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Hybrid Ising superconductor-ferromagnetic insulator heterostructures provide a unique opportu-
nity to explore the interplay between proximity-induced magnetism, spin-orbit coupling and super-
conductivity. Here we use a combination of first-principles calculations of NbSe2/CrBr3 heterostruc-
tures and an analytical theory of Ising superconductivity to analyze the existing experiments and
provide a complete explanation of highly nontrivial and largely counterintuitive effects: an increase

in the magnitude of the superconducting gap accompanied by the broadening of the tunneling peaks;
hysteretic behavior of the tunneling conductance that sets in ≈ 2 K below Tc; and nematic sym-
metry breaking in the superconducting state. The microscopic reason in all three cases appears to
be the interplay between the proximity-induced exchange splitting and intrinsic defects. Finally,
we predict additional interesting effects that at the moment cannot be addressed experimentally:
spin-filtering when tunneling across CrBr3 and tunneling “hot spots” in momentum space that are
anticorrelated with regions where the spin-orbit splitting is maximum.

One of the most intriguing discoveries in superconduc-
tivity in the last decade is the so-called Ising supercon-
ductivity, which appears in materials without inversion
symmetry and with a particular type of spin-orbit cou-
pling (SOC)1–6. Thus far all experimental work on Ising
superconductivity have been performed on single layers
of the transition metal dichalcogenides (TMD), such as
NbSe2. Unlike conventional superconductors which can
be classified by parity (centrosymmetric materials) or
by the leading parity (non-centrosymmetric materials),
Ising superconductivity represents a qualitatively differ-
ent class, where each Cooper pair is described by an equal
mix of singlet and triplet wave functions4,5. This man-
ifests in a range of unique properties which includes a
theoretically infinite thermodynamical critical field along
certain directions and nontrivial interplay of supercon-
ductivity with magnetism.

Combined with developments in the field of two-
dimensional magnetic semiconductors7,8 this has moti-
vated a large effort focused on using Ising superconduc-
tors in 2D Josephson junctions9, or investigating tunnel-
ing across magnetic tunnel barriers10–12. Superconduc-
tor/ferromagnetic insulator junctions have, in particular,
been used to elucidate the fundamental properties of the
superconducting contacts and are also pursued for appli-
cations in spintronics13 or hosting topological states14–16.

Recent experiments17–22 indicate that the behavior
of Ising superconductor-magnetic insulator junctions is
qualitatively different compared to conventional super-
conductors. Some of the most puzzling observations in-
clude hysteretic behavior in NbSe2/Cr2Ge2Te6

20,22 and
in NbSe2/CrBr3/NbSe2 heterostructures21, which only

appeared at ∼ 2K below Tc. Kang et al21 convincingly
demonstrated that the hysteresis, inexplicably, emerges
from the Ising superconductor, and not from the ferro-
magnetic insulator. Refs.17,18 reported evidence of a two-
fold rotation symmetry of the superconducting state, vi-
olating the three-fold symmetry of the hexagonal lattice
of NbSe2. Finally, Ref.21 also found that as an external
in-plane magnetic field rotates the CrBr3 spins from be-
ing along ẑ to being in-plane, the superconducting gap,
∆, increases by ∼2%, while the broadening of the tunnel-
ing peak at the same time also increases by ∼50%. This
is counterintuitive: one expects that when ∆ increases
the width of the tunneling peaks should decrease.

These experimental observations contain a lot of inter-
pretative power and form a three-pronged puzzle that we
will provide microscopic insight into in this study using a
combination of first-principles calculations and analytical
calculations based on a theory of Ising superconductivity
that also accounts for spin-conserving scattering due to
paramagnetic point defects23–27.

We begin by examining the electronic structure of the
NbSe2/CrBr3/NbSe2 trilayer heterostructure using first-
principles calculations28. The atomic structure of the
heterostructure with the lowest energy is illustrated in
Fig. 1(a). The alignment of the NbSe2 states at the Fermi
level at K with respect to the CrBr3 spin up and spin
down states are illustrated in Fig. 1(b) and the spin-
polarized band structure of the trilayer heterostructure
is shown in Fig. 1(c). The NbSe2 states reside within the
spin-up gap of CrBr3, close to the spin up conduction
band states of CrBr3.

