 1 -
with L = β = 14). (a) Static spin-spin susceptibility as a func-
tion of deviation from AF ordering vector QAF = (π, π). (b)
Static bond-bond susceptibility for x- and y-direction bonds.

VBS to NAF transition: As shown in Fig. 1, as
a function of increasing V at fixed small h, there is a
strongly first order transition (indicated by a solid line)
from a VBS to the NAF, characterized by a discontinuous
jump in first derivatives of free energy [30]. Indeed, since
the NAF spontaneously breaks time-reversal (TR) sym-
metry but is invariant under the product of translation
and time-reversal (TrTR) while the VBS preserves TR
but breaks TrTR, conventional Landau theory implies
the transition must be first order. However, at larger
h, the phase boundary bends sharply and, beyond a tri-
critical point, the transition becomes continuous (dashed
line) within our numerical resolution. Eventually the
phase boundary ends at a bi-critical point. (We have
not yet explored these multicritical points in detail, but
we note that since the phase boundary that links them
is exotic, they may have unusual features as well.)

We now focus on the continuous VBS-NAF transitions.
To be concrete, we fix V = 0.375 and study the finite size
scaling behavior of the static AF and VBS susceptibilities
χAF, χVBS as a function of h. These are given by the ex-
pressions in Eqn. 5 and 6 evaluated at QAF = (π, π) and
QVBS = (0, π), respectively, with the bond direction set
to a = y. Since both the VBS and the NAF phases break
the C4 rotational symmetry, in the remaining calcuations
reported here we have applied a small explicit C4 sym-
metry breaking in our simulations to stabilize our results,
by making the hopping matrix element t to be slightly
different in the two directions (with tx = 0.97, ty = 1.0)
[33]. As a consequence, the pseudo-spins correlations are
stronger for y-directed bonds, which we will refer to as
the nematic direction. The nematic direction also corre-

sponds to the direction of the ordering wavevector in the
VBS state. (See inset to Fig. 1.) Note that in the pres-
ence of this explicit symmetry breaking, the VBS order-
has Z2 (Ising) character, corresponding to the breaking
of translational symmetry.

Assuming the transition is continuous, on theoretical
grounds we expect conformal symmetry with dynamical
critical exponent z = 1. We thus scale space and time
together by taking β = L and express the susceptibilities
in the scaling forms (neglecting corrections to scaling)

χ(L) = Ld+1−η χ̃
[
(h− hc)L1/ν

]
, (7)

where d = 2, χ is either χAF or χVBS, and ν is the cor-
relation length and η the anomalous exponent.
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FIG. 3. Finite size scaling collapses of AF and VBS suscep-
tibilities along the dark red arrow in Fig. 1 (V = 0.375).
The location of the transition is identified as hc ≈ 1.98. The
critical exponents for the two different orders are within error
bars from each other.

In Fig. 3 we show the finite-size scaling collapse results
for these two susceptibilities taking hc ≈ 1.98. We obtain
1/νAF = 2.2± 0.4, 1/νVBS = 2.0± 0.4 and ηAF = 0.65±
0.2, ηVBS = 0.65±0.2. These results indicate a direct and
continuous transition between the two phases. The near
equivalence of the exponents extracted from the AF and
VBS susceptibilities hints at an emergent O(4) symmetry
that unifies the three components of the spin AF with
the single component VBS. The Binder ratios close to
the transition provides further support for the continuous
nature of the transition [30].
Emergent O(4) Symmetry: To further investigate

the possibility of a larger emergent symmetry at the crit-
ical point, we examine the relation between one com-
ponent of the AF order parameter ~φAF and the y-
component of VBS order parameter φVBS, defined as:

~φAF ≡
1

NAF

∫ β

0

dτ
∑
i

~Si(τ)eiQAF·ri , (8)

φyVBS ≡
1

NVBS

∫ β

0

dτ
∑
〈i,j〉y

τzij(τ)eiQVBS·rij , (9)

where the normalization factors NAF =
√
βL2χAF/3,

NVBS =
√
βL2χVBS are defined so that 〈[φaAF]

2〉 = 1
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for a = 1, 2, 3 and 〈[φyVBS]
2〉 = 1. In Fig. 4 (a) we

present a histogram of the joint probability distribution
of (φ3AF, φ

y
VBS) at the critical point, h, where the obvi-

ous rotational symmetry serves to visualize this emer-
gent symmetry. For comparison, in Fig. 4 (b) we show
the analogous histogram at the point of a first order the
transition between the same two phase, where only the
explicit Z2 × Z2 symmetry is present.

