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Acoustic spin has been recently explored for many applications. In particular, transverse acoustic
spin was demonstrated for inhomogeneous acoustic fields. In this contribution, we show the emer-
gence of acoustic spin and torque in rotating acoustic objects of the same physical properties as the
surrounding, to single out the effects purely due to rotation. The spinning of a cylindrical column
of air or water in the same medium possesses intrinsic spin angular momentum, and we study the
torque and force it experiences in evanescent acoustic fields. The resulting discontinuity can thus
scatter sound in unusual ways, including a negative radiation force, although it has no imaginary
part in its parameters.

Objects that experience moving and/or spinning mo-
tion undergo intrinsically distinct scattering signatures
[1–8] and require special treatment different from the one
of objects at rest [9–20]. For example, it was shown in
Ref. [21] that a body rotating around its axis of sym-
metry in a QED vacuum spontaneously emits energy. A
simple cylindrical inhomogeneity with finite (of infinite)
conductivity is also shown to possess a different scatter-
ing response that may be solved by means of the instan-
taneous rest-frame technique [22, 23]. Several promis-
ing applications were proposed with spinning building
blocks, e.g., waveguide rotation sensor systems [8] or gy-
roscopes [24, 25]. In the same vein, Censor et al. ana-
lyzed the governing equations of pressure waves (acous-
tics) [26] in moving or rotating media, and showed that an
equivalent wave equation can be derived [27]. The same
analysis was extended to elastic waves in solids [28, 29].
More recently, this formalism was used to investigate the
possibility of scattering cancellation technique for spin-
ning cylindrical acoustic objects [30] or analyzing meta-
materials with spinning components [31].

In a different context, Anhäuser et al. proposed quan-
titatively the transfer of acoustic orbital angular momen-
tum to an absorbing millimeter-sized object, that re-
sulted in making it spin [32]. Then, Bliokh et al. an-
alyzed in detail the inherent analogies between acoustic
waves and electromagnetic waves [33] and showed that
despite the apparent scalar nature of acoustic waves [34],
several vectorial effects, such as spin [35, 36] and orbital
angular momentum [37] can take place in both frame-
works. More recently, Meng et al. used an active acoustic
particle that experiences a negative radiation force (i.e.,
acoustic pulling) when excited by a single acoustic wave
[38].
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In this work we investigate the interaction of a spinning
acoustic volume with an incident acoustic plane-wave in
terms of torque, radiation, and scattering forces. We
treat the scattering object by its acoustic polarizabilities
in a semi-analytical way. We show that although it has
no imaginary part in its parameters, it can lead to torque
and acoustic force. What is striking is that it is possi-
ble to obtain positive and negative radiation force. This
shows its potential application in the domain of acous-
tic pulling, which was previously achieved in a different
way [38] with either the active particle (nonzero imagi-
nary part of the density) or the composite incident signal
(two plane-waves with directions making a finite angle).
Our proposal lifts these constraints and may represent a
rather easier way to implement these intriguing effects.
Our work, thus considers a different avenue, that relies
on the object instead of an external source. Moreover,
with this concept we can obtain both acoustic torque and
acoustic pulling force, with the same design and by only
using incident plane-waves.

Consider a medium that is uniformly rotating [with
rotation axis coinciding with êz, as schematized in
Fig. 1(a)] at angular velocity Ω. We formulate a coupled
system, with details shown in the supplementary mate-
rials (SM) [39] [Eq. (4)], leading to the following wave
equation (modified Helmholtz equation)
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with the modified wavenumber

kn =
i

c

√
4Ω2 + γ2

n , (2)

with γn = i(nΩ − ω) the rotation Doppler-shifted
frequency (see SM [39]). Equation (1) is actually a
Helmholtz-like equation, expressed in polar coordinates,
with the effective (spinning) wavenumber kn. When
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FIG. 1. (a) Schematic view of the single cylindrical scattering
particle (in gray color) lying inside a homogeneous infinitely
extended medium (here air, in yellow color, with the dashed
circle meaning the domain extends to infinity) and the in-
cident plane-wave excitation impinging on it. The acoustic
monopole scattering due to pure spinning, resulted from ex-
pansion and compression of the object. (b) Schematic repre-
sentation of the acoustic dipole scattering, resulting in oscilla-
tory linear motion of the object. The scales of motion in this
figure are exaggerated, as in reality the motion or expansion
of the particle are only perturbations.

