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Recently, quantum oscillation of the resistance in insulating monolayer WTe2 was reported. An
explanation in terms of gap modulation in the hybridized Landau levels of an excitonic insulator was
also proposed by one of us. However, the previous picture of gap modulation in the Landau levels
spectrum was built on a pair of well nested electron and hole Fermi surfaces, while the monolayer
WTe2 has one hole and two electron Fermi pockets with relative anisotropy. Here we demonstrate
that for system like monolayer WTe2, the excitonic insulating state arising from the coupled one
hole and two electron pockets possesses a finite region in interaction parameter space that shows
gap modulation in a magnetic field. In this region, the thermally activated conductivity displays
the 1/B periodic oscillation and it can further develop into discrete peaks at low temperature, in
agreement with the experimental observation. We show that the relative anisotropy of the bands is
a key parameter and the quantum oscillations decrease rapidly if the anisotropy increases further
than the realistic value for monolayer WTe2.

Introduction. Monolayer WTe2 is a two-dimensional
crystal that exhibits many unusual properties: it is a
quantum spin Hall insulator up to relatively high tem-
perature and is a superconductor when doped [1–6]. Re-
cently, quantum oscillation (QO) of the resistance was
reported in monolayer WTe2 when it is gate tuned to be
an insulator [7]. In a separate paper, it was argured that
the insulating state of monolayer WTe2 is an excitonic
insulator [8]. These observations in monolayer WTe2 put
it into the category of the insulators like SmB6 [9] and
YbB12 [10], which possess QOs along with insulating elec-
trical conductivity. As the canonical understanding of
QOs is based on the existence of electron Fermi surface
(FS) in materials [11], the origin of QO observed in the
insulating monolayer WTe2 requires an explanation.

The paradox of QO in the insulating monolayer WTe2
without electron FS has inspired suggestions of neutral
FS existing inside the insulating gap, where the neutral
FS is formed from itinerant spinons that result from the
spin-charge separation of holes [7]. The neutral FS hy-
pothesis requires the electronic correlation in monolayer
WTe2 to be strong enough to fractionalize the holes into
spinons and holons [12–14]. On the other hand, a more
conventional but still nontrivial explanation that does
not appeal to strong electronic correlation in monolayer
WTe2 was proposed by one of us: the observed QO of
resistance can arise from a small modulation of the in-
sulating gap induced by magnetic field [15]. In the phe-
nomenological model, the gap modulation can give rise to
oscillation of thermally activated conductivity and the os-
cillation further evolves into sharp periodic spikes in low
temperature [15], which matches qualitatively well with
the temperature dependent behavior of conductance os-
cillation in monolayer WTe2. In monolayer WTe2 the
bandwidth is not particularly narrow and strong elec-
tronic correlation is not expected in this material; so the
modulation of excitonic insulating gap by magnetic field

is an attractive alternative explanation for the QO in the
insulating monolayer WTe2. Since the origin of QO re-
ported in WTe2 is still under debate, we will proceed with
further analysis of the gap modulation model, which is
an interesting theoretical problem in its own right.

The scenario of magnetic field modulated insulating
gap was first proposed to explain the QO of magnetiza-
tion observed in the Kondo insulator SmB6 [16–18], and
later it successfully predicted the QO of conductance in
the inverted narrow gap regime of InAs/GaSb quantum
wells [19–21]. In both SmB6 and InAs/GaSb quantum
wells, the insulating gap arises from the hybridization of
a single electron band which overlaps a single hole band.
Since both are assumed to be isotropic, the system is per-
fectly nested and fully gapped by the hybridization. Prior
to hybridization, the Landau levels in the presence of a
magnetic field B moves up in energy in the electron band
and down in the hole band. These collide in a periodic
way as a function of 1/B. The memory of this periodicity
is retained in the energy gap after hybridization, leading
to a periodic modulation of the hybridization gap [16–
19]. However, in the case of monolayer WTe2, there are
one hole and two electron Fermi pockets with relative
anisotropy [1, 8, 22–24], and in general these pockets are
not well nested. The distinctive type of band structure of
monolayer WTe2 shown in Fig. 1 complicates the appli-
cation of the gap modulation scenario, raising the ques-
tion of whether QO oscillations survive in the case of the
coupled three Fermi pockets in monolayer WTe2.