It is an established check to examine the O(4) non-
invariant moments [11] Fn ≡ 〈φ4 cos(nθ)〉 for n = 2 and
4 - in polar coordinates, φeiθ = φ3AF + iφyVBS. Vanishing
moments imply an O(4) symmetry. In Table I we observe
that at h = 1.98 near the critical point hc, the values for
the two moments extrapolate to zero in the thermody-
namic and zero temperature limit, strongly indicative of
emergent O(4) symmetry.
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FIG. 4. Histograms for the joint distribution of normalized
AF and VBS order parameters (φ3

AF, φ
y
VBS). (a): At a contin-

uous transition between VBS and NAF (h = 1.98, V = 0.375
- the filled square in Fig. 1). (b): At a first order transition
between VBS and NAF (h = 1.4, V = 0.40625 - the empty
square in Fig. 1). In both cases, L = β = 16.

F2 F4

L = β = 10 0.28 ± 0.04 −0.09 ± 0.03

L = β = 12 0.20 ± 0.05 −0.08 ± 0.03

L = β = 14 0.16 ± 0.05 0.06 ± 0.05

L = β = 16 0.09 ± 0.02 0.05 ± 0.03

TABLE I. Values for O(4) non-invariant moments at h =
1.98 - solid square in Fig. 1. Both moments are consistent
with zero when extrapolated to the thermodynamic and zero
temperature limits.

Topological defects: From the effective field the-
ory perspective, such an unconventional quantum criti-
cal point can be described in terms of a non-linear Sigma
model (NLSM) with a four-component order parameter
(1 for the VBS and 3 for AF orders) augmented by a 2+1
dimensionalθ-topological term [5, 28]. The θ-term con-
nects the AF and VBS orders, so that even away from
criticality, one expects the subdominant order parame-
ter to appear where the dominant order is suppressed -
especially near topological defects.

At a domain-wall of the VBS order, where φyVBS

changes sign (and thus passes through zero) we thus ex-
pect that quasi-long range AF order should develop along
the VBS domain-wall. In our DQMC study, we can in-
troduce a domain-wall by having an odd number of sites
along one of the spatial directions. We examine the real-
space version of the AF susceptibility (from Eq. 5)

χ̃(r) =
1

LxLy

∑
i

∫ β

0

dτ〈~S(ri, τ) · ~S(ri + r, 0)〉eiQAF·r,

(10)

where Lx sites is the number of sites in the x-direction
and Ly the number of sites in the y-direction. We will
consider even values of Lx, and QAF = (π, π + δ), where
δ=0 when Lx is even, and δ = −π/Ly when Ly is odd.
When Ly is odd, the VBS order is forced to have a do-
main wall along the x-direction. We perform such an ex-
periment at h = 1.1, V = 0.375, well in the VBS phase.
As shown in Fig. 5, when Lx = 14, Ly = 15, the long-
distance AF correlation is strongly enhanced in the x-
direction, along which the domain wall is aligned, while
in the Lx = Ly = 14 case, the AF correlations are short-
ranged [34].
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FIG. 5. Real space AF correlations χ̃(r) in the VBS phase
with (Ly = 15) and without (Ly = 14) a domain wall (DW)
in the VBS order parameter. Here, h = 1.1, V = 0.375, β =
16 and Lx = 14, indicated by an empty circle in Fig. 1.
The inset is a cartoon of the pseudo-spin configuration with a
domain-wall (marked by dashed line), along which AF order
is strongly enhanced.

Discussions and Conclusions: Our results demon-
strate the occurrence of exotic DQCPs in a model not
reverse engineered to produce them. By construction,
our system has two extremal (AF and VBS) phases, and
by tuning various parameters in the model, it is possible
to explore many routes through the phase diagram from
one phase to the other. It is notable that we never found
a trajectory that gives a direct continuous transition be-
tween the two extremal phases, which may be related
to the recent findings [29] that the putative DQCP be-
tween these two (postulated to have an emergent SO(5)
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symmetry [28]) may be intrinsically disallowed. On the
other hand, the fact that we found that the system found
two distinct ways to avoid the SO(5) DQCP is striking
- one route being a direct first-order transition between
the two phases, and a second route that goes through a
DQCP with emergent SO(4) symmetry, via an interme-
diate NAF phase, and then a second continuous transi-
tion. In order to host these two routes, the topology of
the phase diagram contains a novel multicritical point, a
bicritical point in which one of the phase boundaries is a
line of DQCPs.

Some time ago, a nearly continuous transition between
VBS and AF phases was observed (using NMR [35]) in
(TMTTF)2PF6, a quasi-2D system with orthorhombic
symmetry. Since the C4 symmetry is already explic-
itly broken, this transition is equivalent to a VBS to
NAF transition. It was speculated that its nearly con-
tinuous nature may be related to a lower dimensional
(two-dimensional) quantum critical point, which, if true,
would be expected on the basis of the present analysis to
exhibit an emergent O(4) symmetry.
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