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We investigate the tunneling magnetoresistance in magnetic tunnel junctions (MTJs) comprised
of Weyl semimetal contacts. We show that chirality-magnetization locking leads to a gigantic tun-
neling magnetoresistance ratio, an effect that does not rely on spin filtering by the tunnel barrier.
Our results indicate that the conductance in the anti-parallel configuration is more sensitive to
magnetization fluctations than in MTJs with normal ferromagnets, and predicts a TMR as large as
104 % when realistic magnetization fluctuations are accounted for. In addition, we show that the
Fermi arc states give rise to a non-monotonic dependence of conductance on the misalignment angle
between the magnetizations of the two contacts.

PACS numbers: 71.10.Pm, 73.22.-f, 73.63.-b

Introduction. Weyl semimetals are novel three-
dimensional materials having topologically protected
band crossings in the absence of either time reversal
(TR) or inversion symmetry (IS) [1–5]. As a result, the
low-energy quasi-particles around a given band cross-
ing, or Weyl node, behave as massless Weyl fermions
with well-defined chirality determined by its topological
charge, i.e., the integrated Berry curvature flux over a
surface enclosing the Weyl node [1, 6]. This property
is responsible for exotic transport phenomena unique to
Weyl semimetals, such as the chiral anomaly [7–10] and
the chiral magnetic effect [11, 12]. In magnetic Weyl
semimetals [13–16], the strong spin-orbit coupling re-
quires that its magnetization direction is locked to pairs
of topological charge dipoles [17]. Associated with each
topological charge dipole there is a pair of Weyl sources
and sinks with electrons of opposite chirality. Such
chirality-magnetization locking gives rise to interesting
interplay between electron spins, chirality and magneti-
zation, forming the basis for novel spintronics devices.

In this paper, we study magnetic tunnel junctions
(MTJ) comprised of magnetic Weyl semimetal free and
reference layers separated by a thin insulating layer.
We show that the chirality-magnetization locking of the
Weyl semimetal gives rise to a gigantic tunneling mag-
netoresistance (TMR), where the TMR is defined as
(RP−RAP)/RP×100 %, with RP (RAP) being the device
electrical resistance when the magnetizations of the two
contacts are parallel (anti-parallel). The gigantic TMR
was found to increase with the momentum space separa-
tion of the Weyl nodes, and approach a value of 104 %
accounting for realistic magnetization fluctuations. In
addition, the bulk Weyl and Fermi arc states also results
in a non-monotonic dependence of the magnetoresistance
on the relative angle between the magnetizations which
can, in principle, be detected in experiments.

Chirality-magnetization locking. We employ a stan-
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FIG. 1: (a) Typical band structure of a magnetic Weyl
semimetal derived from Eq. (1). Here, we assumed an ex-
change field along the z direction and the following param-
eters: β = 2 eV, t = 1 eV and a = 0.1 nm. (b) in-plane
(left) and out-of-plane (right) Magnetic Weyl semimetal tun-
nel junctions. We will refer to these cases as iMTJ and pMTJ,
respectively. Chirality-magnetization locking: The bulk spin
texture (vector field) and topological charge (color map) of the
conduction band is shown when the magnetization is pointing
along (c) +z and (d) -z direction.

dard 4-band lattice model describing a 3D magnetic Weyl
semimetal constructed on a cubic lattice of period a,
whose effective Hamiltonian is [18, 19]

H = τz ⊗ [f(k) · σ] + τx ⊗ [g(k)σ0] + τ0 ⊗
(
β

2
m̂ · σ

)
,(1)

where f(k) = x̂t sin(kxa) + ŷt sin(kya) + ẑt sin(kza) and
g(k) = t(1− cos(kxa)) + t(1− cos(kya)) + t(1− cos(kza))
are structure factors, σ = x̂σx + ŷσy + ẑσz is the vector
of Pauli matrices, and t = 1 eV is the nearest neighbor
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hopping parameter. The Pauli matrices τ (σ) operate in
the orbital (spin) space. Finally, m̂ is the unit vector
pointing along the magnetization direction with β being
the exchange field strength.