In this work, we show that for a monolayer WTe2-like
excitonic insulator, there exists a reasonable range of pa-
rameter space which exhibits QO of thermally activated
conductivity that originates from the magnetic field in-
duced gap modulation. In the excitonic insulating state,
the two electron pockets are first shifted to the middle
hole pocket and the mutual couplings among the three
Fermi pockets gap out the FSs. Suppose V1 is the cou-
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FIG. 1: (a) Band structure of monolayer WTe2. The red
dashed lines denote the original position of conduction bands.
Due to the density modulation in the excitonic insulating
state, the original conduction bands are shifted to k = 0
by ±q. (b) The energy dispersions when the two conduc-
tion bands in (a) have finite hybridization V2 but no coupling
(V1 = 0) with the valence band. They are split into upper and
lower bands. (c) The insulating gap generated from (b) by
setting the coupling V1 6= 0. (d) The energy density gained
in the insulating state as a function of the deviation of q
from q0. Here Ω is the sample area and the energy gained is
δE = 〈E〉 − 〈E〉0 with 〈E〉0 being the ground state energy at
(V1, V2) = (0, 0) meV. The inset inside the dashed rectangle
shows the original electron and hole Fermi pockets. At the
optimal shift momentum q with V2 = −7.9 meV, the elec-
tronic pocket from lower band in (b) gets well nested with
the hole pocket. In the calculations the chemical potentials
are taken to be µc = 9.7 meV and µv = 8.1 meV.

pling between the electron and hole pockets and V2 is the
hybridization between the two electronic pockets, the sys-
tem will self-tune to the optimal shift momentum±q that
minimizes the ground state energy. Note that in general
q is different from q0 which is the separation between the
top of the hole band and the bottom of the conduction
band. We first minimize the energy with respect to the
shift vector |q|, and then construct the phase diagram in
the parameter space of (V1, V2). We find that the insu-
lating regime has the “<” shape looking, and near the
tip area of “<” the insulating gap has reasonable mod-
ulation (see Fig. 2 and 3). We find that the area in
the phase diagram that can generate finite gap modula-
tion depends on the relative anisotropy of Fermi pockets:
it shrinks as the relative anisotropy increases. For the
monolayer WTe2 with the relative anisotropy estimated
to be around 1.5 [24], we find that the gap modulation
near the tip area of “<” can indeed give rise to observable
conductivity oscillation (see Fig. 3 and 4), so it gives the
possibility that the gap modulation scenario can explain
the QO in monolayer WTe2.

Model for the excitonic insulating state. The mono-
layer WTe2 has a hole Fermi pocket centered at k = 0
and two flanking electronic Fermi pockets at k = ±q0
with q0 = (0, q0), as is shown in the inset of Fig. 1
(d). In the band basis, the quadratic dispersions are
taken to approximate the conduction band as ε± (k) ≈
~2k2x
2mc,x

+
~2(ky∓q0)2

2mc,y
− µc, and also the valence band as

εv (k) ≈ − ~2k2x
2mv,x

− ~2k2y
2mv,y

+µv. The band masses are fit to

be mc,x = mc,y = 0.29me, mv,x = 2
3mv,y = 0.56me [24].

Here the relative anisotropy of the electron and hole
pockets is controlled by γ =

mv,ymc,x

mv,xmc,y
. Note that since it

is always possible to rescale the ky axis so that one of the
the bands is isotropic, even in the presence of a magnetic
field, it is only the relatively anisotropy that matters in
the discussion that follows. When the Coulomb interac-
tion effect is neglected, the conduction band stays at its
original position as is indicated by the red dashed line in
Fig. 1 (a).

