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The effects of downfolding a Brillouin zone can open gaps and quench the kinetic energy by
flattening bands. Quasiperiodic systems are extreme examples of this process, which leads to new
phases and critical eigenstates. We analytically and numerically investigate these effects in a two-
dimensional topological insulator with a quasiperiodic potential and discover a complex phase dia-
gram. We study the nature of the resulting eigenstate quantum phase transitions; a quasiperiodic
potential can make a trivial insulator topological and induce topological insulator-to-metal phase
transitions through a unique universality class distinct from random systems. This wealth of critical
behavior occurs concomitantly with the quenching of the kinetic energy, resulting in flat topological
bands that could serve as a platform to realize the fractional quantum Hall effect without a magnetic
field.

The interplay of topology and strong correlations pro-
duces fascinating phenomena, with the fractional quan-
tum Hall effect [1] serving as the quintessential example.
Conventionally, the magnetic field induces topology in
the electronic many-body wavefunction; however, Berry
curvature of the band structure is sufficient to induce
topological single-particle wavefunctions that can survive
the presence of interactions (see Ref. 2 for a review). De-
spite strong numerical evidence of fractional Chern and
Z2 insulators [3–8], identifying a clear experimental route
to the many-body analog of the fractional quantum Hall
effect without a magnetic field remains challenging. Re-
search in this direction has aimed to identify lattices with
flat topological bands that quench the kinetic energy, pro-
moting strong correlations [9–15].

Recent work on twisted graphene heterostructures
opened up new platforms to study strongly correlated
physics, including correlated insulators [16], supercon-
ductivity [17, 18], and Chern insulators [19–21]. Pro-
posals for realizing flat topological bands in these sys-
tems have followed [22–30]. It was also recently shown
in Refs. 31 and 32 that the incommensurate effect of
the twist could be emulated by a quasiperiodic poten-
tial. Consequently, a class of models, dubbed magic-
angle semimetals, show similar phenomena to twisted bi-
layer graphene (e.g., the formation of minibands and the
vanishing Dirac cone velocity) at or near an eigenstate
phase transition. Similarly, to understand the theory for
fractional Chern and Z2 insulators in incommensurate
systems and how eigenstate criticality plays a role, it is
essential to build a simple model to theoretically study
and experimentally realize. The notion of flat band en-
gineering with incommensuration has broad applicabil-
ity outside twisted heterostructures, including ultra-cold
atomic gases [33–35] and metamaterials [36–39].

In this letter, we study a minimal model for a two-
dimensional topological insulator (TI) with a quasiperi-
odic potential to find a controllable route to create flat
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FIG. 1. Phase Diagram of the BHZ model in Eq. (1) at
the band center with topological mass M and quasiperiodic
potential strength W . There are five illustrated phases: topo-
logical (TI), normal (NI), and Anderson (AI) insulators, Dirac
semimetal (SM), and critical metal (CM). The green and red
data points use the density of states in Eq. (3) to locate the
transitions between TI and NI. Among them, the green data
points and the green vertical line at M = 2 are SMs, termi-
nated at magic-angle transitions (see [40]) at the green stars.
The black dashed lines are the perturbative prediction for
the SM lines (e.g. Eq. (7)). The blue circles use transport
[Eq. (2)] to determine the CM to AI boundary.

topological bands and induce quantum phase transitions
beyond the Landau-Ginzburg paradigm, as there is no
spontaneous symmetry breaking involved. These transi-
tions represent a universality class beyond the Altland-
Zirnbauer classification of random matrices for disor-
dered systems [41, 42]. While the study of new metal-
lic phases with quasiperiodicity came into focus with
Refs. [43, 44], the existing work on topology in non-
periodic systems focused on the topological to normal
insulator transition [45, 46] and appearance of finite en-
ergy topological bands [6, 47]. Using analytic and nu-
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meric techniques we unite these ideas and find an in-
tricate phase diagram, as shown in Fig. 1. Particularly,
quasiperiodicity creates practically flat topological bands
near where finite-energy states exhibit criticality. At the
transition between topological and trivial insulators, the
system realizes a magic-angle semimetal with features
previously studied [31]. We further characterize the crit-
ical properties of the various eigenstate transitions, un-
derstanding them as localization and delocalization tran-
sitions in momentum- or real-space bases. Importantly,
these transitions and phases could be directly realized in
twisted bilayer graphene that is close to aligned with a
hexagonal boron nitride substrate [48–50].