Figure 1(a) shows a typical band structure derived
from Eq. (1) for β = 2 eV and a = 0.1 nm , for simplicity.
We also assume m̂ = ẑ in this case. As shown, we observe
a single pair of Weyl nodes located at k±0 = (0, 0,±k0)
with k0 = (1/a) arccos

(
1− β2/(8t2)

)
. The MTJ struc-

ture is sketched in Fig. 1(b) for two experimentally rele-
vant situations; in-plane (left panel) and perpendicularly
magnetized MTJ (right panel). These two configurations
will be referred to as iMTJ and pMTJ, respectively. In
this system, electrons can tunnel through the barrier with
conserved in-plane momentum k|| = (ky, kz) due to the
translational invariance in the yz-plane and do so with
a transmission probability that depends on the angle θR

between the magnetization of the fixed (bottom) and free
(top) layer, ML and MR, respectively. We investigate
the dependence of TMR on θR in three situations: I)
iMTJ with in-plane magnetization rotation; ML = ẑ and
MR rotates in the yz-plane. II) iMTJ with out-of-plane
magnetization rotation; ML = ẑ and MR rotates in the
xz-plane and III) pMTJ with out-of-plane magnetization
rotation; ML = x̂ and MR rotates in the xz-plane.

In magnetic Weyl semimetals, the orientation of the
topological charge dipole is locked to the direction of
the magnetization, giving rise to chirality-magnetization
locking [17]. This is due to the strong spin-orbit coupling
in these systems and is exemplified in Figs. 1(c) and (d),
where we have plotted the spin texture field superposed
to the topological charges located at the two Weyl nodes,
i.e., ∇ · Ω(k) where Ω(k) is the Berry curvature, when
MR = ±z. Although the Weyl nodes remain at k±0 in
both cases, the topological charges and associated spin
texture are swapped. Hence, the chirality of electrons
with momenta at the vicinity of k±0 reverses sign as MR

is reversed from z to −z. Unlike in the parallel magneti-
zation configuration (θR = 0) where the electrons for each
k|| tunnel into states with the same chirality, electrons
are unable to conserve k|| while simultaneously main-
taining their chirality when the iMTJ is in the antiparal-
lel configuration (θR = π). This chirality-magnetization
locking leads to a new chiral TMR and represents a new
approach to produce giant TMR unlike what is currently
employed in MgO based MTJs which relies on the abil-
ity of MgO to filter Bloch states by symmetry and on
the half metallic nature of ∆1 orbital states in magnetic
transition metal-based alloys [20]. It is worth emphasiz-
ing that a similar effect was predicted to produce large
magnetoresistance in magnetic Weyl semimetal domain
walls[21].

Theory of chiral tunneling magnetoresistance. We il-
lustrate this mechanism by first considering the tunnel-
ing of chiral massless Weyl fermions through an insu-
lating barrier within the context of Bardeen’s transfer

Hamiltonian approach [22]. For simplicity, we consider
an iMTJ with identical Weyl electrodes of Hamiltonians
obtained by expanding Eq. (1) to linear order in small
wave vector, q = (qx, qy, qz), around each Weyl node:
He = ~v(−iσx∂x + qyσy + χ cos(k0a/2)qzσz) where x is
the transport direction [See Fig. 1(b)]. The chirality in-
dex is χ = ±1 and v is the Fermi velocity defined as
v = at/~. Following the Bardeen approach [22–24], we
assume that solutions from opposite electrodes are ap-
proximately orthogonal everywhere with an exponential
tail within the barrier region characterized by an energy
independent decay constant κ. We make no assumptions
about the shape of the barrier potential, only that it
varies slowly compared to the carrier wavelength and that
it leads to solutions that are well-localized in the regions
of the electrodes. The in-plane translational symmetry
allows us to expand our solutions in a basis of Bloch
states. The states within the barrier region correspond-
ing to the left (L) and right (R) electrodes read,

Ψ
ξL(R)
qL(R)

(r) = C

(
f+

L(R)u
+
qL(R)

(r||)

iξL(R)f
−
L(R)u

−
qL(R)

(r||)

)
eiqL·r||hL(R)(x),(2)

where C is a normalization constant [25, 26]. The ex-
ponential tail within a barrier of thickness d is cap-
tured via hL(x) = exp(−κx) and hR(x) = exp(κ(x− d))
for left and right electrodes, respectively. Additionally,
f±L(R) =