One striking change in the electronic structure of the
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FIG. 1. (a) Trilayer heterostructure showing the side view
and the top view. (b) Alignment of the energy levels of
NbSe2 with respect to monolayer CrBr3 at the K-point. (c)
Spin-polarized band structure of the trilayer heterostructure
around the K point. (d) Interlayer coupling, 2t⊥, of the
NbSe2/CrBr3/NbSe2 trilayer heterostructure as a function of
momentum. Λ corresponds to the Γ-K midpoint.

heterostructure is the large exchange splitting, λex, of the
NbSe2 derived states (the bias field µBB = λex/2). For
the heterostructure in Fig. 1(a), λex is 121 meV between
the spin up and spin down states. In bilayer NbSe2, the
two pairs of spin degenerate bands, contributed by each
monolayer, are split due to interlayer coupling, t⊥

28. In
the heterostructure calculations, the Nb atoms in the top
and bottom monolayers aquire a magnetic moment, mNb,
of ∼ 0.10 to 0.13 µB due to proximity induced Cr-Nb cou-
pling. This manifests in a proximity induced exchange
splitting, λex, illustrated in Fig. 1(c), that breaks the
spin degeneracy of these bands.

The magnitude of λex reflects the magnitude of orbital
overlap between the Nb and Cr d−electrons. It crucially
depends on vertical separation distance between the Nb
and Cr atoms, dCr−Nb

28. Moreover, as Fig. 1(b) illus-
trates, the quasiclassical tunneling barrier in the spin-
majority channel is 0.27 eV, while it is several times
larger in the spin minority channel. Thus, we predict a
strong spin-filtering effect for the Cr spins aligned along
z with the spin-minority tunneling being strongly sup-
pressed.

To form a commensurate trilayer heterostructure, we
assume CrBr3 layer is under biaxial tensile strain. In
reality since the lattice mismatch is large, the two lay-
ers are incommensurate, which would lead to to spatially
varying stacking of NbSe2 with respect to CrBr3. Given
the strong itinerancy of Nb electrons, the lateral rigid-
ity of both layers, the effective overlap and λex should
be averaged over all possible mutual orientations be-
tween the two layers, while the equilibrium distance cor-
responds to the sterically least favorable geometry, i.e.,
when Br and Se ions are aligned vertically. The effect of

this averaging28 is that λex at dCr−Nb ≈ 6.88Å which,
according to our calculations is the maximal possible
separation distance between NbSe2 and CrBr3, becomes
〈λex〉 ≈ 0.04 meV, which is equivalent to a magnetic ex-
change field, B ≈ 0.7 T.

Inserting a single layer of CrBr3 increases the interlayer
separation between the NbSe2 layers, which changes t⊥.
We illustrate the magnitude of 2t⊥ along Γ-M and along
Γ − Λ (where Λ is the midpoint along the Γ-K path) in
Fig. 1(d). Similar to the case of the NbSe2 monolayers
separated by vacuum28, tΓ

⊥
≫ tK

⊥
. With two monolayers

or more of CrBr3 (as used by Kang et al.21), t⊥ at K is
suppressed significantly compared to t⊥ at Γ28.

Away from Γ, our calculations (Fig. 1(d) show that 2t⊥
along the diagonal (Γ-K), is lower compared to 2t⊥ along
the Γ-M path. Note that the magnitude of the spin-orbit
coupling (SOC) grows from Γ to Λ, while it is zero along
Γ-M4. Hence, the orbitals that contribute the least to
2t⊥ leads to the largest ∆SOC: the tunneling probabil-
ity is correlated with the degree of the z2 character of
the Nb bands, while the SOC splitting is anticorrelated
with it. This anticorrelation of the tunneling and SOC
“hot spots” has crucial implications on interpreting tun-
neling measurements in these heterostructures, which we
discuss next. Together with the spin filtering discussed
above this constitutes another theoretical prediction that
is yet to be verified by experiment.