Model: To describe a two-dimensional topological
insulator, we use the Bernevig-Hughes-Zhang (BHZ)
model [51] with a 2D quasiperiodic potential. The
square-lattice Hamiltonian (with sites r) is block diag-
onal

H =
∑
r,r′

c†r′

(
hr′r 0

0 h∗r′r

)
cr +

∑
r

c†rV (r)cr, (1)

where cr are four-component annihilation operators and
V (r) = W

∑
µ=x,y cos(Qrµ+φµ) is the quasiperiodic po-

tential (QP) with amplitude W , wavevector Q, and ran-
dom phase φµ; hr′r is a two-by-two matrix describing
one block of the BHZ model (h∗, its complex conjugate).
The nonzero elements of h are hrr = (M − 2t)σz and

hr,r+µ̂ = h†r,r−µ̂ = 1
2 t(−iσµ + σz) for µ = x, y with Pauli

matrices σµ. Topological mass M and the hopping t = 1
set the energy scale. Most analyses are done on the two-
by-two matrix since time-reversal symmetry relates each
block, and V (r) does not couple blocks. To reduce finite-
size effects, we average over twisted boundary conditions

implemented with t → teiθ̃µ/L for a twist θ̃µ in the µ-
direction randomly sampled from [0, 2π). The model is
invariant under M → 4−M , so we focus on M ≥ 2. For
2 < M < 4, the band structure (i.e., W = 0) is topologi-
cal with a quantized spin Hall effect Q = σ+

xy−σ−xy where
σ±xy are Hall conductivities for the blocks defined by h and
h∗ respectively. The superscript ± will be dropped as we
focus on the h block only. At M = 2 [M = 4], the model
is a Dirac semimetal with Dirac points at X = (π, 0) and
Y = (0, π) [M = (π, π)] with velocity v0 = t.

Quasiperiodicity is encoded in Q, which in the ther-
modynamic limit we define as Q/(2π) = (2/(

√
5 + 1))2.

For simulations, we take rational approximates such that
Q ≈ QL = 2πFn−2/Fn, where Fn is the nth Fibonacci
number, and the system size is L = Fn. See the supple-
ment for other values of Q.

Methods: We investigate the phase diagram and phase
transitions with spectral observables and eigenstates. Be-
cause the model in Eq. (1) lacks translational symmetry,
we treat the entire L×L system as a supercell, where the
thermodynamic limit is L → ∞. At finite L, we define
an effective band structure that is downfolded into a mini

Brillouin zone (mBZ) of size 2π/L×2π/L. We apply the
kernel polynomial method (KPM) [52] to compute spec-
tral quantities and Lanczos or exact diagonalization to
compute eigenstate properties (specified in [40]). While
the KPM and Lanczos work for larger L than exact di-
agonalization, KPM introduces broadening to the data
controlled by polynomial expansion cutoff Nc [52] and
Lanczos limited to a small range of the spectrum.

To distinguish trivial, topological, and Anderson insu-
lator phases, we calculate the conductivity tensor defined
through Kubo formula [53]

σαβ =
2e2~
L2

∫
f(E)dE Im Tr

s
vα
dG−

dE
vβδ(E −H)

{
(2)

where f(E) = [eβ(E−µ) + 1]−1 is the Fermi function at
inverse temperate β and chemical potential µ, vα is the
velocity operator, G− is the retarded Green function,
and J· · ·K denotes an average over phases in the QP (φµ)

and twists (θ̃µ) in the boundary condition. To determine
phase boundaries and transition properties, we compute
the density of states (DOS) which reflects band gaps and
the low energy behavior of the semimetallic phase. The
DOS at energy E is

ρ(E) =
1

2L2

s∑
i

δ(E − Ei)
{

(3)

where Ei denotes the energy eigenvalues. The gap cen-
tered at zero energy ∆ is estimated with the KPM via
the DOS satisfying ρ(E) < 0.001 and with shift-invert
Lanczos about E = 0. Along the semimetal lines the
low-energy DOS goes like ρ(E) ∼ ṽ−2|E|, where ṽ is the
renormalized velocity of the Dirac cones that we calcu-
late through the scaling with Nc. A detailed discussion
of obtaining ∆ and ṽ is in [40].