√
1± χL(R)λL(R) cosφL(R), with chirality and

band indeces being χL(R) = ±1 and λL(R) = ±1 (refer-
ring to conduction, +1, and valence, -1, bands), respec-

tively, and cosφL(R) = cos(k0a/2)q
L(R)
z /q

L(R)
y is given

in terms of the in-plane components of the wave vector

qL(R) = ẑq
L(R)
z cos(k0a/2) + ŷq

L(R)
y . The periodic part

of the in-plane Bloch states u±qL(R)
(r||) depends only on

the in-plane components of r, i.e., r|| = (y, z). Finally,

ξL(R) = λL(R)χL(R) sgn(q
L(R)
y ).

Following Bardeen [22], we derived the matrix element
for the tunneling rates [27],

MLR =
~2

2m

α1

DdSC
κe−κd

×
(
f−R f

−
L + χLχRλLλRf

+
R f

+
L

)
δ(qL − qR), (3)

where α1 is a positive constant related to the overlap be-
tween the periodic parts of the in-plane Bloch states from
opposite sides of the barrier over a unit cell. In addition,
dSC is the surface area of an in-plane unit cell, and the
Dirac delta function is required for in-plane momentum
conservation.

We consider the tunneling rates for iMTJs in the par-
allel θR = 0◦ and anti-parallel configuration θR = 180◦.
For simplicity, we assume both Weyl semimetal contacts
have the same Fermi level, i.e., λL = λR. For the case
when the magnetizations are aligned, Weyl nodes with
the same chirality on opposite sides of the barrier are
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FIG. 2: (a) Angular dependence of the transmission proba-
bility (quantum conductance per e2/h) for pMTJs with out-
of-plane rotation (blue triangles) and for iMTJs with in-plane
rotation (red squares). The solid black line is a polynomial
fit for the iMTJ case at θR ≈ 180◦, revealing that conduc-
tance of Weyl metal MTJs decays faster than in trivial MTJs.
(b) Tunneling magnetoresistance (TMR) ratio as a function
of exchange field strength β. Resistances for parallel (anti-
parallel) configuration were obtained by convoluting the zero-
temperature resistance with a Gaussian kernel of spread σ and
center at θR = 0◦ (θR = 180◦), respectively. The spread can
be view as due to small thermal fluctuations.

momentum-aligned. The corresponding matrix element

becomes MP
LR ∼ ~2

m
α1

DdSC
κe−κdδ(qL − qR). In the anti-

parallel configuration, Weyl nodes of opposite chirality
are momentum-aligned on opposite sides of the barrier.
The matrix element for this case with χL = −χR is
MAP

LR = 0 for all in-plane momenta. These results high-
light the immense importance of chirality in the tunneling
magnetoresistance of these devices.

Quantum transport results. The analysis above would
suggest an infinite TMR in iMTJ based on magnetic Weyl
semimetals. In what follows, we will establish that the
tunneling magnetoresistance has a much stronger depen-
dence on the relative magnetization angle in the anti-
parallel configuration compared to conventional MTJ.
Hence, the realistic TMR should be limited by angu-
lar fluctuation in magnetization, such as thermal ef-
fects [28, 29].

We compute the conductance of the MTJ by means
of the non-equilibrium Green’s function technique. The
Hamiltonian is discretized along the x-direction, i.e., we
rewrite Eq. (1) as H = H0

W + Ŵeikxx + Ŵ †e−ikxx, such
that the magnetic Weyl semimetal is described as a se-
ries of principal layers (PLs) with translational invari-
ance in the yz-plane, as described by H0

W, and con-
nected to its nearest-neighbors PLs via interlayer hop-
ping matrices Ŵ . The Hamiltonian describing the in-
sulating (I) spacer is also expressed in similar fashion,
i.e., HI = H0

I + V̂ eikxx + V̂ †e−ikxx. The block on-site
and hopping matrices are H0

I = gl(k||)τ0 ⊗ σ0, with
gl(k||) = εl + tx + ty(1 − cos(kya)) + tz(1 − cos(kza)),

and V̂ = −(tx/2)τ0 ⊗ σ0, respectively. We consider an
insulating barrier of three PLs that are coupled to both
left (L) and right (R) semi-infinite leads via HL(R) =

−(tx/2)τ0 ⊗ σ0 and assume, εI = 2.0 eV and ti = 1 eV,
with i = x, y, z in all regions. The quantum conductance
can then be computed using standard non-equilibrium
green function formalism fashioned after the Landauer
approach to transport [30].