there is no spinning (i.e., Ω = 0), we can see from Eq. (2)
that we recover k = ω/c. The behavior of kn, i.e., the
spinning wavenumber, can be found in Ref. [30]. As the
parameter γn is complex, kn has both propagating (real
part) and damped (imaginary part) components. Sim-
ilar to the case at rest, the governing equation has to

be complemented by appropriate continuity conditions at
the physical interfaces of the problem [26]. For spinning
media, the continuity conditions must take into account
the relative movement. It can be shown that p should
remain continuous as before; However, the continuity of
1/ρ∂rp should be replaced by the continuity of the nor-
mal displacement

ζr =
γnvr + Ωvθ
γ2
n + Ω2

=

(
2Ω2 − γ2

n

)
∂rp− 3iγnΩnp/r

ρ (4Ω2 + γ2
n) (Ω2 + γ2

n)
. (3)

By inspection of Eq. (3), again by letting Ω = 0, we get
the usual continuity as acoustics at rest.

We consider the scattering problem of a spinning cylin-
der under the excitation of a plane and monochromatic
acoustic wave. As illustrated in Fig. 1(a), the cylinders
axis of rotation is its axis of symmetry which is along the
êz direction. The expansion of the fields and the deriva-
tion of the scattering cross-section are derived in the SM
[39].

By applying the continuity of p and ζr on the boundary
r = a, we can show that each scattering order is given by

ςn =
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(4)
where |M | denotes the determinant of a matrix M and
with the coefficient ΠJn expressed as

ΠJn =

(
2Ω2 − γ2

n

)
knJ

′
n (kna)− 3γnΩin

a Jn (kna)

ρ (4Ω2 + γ2
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. (5)

Let us first assume that ρ = ρ0 and β = β0, to filter out
the scattering due to the inhomogeneities (i.e., ρ/ρ0 6= 0
and/or β/β0 6= 0). Further, when k0a� 1 and kna� 1,
i.e., for acoustically small scatterers, we may derive the
expressions of ςn in a closed-form up to the order 4 in
κ̃ = k0a (to simplify the notations), i.e.,

ς0 = i
3π

4

α2

1− α2
κ̃2 − i πα2

32 (1− α2)
2

(
13 + 36α2 log (κ̃/2)− α2

(
5− 36γE + 8α2 + i18π

))
(κ̃)

4
+O

(
κ̃5
)
, (6)

ς±1 = i
π

4

α

±2 + α
κ̃2 ± i πα

32 (2± α)
2

(1∓ 2α)
(−4± α [19∓ i2π (∓1 + 2α)± 4γE (∓1 + 2α) + 2α×

(±13 + 6α∓ 4 log 2) + 4 log 2] + 4α (∓1 + 2α) log κ̃) κ̃4 +O
(
κ̃5
)
. (7)

where α = Ω/ω is the rotation ratio of the spinning object
and γE is the Euler-Mascheroni constant. The symbol
O(·) represents a function of the same order as (·) (i.e.,
Landau symbol) [40]. The +, − signs in Eq. (7) corre-
spond to the coefficient ς1 and ς−1, respectively. Here,
one remark can be further emphasized, that if α→ 0, all
the scattering coefficients ςn (∀n ∈ Z) converge to zero,

as we have assumed here ρ = ρ0 and β = β0.
The acoustic monopole scatters a pressure field given

by [17]

p(m) = −k0c0
4
ρ0MH

(1)
0 (k0r) , (8)

with M the monopole strength [41] shown in Fig. 1(a).
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FIG. 2. (a) Absolute value of (top) the monopole polarizability αm and (bottom) the dipole polarizability αy
d, in logarithmic

scale (i.e., 10 log10) versus α = Ω/ω. The solid lines give the numerical results of both real and imaginary parts of (αm, αy
d)

computed with Eq. (4) and Eqs. (13)-(14), while the dashed lines give analytical expressions obtained when k0a � 1, using
Eqs. (15)-(16). The radius of the object is a = 1 m and Ω/(2π) = 10 Hz. (b) Same as in (a) but for a = 10 m and Ω/(2π) = 100
Hz. Please note that in (b) the scale is linear, unlike in (a) and that there is here no analytical approximation, since k0a ≈ 1.