For wavefunctions, we compute the inverse participa-
tion ratios (IPRs) in real and momentum space to dis-
cern localized, extended or critical states. The IPR in a
basis indexed by α is

Iα(E) =
∑
α

q
|〈α|ψE〉|4

y
(4)

using normalized wave functions in the momentum space
(α = k) or real space (α = r) basis. For systems lo-
calized in basis α, Iα is L-independent; for delocalized
systems, it goes like Iα ∼ 1/L2. At a localization tran-
sition [54, 55] Iα ∼ 1/Lγ where 0 < γ < 2 is the fractal
dimension (D2); γ is extracted from the finite size effect
when calculating Iα at various system sizes [40].

To study band flatness and topology of the effective
band-structure in the mBZ, we calculate the wavefunc-
tion |ψEn(θ)〉, where θ is the crystal momentum of the
L × L super-cell (via the twist in the boundary condi-
tion as θ = θ̃/L) and En is the energy of the nth band
labelled in ascending order. The bandwidth is then de-
fined as wn = max |En(θ) − En(θ′)|θ,θ′ and the direct
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band gap is ∆n = En+1(θ) − En(θ). The flatness ratio,
which measures a band’s flatness and its isolation from
the neighboring bands is defined following [56] as

fn = min{∆n,∆n−1}/wn. (5)

The Berry curvature Ωn(θ) and Chern number Cn can
be determined via momentum-space plaquettes defined
by the four momenta θ → θ1 → θ2 → θ3 → θ [57] and
they can be calculated following [58]

Ωn(θ) = Im ln
Un(θ,θ1)Un(θ1,θ2)

Un(θ,θ3)Un(θ3,θ2)
, Cn =

1

2π

∑
θ

Ωn(θ)

(6)
where Un(θa,θb) = 〈ψn(θa)|ψn(θb)〉/|〈ψn(θa)|ψn(θb)〉|
and the sum to obtain Cn is over the mBZ [0, 2π/L)2.
Lastly, we use machine learning of the wavefunctions to
provide an efficient survey of a large parameter space (in
W , M , and E) as an additional validation of the phase
diagram in Fig. 1. This also reveals intriguing features
of the Anderson insulating phase, as elaborated in [40].

Phase Diagram: Using diagrammatic perturbation
theory and numerical calculations with the KPM and
Lanczos we obtain the phase diagrams shown in Fig. 1.
There are five phases pictured: topological insulator (TI),
normal insulator (NI), critical metal (CM), Anderson in-
sulator (AI), and lines of Dirac semimetals (SM) between
TI and NI phases. Both band-insulating and SM phases
are stable to weak quasiperiodicity. Finite band gaps
and quantized (zero) spin Hall conductivity describe the
TI (NI) phase, calculated using the KPM method with
Eq. (2). Low-energy scaling of the DOS ρ(E) ∼ ṽ−2|E|
captures the SM phases (marked with green data points).
Other boundaries between gapped and finite DOS at
E = 0 are marked with red data points. These DOS
results trace the phase boundaries between TI and NI
(green) and between TI and CM (red). The AI phase has
a finite DOS but zero conductivity and localized wave
functions (i.e., real space IPR that is L-independent),
with the phase boundary marked by blue circles with
error bars. The structure revealed is Q-dependent [40]
and reminiscent of other studies of insulating phases per-
turbed by quasiperiodicity [59].

Upon increasing W , for M . 4 and M & 5 we traverse
the phases TI/NI → CM → AI. However, more compli-
cated cuts are possible between M = 4.5 and M = 5.3,
where quasiperiodicity drives trivial phases topological
(for 4 < M . 5.0) and into-and-out-of metallic and topo-
logical phases at zero-energy. An example is shown in the
supplement [40], where increasing W leads to the phases
NI→ SM→ TI→ CM→ TI→ SM→ NI→ CM→ AI.

The physics on the SM lines emanating from M = 2
or M = 4 at W = 0 agrees with the universal fea-
tures found in Ref. 31 and reveals magic-angle transi-
tions marked by green stars in Fig. 1(a). Concentrat-
ing on M = 2, the semimetal is stable with a velocity
(calculated from the DOS, see [40]) that vanishes like
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FIG. 2. Demonstration of the TI-to-CM transition.
(a) Tracking the density of states computed with the KPM
in Eq. (3), we see the (hard) band gap closes as a power
law ∆ = (Wc(M) −W )νz and find νz ≈ 1 at the TI-to-CM
transition across each value of M . (b) Shows the conduc-
tivity computed with the KPM in Eq. (2) as a function of
quasiperiodic strength W for M = 4.0. The Hall conductiv-
ity σxy saturates to a finite value in the TI phase, but for
Wc(M = 4) ≈ 2 . W . 3 the longitudinal conductivity be-
comes finite and the Hall part is suppressed. The system is
localized when W & 3. Note that the feature near W = 0 is
due to M = 4 being a SM. We stress that this metallic phase
and therefore this transition does not exist in the presence of
randomness.