We display in Fig. 2(a) the angular dependence of the
conductance in units of e2/h for both pMTJ and iMTJ
with in-plane magnetization rotation. We have assumed
β = 500 meV and a doping level of µ = 250 meV in
these calculations. For the iMTJ case (red square sym-
bols), the conductance in the anti-parallel configuration
is observed to be orders of magnitude smaller than in the
parallel configuration, and is limited by the finite elec-
tron damping [30]. Hence, electrons can only transmit if
chirality is conserved as elucidated by the Bardeen model.

It is instructive to also consider the pMTJ case, where
both magnetizations are in the out-of-plane orientation.
In this case, the bulk Fermi surface around different Weyl
nodes are projected on the top of one another in the k||-
space. As a result, quasi-particles with a given k|| are in
coherent superpositions of right- and left- handed states
and, therefore, have no well-defined chirality. The full
angular dependence of conductance for pMTJs is shown
in Figure. 2(a) (blue triangles). Contrary to the iMTJ
case, the anti-parallel conductance of pMTJs is only an
order of magnitude smaller than its parallel configuration
counterpart. The anti-parallel resistances of these two
distinct situations, iMTJs and pMTJs, differ by several
orders of magnitude, allowing for experimental validation
of the proposed physics.

From the analysis above, an ideally infinite TMR ra-
tio should be expected for Weyl iMTJs, as in ideal half-
metallic MTJs [32, 33]. However, Fig. 2(a) suggests
the conductance exhibits a stronger angular dependence
around θR = 180◦. In order to quantify how fast the
conductance reaches its minimum value, we have fitted
the iMTJ curve of Fig. 2(a) with a polynomial function
of the small angular deviations θAP around θR = 180◦.
We have found that the best fit goes as θ3

AP [See black
solid curve in Fig. 2(a)], which is faster than the θ2

AP

for trivial MTJs [34]. In fact, it can be shown that
MLR(θAP) ∝ sin(θAP/2)δ(qL−qR(θAP)) in this limit [35],
where sin(θAP/2) accounts for spinor wavefunction over-
lap with an additional angular dependence in the Dirac
delta function that accounts for the Fermi surface mis-
match of the two contacts due to the magnetization
misalignment. The transmission probability is T =∫
dqLdqR|MLR(θAP)|2 ∝ sin(θAP/2)

2 ∫
dqLdqRδ(qL −

qR(θAP))2 ∝ sin(θAP/2)
2

sin(θAP/2) ≈ θ3
AP where the

additional sin(θAP/2) describes the angular dependence
of the k||-space overlap of the projected bulk Fermi sur-
faces [35]. Therefore, realistic estimation of the size of
the TMR should include thermal effects which gives rise
to an angular window around which the magnetization
fluctuates [28]. This can be estimated by convoluting the
angular dependent conductance with a Gaussian kernel
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FIG. 3: (a) Angular dependence of the quantum conductance of Weyl semimetal iMTJs with in-plane (red squares) and out-of-
plane (blue triangles) magnetization rotations as well as of pMTJs with out-of-plane magnetization rotation (orange rhombus).
In these calculations we have selected β = 500 meV and doping level µ = 0.25 eV measured in relation to the energy location
of the Weyl nodes. Panels (b), (c) and (d) show k||-resolved transmission probability at energy E = 0.0 eV for θR = 30◦ for
each case. The observed transmission hot-spots in panel (b) are due to bulk-to-Fermi arc state tunneling. The dashed contours
in figures (b), (c) and (d) highlight the fermi surfaces of left (in black) and right (in red) contacts projected onto the k||-space.
Fermi arcs are sketched as dashed lines connecting the bulk Fermi surfaces, as indicated in panel (b).

of spread σ centered around θR = 0◦ and θR = 180◦ for
parallel and anti-parallel alignments, respectively. This
is justified from the point of view that the magnetization
orientation can be described by a Boltzmann distribu-
tion P (θAP) = A exp

(
−Keffθ

2
AP/kBT

)
, where A is some

normalization constant, Keff is the effective anisotropy
coefficient, T is the temperature and kB is the Boltz-
mann constant. The Gaussian distribution spread is then
σ =

√
kBT/2Keff [36]. Figure 2(b) shows the TMR ob-

tained from this procedure at different β values for Weyl
iMTJs. We observed an additional enhancement with β
in all cases. Most importantly, gigantic TMR ratios of
≈ O(104)% are obtained for the range of experimentally
relevant σ [29].