The role of Coulomb interaction in the system with en-
ergy overlap between the conduction and valence bands
is to provide an effective inter-band attraction to bind
electrons and hole states into excitons [25–28]. In an
excitonic insulator, a density modulation at q is spon-
taneously generated, so the original electron and hole
Fermi pockets are shifted to gap out the entire FS. For
the monolayer WTe2 type of band structure which has
two conduction band minima and one valence band max-
imum, besides the coupling between the conduction and
valence bands, the hybridization between the two elec-
tron pockets is also needed to generate the insulating
gap [15]. As a result, the generic mean field Hamiltonian
matrix for the excitonic insulating state is assumed to
have the form

H =

εv (k) V1 V1
V1 ε+ (k + q) V2
V1 V2 ε− (k − q)

 , (1)

where the basis is [ψv,k, ψ+,k+q, ψ−,k−q]
T

with ψv,k, ψ±,k
to annihilate a state at k in the valence and conduction
bands respectively. Here the coupling potential V1 is from
the pseudo-spin density order at q while the hybridiza-
tion V2 comes from the charge density order at 2q, which
can be obtained from the Hartree-Fock mean field calcu-
lation [29]. The pseudo-spin index is dropped as it does
not affect the energy eigenvalue [30]. Due to the spon-
taneous generated density order, the original conduction
bands are first shifted to k = 0 as is seen in Fig. 1
(a). Then the potential V2 hybridizes the two conduc-
tion bands, generating two new conduction bands with
different energies shown in Fig. 1 (b). We refer to these
as the upper and lower bands. Finally, the valence band
couples with the two new conduction bands individually
and an excitonic insulating gap appears in Fig. 1 (c).
Importantly, for negative V2 the coupling between the
valence band and the lower conduction band is dominant
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FIG. 2: The insulating phase diagram of a monolayer WTe2-
like excitonic insulator using realistic band parameters which
sets the relative anisotropy to be γ = 1.5. At given coupling
potential (V1, V2), the gap size ∆ is given in (a) and the as-
sociated shift momentum |q − q0| is present in (b).

in the insulating gap generation [30] while for positive V2
it is the opposite. Clearly negative V2 is preferable for en-
ergy gain and our calculations are mainly in this domain.
Since a microscopic model for the interaction parameters
is not known, in this paper we do not attempt to perform
a self-consistent calculation starting with a microscopic
model, but consider only the parameter space controlled
by the mean field parameters V1 and V2.

For a given V1 and V2 , the system will self-tune to have
the ground state energy 〈E〉 =

∑
k,ν f [Eν (k)]Eν (k)

minimized by varying the shift momentum q = (0, q).
Here f (ε) is the Fermi Dirac distribution function and
Eν (k) with ν = 1, 2, 3 is the energy eigenvalue of the
Hamiltonian H in Eq. 1. In the simple case when there
is no relative anisotropy (γ = 1), for sufficient large V2
the ground state energy gets minimized at q = q0 when
only the electron pocket corresponding to the lower band
crosses the Fermi level and is perfectly nested with the
hole pocket [30]. In the realistic monolayer WTe2 band
structure, the middle hole pocket is more elliptical than
the flanking electron pockets, so it is no longer true that
the optimal nesting always occurs at q = q0. Instead the

q may be adjusted so that one side of the electron pocket
has optimal overlap with a side of the hole pocket. In Fig.
1 (d), the energy density gained in the insulating state is
plotted as a function of |q−q0| with (V1, V2) = (1.3,−7.9)
meV, which shows that the ground state energy takes the
minimal value at nonzero |q−q0|. By calculating the in-
sulating gap size and the associated shift momentum q
in a range of the coupling potentials V1, V2, the excitonic
insulating phase diagram in terms of (V1, V2) is obtained
in Fig. 2 using realistic parameters for monolayer WTe2.
In the phase diagram, the gapped regime has a pointy
“<” shape, and the finite |q − q0| near the tip of “<”
makes the V2 hybridized electronic pockets well nested
with the middle hole pocket as can be seen in the inset
of Fig. 1 (d). As we shall see, it is in this well nested
region that the gap modulation and QO in the presence
of a magnetic field survives the best.