On the other hand, the acoustic dipole scatters a pressure
field given by

p(d) = −ik
2
0c0
4

ρ0 (Dx cos θ +Dy sin θ)H
(1)
1 (k0r) , (9)

with Dx,y the dipole terms in the x, y-directions, respec-
tively. For instance, Dx cos θ +Dy sin θ just corresponds

to Dr, as p(d) ∝ D · ∇(H
(1)
0 (k0r)) [42]. The expressions

given in Eqs. (8)-(9) are reminiscent of those of the Mie
development of Eq. (7) in the SM [39], i.e., the term of

order n = 0 that is p0ς0H
(1)
0 (k0r) and n = ±1, i.e.,

p0i(ς1e
iθ + ς−1e

−iθ)H
(1)
1 (k0r). Here, the monopole and

dipole strength can be related to the monopole and dipole
acoustic polarizabilities [43], using these relations

M = −iωβ0αmp0 , Dx,y = −iβ0c0α
x,y
d p0 . (10)

The monopole can be expressed as M =
−4p0ς0/(k0c0ρ0), whereas the dipole strengths are

Dx =
−4

k2
0ρ0c0

(ς1 + ς−1) p0 , (11)

and

Dy =
−4i

k2
0ρ0c0

(ς1 − ς−1) p0 . (12)

By combining Eqs.(8)-(12) we can derive the expressions
of the different polarizabilities, i.e.,

αm =
−4i

k2
0

ς0 , (13)

αxd =
−4i

k2
0

(ς1 + ς−1) and αyd =
4

k2
0

(ς1 − ς−1) . (14)

It can be seen from Eqs. (13)-(14) that the polarizabili-
ties have the unit of a surface, as can be anticipated, in
this 2D scenario. These equations were derived for the
most general scenario, i.e., without restrictions on the
direction of the incident velocity. In order to have an
effect due only to spinning, let us consider an incident
velocity in the y-direction. For instance, when Ω = 0
and ρ/ρ0 6= 1 or β/β0 6= 1, we have ςn = ς−n, so αyd = 0
and αxd = −i 8

k20
ς1. But, when Ω 6= 0 and even if ρ/ρ0 = 1

and/or β/β0 = 1, we have αxdα
y
d 6= 0, as ς1 6= ς−1, and

as can be seen from Eq. (7). By following a particle in
the co-spinning frame of reference R′, i.e., a frame that
is rotating with a frequency Ω equal to that of the fluid,
it is possible to understand why ς−n 6= ςn, as these mul-
tipoles correspond to an angle −θ and θ, respectively.
When there is no rotation, there is an invariance with
respect to θ so both coefficients are equal. By inducing
rotation, this symmetry is broken and thus the invariance
is no longer valid.

Now, using Eq. (13) and Eq. (6), we can obtain the
analytical expressions (k0a � 1) of =(αm) and <(αm),
where we assume here no material inhomogeneity, so k0 =
k, that is

<(αm) =
3πα2

1− α2
a2 − πα2

8 (1− α2)
2 f1 (ka) k2a4 +O

[
(ka)

3
]
,

=(αm) =
9π2α4

4 (1− α2)
2 k

2a4 +O
[
(ka)

3
]
,

(15)
with f1(ka) = [13− 8α4 +α2(36γE − 5) + 36α2 log (ka2 )].
Similarly, using Eq. (14) and Eq. (7), the dipole acoustic
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FIG. 3. (a) Logarithmic scale plot of the (top) normalized torque 10 × log10(Tz/T0), (middle) normalized gradient force
10 × log10(F grad

y /F0), and (bottom) normalized scattering force 10 × log10(F scatt
x /F0), versus α. The solid (dashed) lines give

the numerical (analytical) calculations, for the same object as of Fig. 2(a). The insets in these plots show the linear scale plot
of these parameters in a magnified view to showcase the regions where resonances occur and positive to negative values are
obtained. (b) Same as in (a) but for the same object of Fig. 2(b). Please note that in (b) the scale is linear, unlike in (a). The
red dashed lines denote zero values of the considered parameters.

polarizability is given in the quasi-static limit,

<(αyd) =
2π2α3

(4− α2)
2 k

2a4 +O
[
(ka)

3
]
, (16)

=(αyd) =
4πα

4− α2
a2 +

2παf2 (ka)

(4− α2)
2

(1− 4α2)
k2a4 +O

[
(ka)

3
]
,

where

f2 (ka) = −3α6 + 4α4

(
2γE + 3 + 2 log

(
ka

2

))
+ 13α2

(
13− γE −

2

13
log

(
ka

2

))
+ 2 .