ṽ ∼ (Wc(M = 2)−W )β/2 whereWc(M = 2) = 1.42±0.02
and β = 2±0.3, which is close to the universal value β ≈ 2
obtained in other models and symmetry classes [31, 32].
A CM phase is found as well as a localization transition
at WA(M = 2) = 1.50± 0.03.

For smaller values of W , we use perturbation theory to
map out the phase diagram and estimate the location of
the NI-to-TI and SM-to-CM transitions (see [40]). These
phase transitions can be assessed in this regime (i.e. near
M = 4) by computing the renormalized mass M̃ and
velocity ṽ. We obtain up to second order in W

M̃ − 4 =

[
(M − 4) +W 2 (4−M)+(cosQ−1)

(4−M)2+2(3−M)(cosQ−1)

]
1 +W 2/((4−M)2 + 2(3−M)(cosQ− 1))

.

(7)
By solving for M̃ = 4, we obtain the phase boundary
between insulating phases, illustrated by the black dot-
ted line in Fig. 1(a) (at fourth-order in W ), which is in
excellent agreement with the numerics. The curvature
to this line demonstrates that quasiperiodicity can drive
a topological phase transition NI-to-TI, which is the de-
terministic analog of the disordered topological Anderson
insulator [60, 61]. For M = 2, there is no renormalization
of M̃ . Using numerics to access higher M and W , when
M & 5.4, the NI transitions into the CM. The magic-
angle transition (i.e., SM-to-CM) is obtained by solving
ṽ → 0 on the line M̃ = 4.

TI-to-CM transition: To analyze topological transi-
tions that are forbidden in disorder systems we use nu-
merics to capture the full, nonperturbative transition to
the CM phase located at Wc(M). Near the transition,
the correlation length diverges as ξ ∼ |W −Wc|−ν while
scale invariance implies that the gap ∆ ∼ ξ−z; there-
fore the gap vanishes like ∆ ∼ |W − Wc|νz. Through
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the KPM calculation of DOS and Lanczos calculation of
lowest energy states, we find νz ≈ 1 for each M value we
have considered, see Fig. 2(a).

These exponents indicate a unique universality class
driven by quasiperiodicity distinct from random systems.
Since our system breaks up into two blocks, each in the
same symmetry class as the quantum Hall effect (i.e.,
class A), random disorder does not allow for a metallic
phase [42, 55, 62]. Therefore, topological phase transi-
tions driven by quasiperiodicity host unique universality
classes beyond the ten Altland-Zirnbauer random matrix
classes [41].

When gap closes at Wc(M), the conductivity at E = 0
becomes finite, and the Hall conductivity is no longer
quantized, indicating the onset of the CM phase. As
seen in Fig. 2(b), the Hall conductivity drops, and σxx
peaks at the transition, remaining finite for the dura-
tion of the CM. The transition does not involve any
symmetry breaking; it occurs when the topological gap
closes and σxy is no longer quantized. For larger values
of W , we find a transition into an Anderson insulating
phase [55, 63] with exponentially localized wavefunctions
in real space and a vanishing σxx.

Criticality and flat topological bands: At small W , the
insulating band gap [computed via the DOS in Eq. (3)]
increases for some values of M but decreases for larger
W , which is beyond the perturbative theory in Eq. (7).
This non-monotonicity is demonstrated in [40] and co-
incides with the onset of criticality in the finite energy
states (i.e. a mobility edge) near the edge of the gap
centered about E = 0 (e.g. in Fig. 3 this corresponds to
the states near E ≈ −0.5 for W ≈ 1). Due to the inter-
play of topology, criticality, and quasiperiodicity several
physically interesting effects occur near the gap maxi-
mum. This is demonstrated in Fig. 3 for M = 4.0 as a
representative cut of the phase diagram in Fig. 1 that we
now explore in more detail.