Gap modulation in the Landau levels spectrum. In the
presence of magnetic field, the original quadratic energy
dispersions for the conduction and valence bands form
three sets of Landau levels: ε±,n =

(
n+ 1

2

)
~ωc − µc,

εv,n = −
(
n+ 1

2

)
~ωv + µv, with n ∈ Z. Here the

cyclotron frequencies are ωc = eB
mc

, ωv = eB
mv

, with
the cyclotron masses being mc =

√
mc,xmc,y, mv =√

mv,xmv,y. In the excitonic insulating state, due to
the couplings among the original conduction and valence
bands, the formed Landau levels get hybridized, result-
ing in an insulating gap as a function of magnetic field
B. The Hamiltonian matrix that involves Landau levels
hybridizations has similar form as that in Eq. 1 [30]

Ĥ =

Ĥv V̂1 V̂1
V̂ †1 Ĥ+ V̂2
V̂ †1 V̂ †2 Ĥ−

 , (2)

where the matrix elements are given in Landau gauge
A = (0, Bx, 0) as

Ĥv,n,m = 〈v, n| − 1

2
~ωv

(
a†vav + ava

†
v

)
+ µv |v,m〉 , (3)

Ĥ±,n,m = 〈c, n| 1
2
~ωc

{[
a†c ∓

lc,B√
2

(q − q0)

] [
ac ∓

lc,B√
2

(q − q0)

]
+

[
ac ∓

lc,B√
2

(q − q0)

] [
a†c ∓

lc,B√
2

(q − q0)

]}
− µc |c,m〉 ,

(4)

V̂1,n,m = 〈v, n|V1 |c,m〉 , and V̂2,n,m = 〈c, n|V2 |c,m〉 , (5)

with lc,B =
√

~
mc,xωc

. Here the basis |v, n〉 =
(a†v)

n

√
n!
|v, 0〉

and |c, n〉 =
(a†c)

n

√
n!
|c, 0〉 are the eigenstates correspond-

ing to the nth Landau level from the valence band
εv (k) and the k = 0 centered conduction band εc (k) =

~2k2x
2mc,x

+
~2k2y
2mc,y

− µc respectively. It is clear that Ĥv and

Ĥ± gives energy eigenvalues εv,n and ε±,n respectively.
Suppose the FS area covered by the electron pockets and
hole pocket are both equivalent to S, which is required
by charge neutrality, then the chemical potentials for the



4

original conduction and valence bands are solved to be

µc = ~2S
4πmc

, µv = ~2S
2πmv

. It indicates that once the cy-
clotron masses mc, mv and the FS area S are fixed, the
energy eigenvalue of the Hamiltonian in Eq. 2 depends
only on the specific forms of the hybridization matrix
V̂1, V̂2. In the case that Fermi pockets have no relative
anisotropy (γ = 1), the hybridization matrix V̂1, V̂2 are
both diagonal, so the energy eigenvalue are analytically
solved to be [30]

E1,n =
1

2
(ε̃c,n + εv,n) +

√
1

4
(ε̃c,n − εv,n)

2
+ 2V 2

1 , (6)

E2,n =
1

2
(ε̃c,n + εv,n)−

√
1

4
(ε̃c,n − εv,n)

2
+ 2V 2

1 , (7)

E3,n =~ωc

(
n+

1

2

)
− V2, (8)

with ε̃c,n = ~ωc

(
n+ 1

2

)
+V2. The resulting Landau levels

spectrum always have the magnetic field modulated gap√
(ε̃c,n − εv,n)

2
+ 8V 2

1 and the modulation periodicity is

determined by the FS area before hybridization [16, 30].
In the more general case of monolayer WTe2 type band
structure that has relative anisotropy γ > 1, the off-
diagonal elements in the hybridization matrix V̂1 are gen-
erally nonzero (the detailed calculations for the matrix
elements of V̂1 are present in the Supplemental Mate-
rial [30]). As numerically diagonalizing Ĥ gives the the
hybridized Landau levels spectrum in the case of γ > 1,
the effect of relative anisotropy on the magnetic field in-
duced gap modulation can be figured out.