The real and imaginary parts of αm and αyd are given
in Fig. 2. Two scenarios are considered: First, we choose
parameters such that the quasi-static approximation ap-
plies, that is ka� 1, a = 1 m, and Ω/(2π) = 10 Hz. This
scenario is plotted in Fig. 2(a), and we can see an excel-
lent agreement between the numerical results [Eq. (4)]
and those obtained analytically [Eqs. (15)-(16)]. The
resonant polarizabilities (αm and αyd) correspond to the
poles, that can be seen in Eqs. (15)-(16). The other sce-
nario does not obey the quasi-static approximation, and
the parameters are hence a = 10 m and Ω/(2π) = 100
Hz. in this case, the polarizabilities undergo several os-
cillations reminiscent of Mie scattering. Here, we do not
see any marked resonant effect, as before.

In this study, we are interested in investigating both
torque and scattering force from spinning acoustic par-
ticles, so we consider an inhomogeneous acoustic field in
order to induce transverse spin, that is an evanescent
acoustic field [35, 36], with its pressure and velocity ex-
pressed as

p = p0e
ikxx−κy , v =

p0

ρω
(kx, iκ, 0)

T
eikxx−κy , (17)

with (·)T the transverse of a given matrix. The spin of
this inhomogeneous (evanescent) field can be shown to be
S = ρ/(2ω)=(v∗ × v), and with Eq. (17) it is explicitly

S =
|p0|2

ρ0ω3
κkxe

−2κyez , (18)

and the torque T = ω=(αyd)S [36] is also explicitly

T =
|p0|2

ρ0ω2
κkxe

−2κy=(αyd)ez . (19)

Similarly, the gradient and scattering forces are given by

Fgrad = <(αm)∇W p + <(αyd)∇Wv ,

Fscatt = 2ω [=(αm)Pp + =(αyd)Pv] ,
(20)
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where we make use of [37, 44]

Pp =
1

4ω
=(β0p

∗∇p), W p =
β0

4
|p|2 ,

Pv =
1

4ω
=(ρ0 [v∗ · ∇]v), Wv =

ρ0

4
|v|2 .

(21)

Now, by combining Eqs. (15)-(16) (for the quasi-static
case), along with Eqs. (19)-(20), we have access to the
torque and force (gradient and scattering) experienced
by the spinning object in the evanescent field. These re-
sults are depicted in Fig. 3(a), using the same parameters
as those of Fig. 2(a). These quantities are normalized
with T0 = πβ0|p0|2a2/(2k0) and F0 = k0T0. Again, we
find an excellent agreement between analytical and semi-
numerical results. Several resonances can be observed for
Tz, F

grad
y , and F scatt

x , stemming from the resonances of
the polarizabilities. The important feature here is that an
object of the same properties as the surrounding (ρ = ρ0

and β = β0) interacts with inhomogeneous acoustic fields
in an unexpected manner, as both torque and force can
be experienced by this transparent object solely due to
spinning.
The other scenario consists in using the exact value of ς0
and ς±1, by solving Eq. (4) and use them for the calcu-
lation of αm and αyd, and subsequently the torque and
force in a semi-numerical manner [36]. Figure 3(b) gives
the same responses in a more general case that cannot be
treated analytically [similar as in Fig. 2(b)]. The torque
and force are here of lower amplitude, due to the lack of
resonances.
The important feature of Fig. 3 is that both spin and
force undergo positive/negative values for specific spin-
ning parameter α (highlighted by the red dashed lines).
For instance, having negative force is paramount for ob-

taining pulling effect. Recently in Ref. [38] the condition
for acoustic pulling was shown, i.e., the necessity to have
either an active particle or a composite acoustic source,
e.g., two incident waves making a finite angle. Yet, this
study concerned only scatterers at rest. By allowing spin-
ning, and even if ρ = ρ0 and β = β0, we can see that
positive to negative force and spin can be obtained in a
straightforward way, without the need for active particle
or complex incident wave.