Armed with this quantitative understanding of λex, t
Γ
⊥
,

and tK
⊥
we proceed to perform model Hamiltonian calcu-

lations to describe tunneling across an Ising supercon-
ductor - ferromagnetic insulator - Ising superconductor
junction28. We first consider, at a heuristic level, the
impact of a magnetic exchange field that is out-of-plane
(parallel to ẑ) and in-plane (parallel to x̂) on the con-
ductance peak. For a magnetic exchange field, B, that
is out-of-plane (B ‖ c) the SOC and B both polarize the
electron spins along ẑ regardless of the in-plane momen-
tum. Hence, the magnetic exchange interaction reduces
the energy of the singlet Cooper pairs, while SOC plays
no role. This leads to a familiar Pauli limited super-
conductivity where the critical magnetic field is of the
order of the gap, ∆29. Furthermore, the Cooper pairs re-
tain their singlet identity and are immune to the disorder
scattering in accordance with the Anderson theorem30.

In contrast, when B ⊥ c, the impact on the order
parameter is weak due to the strong ∆SOC. However,
the broadening of the conductance peak is sensitive to
B ⊥ c and grows with the magnitude of B. When
B ⊥ c, the spins acquire a finite in-plane momentum de-
pendent component. The spin tilt angle is determined by
∆SOC and therefore varies, with the in-plane momentum.
Hence, the paramagnetic defects behave as magnetic de-
fects due to a finite in-plane B25,27. These qualitative
considerations are summarized in Table I.

To put this on a firm theoretical footing we use a model
band dispersion to describe the Γ-valley of monolayer
NbSe2 (since this is the valley through which most of
the tunneling occurs!). We use this to calculate the or-
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FIG. 2. Differential conductance dI/dV as a function of
the bias voltage, |e|V for an (a) out-of-plane magnetic field
that is along ẑ (B ‖ c) and an (b) in-plane magnetic field
that is along x̂ (B ⊥ c). We use four values of the magnetic
exchange field, B that corresponds to B = 0 Tc (blue), 0.225
Tc (red), 0.45 Tc (green), and 0.67 Tc (grey) to determine the
change in differential conductance as a function of B. We
use T=0.5Tc, ∆SOC=20Tc and a scattering rate, η=Tc for
all of our differential conductance calculations. The inset in
each panel (a) and (b) shows the suppression of the order
parameter ∆o as a function of B. (c) Change in the peak
position of the differential conductance when B ‖ c and B ⊥
c (left vertical axis) and the change in the FWHM of the
differential conductance as a function of B ⊥ c (right vertical
axis).

TABLE I. Parameters that control the position and broad-
ening of the conductance peak as a function of the magnetic
exchange field that is out-of-plane, B ‖ c (for moderately low
temperatures) and in-plane, B ⊥ c. B denotes the magni-
tude of the exchange field, ∆o is the order parameter, ∆SOC

is the magnitude of spin-orbit coupling, and η ≪ ∆SOC is the
disorder scattering rate.

B ‖ c B ⊥ c
peak shift (B/∆o)2 (B/∆SOC)2

peak broadening 0 ηB2/(B2 + ∆2

SOC)

der parameter for B ‖ c and B ⊥ c and combine this with
the information from our first-principles calculations to
determine the spin-dependent tunneling conductance28.

The calculated dI/dV for an out-of-plane B is shown
in Fig. 2(a). For each value of B ‖ c, we only find one
dI/dV peak at |e|V = 2∆o which is not split by Zeeman
coupling. This is due to the fact that the top and bot-
tom NbSe2 layers undergo the same amount of exchange
splitting, λex

28. Hence, the superconducting density of
states is split by the same amount and spin is conserved
during tunneling which leads to the single peak31.

From Figure 2(a) it is evident that as the magnitude
of B increases, the position of the dI/dV peak decreases.
This is due to the suppression of the order parameter,
∆o, which is proportional to B2. This is in contrast to
the Zeeman split peaks in the density of states which
shifts linearly with the magnitude of the exchange field.
We also find that the full-width half maximum (FWHM)
of the conductance peaks remains unchanged and is in-

sensitive to the amount of disorder that we consider.