For the monolayer WTe2, the electron and hole cy-
clotron masses take the value mc = 0.29me, mv =
0.67me [24]. Given the experimental observed QO fre-
quency f = 48.6 T in device 1 [7], the FS area S can
be determined by the Onsager theorem f = ~S

2πe , so
the chemical potentials are fixed to be µc = 9.7 meV,
µv = 8.1 meV. The set of parameters mc, me, µc and µv

along with the relative anisotropy γ = 1.5 have been ap-
plied in the calculation for the phase diagram present in
Fig. 2. Three points with the same V2 but different V1 in
the phase diagram are selected to calculate the Landau
levels spectrum. The Landau levels spectrum from the
green, magenta, and white colored phase points in Fig.
2 are plotted as a function of 1/B in Fig. 3 (a), (b) and
(c) respectively. The hybridization of Landau levels de-
scribed by Eq. 2 inherits the feature of the three bands
coupling in Eq. 1. The hybridization matrix V̂2 first lifts
the degeneracy of ε±,n, giving two sets of Landau levels
that are from the two new conduction bands in Fig. 1
(b). Then the newly generated two sets of Landau levels
couple individually with the valence band Landau levels
εv,n, eventually generating the gap in the Landau levels
spectrum. In Fig. 3 (a), with given (V1, V2) near the tip
of the gapped region, the gap in the Landau levels spec-
trum shows significant modulation in the magnetic field.

(a)

(c)

Ev, 1

Ev, 2

(b)

(d)

FIG. 3: The Landau levels spectrum from the green, magenta
and white phase points in Fig. 2 for (a), (b) and (c) respec-
tively. Notice that a band which corresponds to the upper
electron band in Fig. 1 (b) is very weakly hybridized and
stays at the same energy. It moves inside the gap when the
gap opens for increasing V1. It shows no modulation with B.
On the other hand, the top of the valence band always shows
modulations, even though it is weakened for increasing V1.
(d) The gap modulation of the valence band is characterized
by the energy difference δEv at given (V1, V2) in the gapped
region. The yellow dashed line is the contour of δEv = 0.03
meV. Recall that the relative anisotropy is γ = 1.5. For com-
parison, the green dash-dot line gives the boundary of the
region with gap modulation larger than 0.03 meV in γ = 1
case.

When the coupling potential V1 increases, the insulating
gap becomes larger so the lowest Landau level from the
upper conduction band in Fig. 1 (b) appears inside the
gap at small B. Since that Landau level has negligible
coupling with the valence band Landau levels εv,n, the
energy oscillation in the upper boundary of the gap dis-
appears there. On the other hand, the energy oscillation
in the lower boundary of the gap survives in the whole
range of magnetic field 1/B ∈ [0.11, 0.23] T−1 shown in
Fig. 3 (b), although it is suppressed a bit due to larger
V1. As the coupling potential V1 further increases, the
energy oscillation in the lower boundary gradually gets
smoothed in 1/B > 0.22 T−1 as is shown in Fig. 3 (c).

The energy difference between the top two valence
band Landau levels at Ev,1, Ev,2 serves as an indicator
of the gap modulation. For the Landau levels spectrum
in the range of magnetic field 1/B ∈ [0.11, 0.23] T−1,
the energy difference δEv = 1

2 [Ev,1 (1/B)− Ev,2 (1/B)]
at 1/B = 0.23 T−1 is calculated in the gapped region,
which is shown in Fig. 3 (d). Importantly, the energy
difference δEv is found to decrease from a finite value to
zero as (V1, V2) goes away from the tip area of “<”, and
the gap modulation decays in the same way. In Fig. 3
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FIG. 4: The thermally activated conductivity calculated from
Eq. 9. In the calculation the chemical potentials are fixed to
be µc = 4.6 meV, µv = 3.9 meV so that the Fermi surface
area gives the frequency f = ~S

2πe
= 23 T.

(d), the contour of δEv = 0.03 meV gives an estimate
of the regime that has reasonable gap modulation, and
the gap modulation is further confirmed by Landau levels
spectrum calculations from more points inside the regime
δEv > 0.03 meV [30]. Compared to the γ = 1 case
where the V1 < 3.4 meV delimits the area of gap modu-
lation larger than 0.03 meV [30], the relative anisotropy
γ = 1.5 reduces the area in the phase diagram. Besides
the specific case of γ = 1.5, the energy difference δEv

in the phase diagram has been calculated for a series of
insulating states with γ = 2, 2.5, 3 in the Supplemental
Material [30]. The area with reasonable gap modulation
is found to shrink toward the tip of “<” as the relative
anisotropy increases. The reason is that as γ increases,
the region in parameter space where the electron and
hole Fermi surfaces are well nested prior to hybridiza-
tion by V1 shrinks. When the Fermi surfaces are not well
nested, each Landau level in the hole band is coupled
to several other ones in the conduction bands when the
magnetic field is turned on, and the gap modulation de-
creases. Nevertheless, up to γ = 3, a range of phase space
always exists to give gap modulation in the order of 0.1
meV at 1/B = 0.23 T−1, which is enough to generate
QO of thermally activity in the range of magnetic field
B ∈ [3, 10] T [30].