To sum up, scattering from spinning acoustic ob-
jects was analytically and numerically characterized and
shown to lead to an acoustic force and torque. Such
objects, when present in evanescent acoustic fields, are
shown to interact with the transverse spin even in the
extreme case in which they possess a unit relative den-
sity and compressibility. Hence, the effects due to purely
spinning can result in surprising interaction of the ro-
tating volume with the acoustic field in a way intrinsi-
cally different from regular static objects (i.e., ρ/ρ0 6= 1,
β/β0 6= 1, and Ω = 0). For instance, although the object
is lossless, it experiences a net torque which is markedly
different from objects at rest with different impedance
than the surrounding [36]. Similarly, the spinning do-
main feels both scattering and gradient forces. Several
applications may result from this investigation, in which
acoustic objects undergo rotation, e.g., for paving the
way for fast acoustic communication devices [45] or Willis
coupling [46].
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[32] A. Anhäuser, R. Wunenburger, and E. Brasselet, Acous-
tic rotational manipulation using orbital angular momen-
tum transfer, Phys. Rev. Lett. 109, 034301 (2012).

[33] L. Burns, K. Y. Bliokh, F. Nori, and J. Dressel, Acoustic
versus electromagnetic field theory: scalar, vector, spinor
representations and the emergence of acoustic spin, New
Journal of Physics (2020).

[34] K. Y. Bliokh and F. Nori, Klein-gordon representation of
acoustic waves and topological origin of surface acoustic
modes, Physical review letters 123, 054301 (2019).

[35] K. Y. Bliokh and F. Nori, Transverse spin and surface
waves in acoustic metamaterials, Physical Review B 99,
020301 (2019).

[36] I. Toftul, K. Bliokh, M. Petrov, and F. Nori, Acoustic
radiation force and torque on small particles as measures
of the canonical momentum and spin densities, Physical
Review Letters 123, 183901 (2019).

[37] K. Y. Bliokh and F. Nori, Spin and orbital angular mo-
menta of acoustic beams, Physical Review B 99, 174310
(2019).

[38] Y. Meng, X. Li, Z. Liang, J. Ng, and J. Li, Acoustic
pulling with a single incident plane wave, Physical Re-
view Applied 14, 014089 (2020).

[39] See Supplemental Material at
http://link.aps.org/supplemental/ for the derivation
of the modified wave equation governing the acoustic
motion in spinning media as well as derivation of the
Mie scattering.

[40] E. Landau, Handbuch der Lehre von der Verteilung der
Primzahlen, Vol. 1 (Chelsea Publishing Co., New York,
1953).

[41] The monopole strength is proportional to the derivative
of a surface with respect to time (as we are in 2D) which
corresponds to the expansion and compression of a cylin-
drical object with time.

[42] The dipole strength is proportional to the derivative of a
volume with respect to time (as we are in 2D) which cor-
responds to the linear oscillatory motion of the cylindrical
particle, induced by the velocity field, as schematically
shown in Fig. 1(b) and where the scale of displacement
is exaggerated to demonstrate the effect.

[43] J. Jordaan, S. Punzet, A. Melnikov, A. Sanches,
S. Oberst, S. Marburg, and D. A. Powell, Measuring
monopole and dipole polarizability of acoustic meta-
atoms, Applied Physics Letters 113, 224102 (2018).

[44] C. Tang and G. A. McMechan, The dynamically correct
poynting vector formulation for acoustic media with ap-
plication in calculating multidirectional propagation vec-
tors to produce angle gathers from reverse time migra-
tion, Geophysics 83, S365 (2018).

[45] C. Shi, M. Dubois, Y. Wang, and X. Zhang, High-speed
acoustic communication by multiplexing orbital angular
momentum, Proceedings of the National Academy of Sci-
ences 114, 7250 (2017).

[46] H. Esfahlani, Y. Mazor, and A. Alù, Homogenization and
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