It can be seen from Fig. 3(a) that the states [64] near
E ≈ −0.5 narrow around W ≈ 1 and are well isolated
from other states by hard gaps. Additionally, by cal-
culating σxy, Fig. 3(b) (left most panel) shows this col-
lection of bands has total Chern number equal to 1, in-
dependent of L. Meanwhile, these states become crit-
ical, as measured by the IPR in momentum and posi-
tion space (1/Iα ≈ Lγα) with 0 < γα < 2, showing
they are delocalized in both bases (α = x, k) [Fig. 3(a)
where color shows γk]. Interestingly, we observe a self-
similarity in these critical bands; the sequence of decreas-
ing energy windows shown in Fig. 3(b) have the same
Chern number as we increase the super-cell size. When
M = 4 and W = 1.01541 the relevant energy window
E ∈ [−0.49,−0.47] has (Fn−5)2 states for a system size
L = Fn. When we can identify the lowest band [depicted
by the green line in Fig. 3(b)] in this energy window
the value of its Chern number follows the self similar se-
quence of C = −2 for L = F2n and C = 1 for L = F2n−1
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FIG. 3. Flat Chern bands and eigenstate criticality.
(a) Color plot of the momentum-space IPR system-size scal-
ing (as defined in Eq. (4)). Notice that around W ∼ 0.95
low energies become delocalized in momentum space while at
higher energies Ik ∼ L−γk for 0 < γk < 2 indicating critical
eigenstates along the mobility edge; the value of γk is given
by the color. The lowest energy states (and narrowest set of
states) has a Chern number of 1. The white regions are hard
gaps. (b; left) the conductivity calculated from Eq. 2 with
L = 377 and cutoff Nc = 214. (b; right) Dispersion relation
En(θ) along a representative cut in the mBZ for a sequence
of L = Fn with even n, for W = 1.0154. For each L, the
green band carries Chern number −2, the first 4 bands (from
green to cyan) sum to Chern number 1, and the 25 bands
pictured in each plot sum to Chern number 1 (for L = 55, the
pattern appears to hold but the lowest bands do not have a
well-defined gap). (c) the flatness ratio fg (left, as defined in
Eq. 5) and the normalized standard deviation of Berry curva-
ture Ωg (as defined in Eq. 6) across the folded Brillouin zone
(right) of the first band above E = −0.5, for various L val-
ues. For L = 233 and L = 377, the peak of the flatness ratio
appears near where the Berry curvature has less fluctuations.
The filled markers (•) indicate topological bands while empty
markers (◦) indicate trivial bands (excluded in the right). The
squares (�) and circles (•) correspond to L = Fn such that n
is odd and even, respectively.

(in each case examined).

The flatness of the lowest (green) band is apparent
in the dispersion in the mBZ in Fig. 3(b) as well as by
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its large effective mass [40]. By computing the flatness
ratio (of the green band) fg and Berry curvature Ωg (in
Eqs. (5) and (6), respectively) our data also demonstrates
that larger L leads to flatter, isolated topological bands
in the mBZ at some optimal W . As shown in Fig. 3(b
and c left) for increasing L the peak in fg sharpens con-
comitantly with the development of critical eigenstates
[Fig. 3(a)] as the Chern bands in the mBZ occur at an
increasingly fine energy scale. At the W with maximal
fg, we also see a reduction in the fluctuation in Berry
curvature Ωg (of the green band), probed via its stan-
dard deviation divided by the mean across the mBZ [40],
Fig. 3(c,right). The reduction of fluctuations of Ωg for
increasing L suggest that the model could host a frac-
tional Chern insulating state in the presence of interac-
tions [65, 66]; however, it is possible that an incommensu-
rate charge density wave state could be stabilized instead
(see [40] for Berry curvature profiles in the mBZ).

Conclusion– This simple two-dimensional model of
a TI shows how quasiperiodicity can induce flat bands,
eigenstate criticality, and phases outside the AZ disor-
dered classification. This not only has implications for
correlated physics but to twisted heterostructures, ul-
tracold atoms, and metamaterials — all of which have
realized 2D TIs [33–39]. In fact, these metallic phases
should show up in experiments of density and time-of-
flight measurements (to see delocalization in real and mo-
mentum space, respectively) and the phase diagram can
be obtained from transport experiments [67] and spec-
tral function measurements [68] in cold atomic systems,
and absorption in metamaterials of microwave resonator
arrays.
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