Thermally activated conductivity oscillation. In the ex-
citonic insulating state which occurs at the charge neu-
trality, the chemical potential always stays inside the hy-
bridization gap, so the charge carriers at finite temper-
ature are the thermally activated electronic states that
come from the Landau levels below the gap. The ac-
tivated conductivity is described by the Arrhenius type
equation [31, 32]:

σ = σ0 exp

[
−∆ (B)−∆ (0)

kbT

]
, (9)

where ∆ (B) is the gap at B, and kb is the Boltzmann
constant. Here the prefactor σ0 is assumed to be in-
dependent of B as the chemical potential pinned inside
the hybridization gap does not oscillate with the applied
magnetic field. In the Landau levels spectrum of a mono-
layer WTe2-like excitonic insulator, since the gap ∆ (B)
is periodically modulated by the magnetic field B in a
range of phase space, the associated thermally activated
conductivity also exhibits periodic oscillation in 1/B. In
Fig. 4, the thermally activated conductivity is calculated
using the Landau levels spectrum that has periodic gap
modulation with the same frequency as observed in the
conductance oscillation in device 2 in experiment [7]. As
the ratio of conductance between T = 2 K and T = 0.5
K in device 2 is smaller than 102, the gap estimated from
Eq. 9 has the upper limit at the order of 0.2 meV. Hence
we take the coupling potentials in the Landau levels spec-
trum to be (V1, V2) = (0.1, 3.7) meV so that the Landau
levels hybridization gap is around 0.2 meV. The result-
ing conductivity in Fig. 4 clearly shows the oscillation.
At the lower temperature T = 0.5 K, the conductivity
oscillation evolves into periodic spikes that resembles the
discrete peaks observed in the quantized regime in ex-
periment. It matches the fact that lowering temperature
makes the quantized regime accessible to the range of
magnetic field applied in experiment. In the Supplemen-
tal Material [30], thermally activated conductivity has
been considered in a range of parameters and the con-
ductivity oscillation is found to be a general phenomenon
that will occur in the phase space with visible gap mod-
ulation.

Discussion and Summary. In the above sections, the
effect of impurities that are always contained in the sam-
ple has yet been analyzed, but the scenario of QO from
the gap modulation would be the same given the impu-
rity potentials are weak. We know that impurities will lift
the degeneracy of each Landau level so that the resulting
Landau levels get broadened. Prior to the excitonic hy-
bridization, the broadened Landau levels form peaks in
the density of states consisting of extended states, while
the states between the peaks are localized. When the
excitonic hybridization is turned on, the extended states
from the electron band would couple with the extended
states in the hole bands to form new extended states. The
localized states will also hybridize but remain localized.
The resulting hybridized Landau levels in the excitonic
insulating state are therefore also broadened in the same
way, with extended and localized states. As long as the
broadening is smaller than the Landau level spacing, the
conductivity from the thermally excited extended states
will oscillate due to the gap modulation.

To summarize, for a monolayer excitonic insulator that
has one hole and two electronic Fermi pockets similar to
that of WTe2, there exists a range of phase space that can
generate QO of thermally activated conductivity. The
size of the phase space with finite QO depends on the
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relative anisotropy of the Fermi pockets before hybridiza-
tion. For a relative anisotropy γ estimated up to 3, our
study shows that the gap modulation survives near the
tip of the gapped region in phase diagram. Since the
mean field parameters V1, V2 in the phase diagram de-
pends on details of interactions, we do not know whether
a self-consistent calculation starting from the electron in-
teractions in the monolayer WTe2 will land us in that
region. Thus while it is possible that the gap modula-
tion scenario can explain the QO observed in monolayer
WTe2, it is not guaranteed to be always the case.
Acknowledgements. The authors acknowledge the sup-

port by DOE office of Basic Sciences grant number DE-
FG02-03-ER46076.
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