In Fig. 2(b) we illustrate the calculated dI/dV when
B ⊥ c. We find a number of striking changes compared to
Figure 2(a). The peak position of the dI/dV decreases
and is weakly dependent on the magnitude of B. Sec-
ondly, the FWHM of the dI/dV increases as the magni-
tude of the in-plane B increases. This is consistent with
the spin-flip scattering rate increasing quadratically as
ηB2/2∆2

SOC, where η is the scattering rate due to para-
magnetic defects25,27.

In Figure 2(c) we summarize our calculations of the
peak position and FWHM as a function of the magnitude
and direction of B. These results confirm the qualita-
tive analysis in Table I and provide a physically intuitive
explanation for the modest increase in ∆, accompanied
by the coherence peak broadening observed in tunneling
measurements21.

We now include two additional effects that are likely
present in NbSe2: magnetic point defects and extended
defects. One candidate for magnetic point defects are
Se vacancies, VSe, which have been found in appreciable
concentrations in NbSe2

23. To verify this hypothesis we
performed spin-unrestricted first-principles calculations
of VSe in a (10×10×1) supercell. We find a sizeable mag-
netization (≈ 0.6 µB, within our 300 atom supercell) and
the induced magnetization has a finite length scale that
is commensurate with the in-plane lattice constant (∼
15 Å) of our large supercell as illustrated in Fig. 3(a).
This is likely due to monolayer NbSe2 being close to a
magnetic instability4,32. Interestingly, the induced spin-
polarization is large and sign-changing, reminiscent of
Friedel oscillations.

While we did not compute the magnetic anisotropy of
such defects, it is likely to be easy-axis. Indeed, for an
ideal hexagonal lattice, the symmetry allows for mixing
of the x2 − y2 and xy Nb d-orbitals. This mixing can
generate an orbital moment Lz, with no cost in kinetic
energy. Hence, an isolated VSe defect is likely to have its
magnetic moment oriented along ẑ.

If the magnetic moment of the defect remains along
ẑ, it has a pair breaking effect in the same way as it
would in an ordinary s-wave superconductor. However,
if it is aligned in-plane, this pair-breaking effect, within
the Born approximation, becomes strongly anisotropic,
leading to a considerable enhancement of the in-plane
critical field in the in-plane direction parallel to the im-
purity moment.26. In Fig. 3(b) we illustrate the in-plane
critical field as a function of the orientation of B ⊥ c.
Note the two-fold oscillations for an in-plane defect spin.

The finite spatial extent of the magnetization, Rd, due
to VSe, also provides a plausible explanation for the puz-
zling hysteresis in the tunneling conductance that oc-
curs at T . (Tc − 2K)21. As the temperature is lowered
below Tc, the superconducting coherence length, ξ, de-
creases and at some point may become lower than Rd.
When ξ < Rd, scattering would occur within the unitary
limit which would result in superconductivity being sup-
pressed near the vacancy, within a length of the order
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FIG. 3. (a) Spin density of a single selenium vacancy within
a 10×10×1 supercell of monolayer NbSe2. The different col-
ors correspond to different signs of the magnetization. The
net magnetization is ∼ 0.6 µB . The position of the missing
selenium atom is denoted with the black dotted circle. (b)
The in-plane critical field, Bc as a function of the field orien-
tation, specified by the angle φB formed by the magnetic field
with respect to x-direction. We consider the magnetic easy
axis of the defect spin along x̂ (green), ŷ (red) and ẑ (grey)
with spin-flip scattering rates η1,η2 and η3 equal to 0.25 Tc.
We set T = 0.2Tc and ∆SOC = 20 Tc.