We also emphasize that the gigantic TMR ratio of Weyl
iMTJs remains robust as long as the chirality around
each Weyl node is well-defined. As one increases the
doping levels, the Fermi surfaces of the two Weyl nodes
merge together, at the so-called Lifshitz transition point
in Fig. 1(a), destroying the well-defined handedness of
carriers. Under such high doping, we have numerically
verified that the anti-parallel resistance becomes finite in
this situation and no gigantic TMR ratios are observed.
Finally, we also emphasize that the large TMR does not
depend on the details of the tunnel barrier [37].

Fermi arc effect. Contrary to MTJs composed of triv-
ial ferromagnetic contacts, where the angular dependence
of the conductance obeys G0(1+PLPR cos(θ)) with PL(R)

being the tunneling spin polarization of the left (right)
ferromagnet and G0 being a multiplicative constant [34],
Weyl metal MTJs present a non-trivial anisotropic angu-
lar dependence of conductance. This behavior is pre-
sented in Fig. 3(a) for pMTJs (orange rhombus) and
iMTJs with in-plane (red squared) and out-of-plane (blue
triangular) magnetization rotations. Particularly, the
conductance of Weyl iMTJs displays a maximum at

θR ≈ 30◦ when the magnetization is rotated in-plane.
To identify the origin of this anomalous behavior, we
have analyzed the k||-resolved transmission probability
at θR ≈ 30◦ for the three cases, as shown in Figs. 3(b),
(c) and (d). The red and black dashed circles represent
the projection of the bulk Fermi surfaces of right and left
contacts, respectively, onto the k||-space. As we rotate
the magnetization of the right Weyl contact, its entire
bulk Fermi surface rotates along creating a mismatch-
ing of momentum states between the two contacts. This
accounts for the universal enveloping decreasing conduc-
tance with increasing θR.

Departure from a monotonic decrease of conductance
with increasing θR can be attributed to the presence of
topologically protected Fermi arc states. Due to magne-
tization misalignment, the surface Fermi arc states can
overlap with the bulk states of opposite contact, leading
to transmission hot spots as evident in Fig. 3(b). Since
these Fermi arc states coexist with the bulk states due
to the absence of bulk gap, their wavefunctions gener-
ally extend into the bulk [1]. When the magnetization
of the right contact in iMTJs is rotated out-of-plane, the
bulk-to-Fermi arc mode matching is largely suppressed.
Hence, one does not observe any enhancement in the
transmission at θR > 0 [See Fig. 3(c)]. Because tunneling
quasi-particles have no well-defined chirality in pMTJs,
a small transmission enhancement is allowed to occur for
θR > 90◦, as observed in Figs. 3(a) and (d), by virtue of
the increasing Fermi surface overlap with minimal Fermi
arc mode matching which are counterbalanced by the
spinor mismatch only.

Conclusion. We have studied the tunneling magne-
toresistance effect in magnetic tunnel junctions com-
prising of Weyl semimetal contacts. By means of the
Bardeen transfer Hamiltonian formalism, we show that
the chirality-magnetization locking ensures that the con-
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ductance is largely suppressed when the magnetization
are perfectly anti-parallel, leading to giant TMR. This
result relies on the existence of Weyl nodes with opposite
chirality that are separated in the surface Brillouin zone,
irrespective of the number of these crossing points. In
realistic experimental setup, thermal fluctuations would
determines the TMR, and our estimates using realistic
magnetization fluctuations indicates a gigantic TMR of
order 104 %. Numerical quantum transport simulations
further reveal the contributions of Fermi arcs surface
states, which is reflected in the non-monotonic depen-
dence of conductance on magnetization angle, the sig-
natures of which can offer an avenue to experimentally
probe these effects.
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