of Rd. This suppression only occurs when the magnetic
moment of the defect is oriented along ẑ (as discussed
above, this is likely the case for isolated VSe). When the
pairing energy of the resulting “puddle” of finite mag-
netization, which is ∼ ∆2N(0)R2

d
, becomes larger than

the magnetic anisotropy energy (typically on the order of
µeV for point defects), the magnetic moment of the point
defect would flop to be in-plane. We expect this behavior
to be hysteretic, as is typical for a magnetic transition.
So far we have considered point defects. However, as-

grown NbSe2 is known to exhibit extended defects such as
grain boundaries24 and dislocations. Elastic fields tend
to align linear defects along the same direction, which
would break the global C3 symmetry of the hexagonal
lattice. The strain fields that manifest from extended
defects have been proposed to affect the symmetry of the
superconducting state33. Below we present an alternative
mechanism on how extended defects might break the C3

symmetry in the superconducting state.
At first glance it seems that this would require a “ne-

matic” superconducting order parameter, that intrinsi-
cally breaks the C3 symmetry17,18 . While this would,
by definition, generate the desired symmetry breaking,
it also implies that the expected s-wave state is nearly
degenerate with some other state(s) with a different pair-
ing symmetry. This is a logical assumption in materials
like the Fe-based superconductors, where the same spin-
fluctuations generate pairing in the s± and a d channel,
so it is not surprising that a combination of both may be
energetically favorable. In the superconducting TMDs,
on the other hand, spin or Coulomb interactions are pair-
breaking in the s-wave channel. As a result, the compe-
tition between conventional and unconventional paring
mechanisms requires an extremely fine tuning of param-
eters, and a dramatic difference between the bulk and the
single layer pairing mechanism. In addition, one must as-
sume that the interactions are extremely sensitive to the
small strain generated by the extended defects or exter-

nally.

In this context, an interesting question to ask is: can
symmetry-breaking extended defects result in a tunneling
conductance and critical field that has C2 symmetry with
respect to the direction of the external magnetic field
without impacting the symmetry of the superconducting
order parameter? To this effect, we observe that while
an isolated point defect (vacancy) is expected to have
its spin aligned with the z-axis, the same does not hold
near an extended defect, where the local C3 symmetry is
broken and the d-orbitals of the Nb dangling bond states
can mix. In this case the orbital magnetic moment can
point along an in-plane direction determined by the linear
defect.

According to our theory, the defect-induced broaden-
ing of the tunneling peaks and the pair breaking by the
magnetic field will depend on the angle between the di-
rection of the applied magnetic field and the orientation
of the extended defect within the basal plane of NbSe2.
The extended defects broaden the superconducting den-
sity of states near the conductance peak, break the C3

rotational symmetry at or slightly below Tc, in agree-
ment with the existing experimental observations17,18. If
these point defects have a finite magnetic moment, they
can also indirectly trigger an anisotropy in the magne-
toresistance near Tc by generating an easy-axis magnetic
anisotropy of the defect.

This provides an immediate explanation of the π-
periodic angular dependence (i.e., a C2 rather than C3

symmetry) the in-plane magnetoresistance either in the
transition region centered at Tc

17 or slightly below Tc
18,

without invoking an ad hoc assumption about nematic su-
perconductivity (admittedly, our interpretation assumes
an in-plane easy axis for magnetic defects pinned to ex-
tended defects, but this is plausible from a materials sci-
ence point of view.)

In summary, using first-principles calculations and an
analytical theory for Ising superconductivity we have
systematically investigated proximity induced effects in
NbSe2/CrBr3 heterostructures. We find CrBr3 leads to a
proximity-induced exchange splitting of the NbSe2 states
and that the NbSe2 states at Γ contribute the most to
tunneling. Scattering of the NbSe2 states at Γ off of para-
magnetic point defects leads to a pronounced broadening
of the tunneling peaks, a modest enhancement of the su-
perconducting gap when the magnetic exchange field is
in-plane. Within the same framework, extended linear
defects generate two-fold oscillations of the critical field,
seen in experiments. Finally, we find point defects such
as selenium vacancies acquire a finite magnetization of
a sizeable length scale, which can explain the finite hys-
teresis in the conductance. Last but not least, we pre-
dict two effects that can be verified by future experiments
(and may have more theoretical ramifications than dis-
cussed here): spin-filtering when tunneling through the
CrBr3 barrier and anticorrelation between the SOC and
the tunneling probability.
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