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The phonon Boltzmann transport equation (BTE) has been widely utilized to study thermal 

transport in solids. While for a number of materials the exact solution to the BTE has been obtained 

for a uniform heat flow, problems arising in micro/nanoscale heat transport have been analyzed 

within the relaxation time approximation (RTA).  Since the RTA breaks down at temperatures low 

compared to the Debye temperature, this approximation prevents the study of an important class 

of high Debye temperature materials such as diamond, graphite, graphene and some other 2D 

materials. We present a full scattering matrix formalism that goes beyond the RTA approximation 

and obtain a Green’s function solution for the linearized BTE, which leads to an explicit expression 

for the phonon distribution and temperature field produced by an arbitrary spatio-temporal 

distribution of heat sources in an unbounded medium. The presented formalism is capable of 

describing a wide range of phenomena, from heat dissipation by nanoscale hot spots to the 

propagation of second sound waves. We provide numerical results for graphene for a spatially 
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sinusoidal heating profile and discuss the importance of using the full scattering matrix compared 

to the RTA. 

 

I. Introduction 

Recent research on phonon-mediated thermal transport in solids demonstrated the break-down of 

the Fourier law of heat conduction on the micro/nanoscale when the characteristic dimension 

becomes comparable to the phonon mean free path. To describe non-diffusive transport that no 

longer obeys the ubiquitous heat equation one needs to resort to the Peierls-Boltzmann phonon 

transport equation (BTE)  [1]. While the exact iterative solution of the BTE for the case of spatially 

uniform steady-state heat flow has been extensively used in the past decade for first-principles 

thermal conductivity calculations  [2,3], micro/nanoscale heat transport involving localized heat 

sources and/or boundaries has been studied under the relaxation time approximation (RTA), which 

greatly simplifies the BTE  [4].  However, the RTA fails at low temperatures (or even at room 

temperature for high Debye temperature materials) when umklapp phonon-phonon scattering 

processes are rare and normal scattering dominates.  Consequently, the RTA approximation cannot 

be used for materials with high Debye temperature such as diamond [5] or graphene  [6] and cannot 

capture phonon hydrodynamic phenomena such as second sound [7]. In addition, the RTA does 

not conserve energy (see Sec. II below), which introduces an error in the analysis that cannot be 

readily quantified. To assess the accuracy of the RTA in handling non-uniform and non-stationary 

problems, one needs to compare its results with solutions obtained with the full scattering integral.  

 

In this paper, we aim to develop a methodology for obtaining rigorous non-stationary and non-

uniform solutions of the full BTE capable of handling a wide range of problems from heat 
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dissipation by nanoscale hot spots to the propagation of second sound waves.  The iterative 

approach described in Ref.  [8] is not easily extendable beyond the stationary and uniform special 

case. However, modern computational capabilities make it possible to solve the linearized BTE in 

the discretized wavevector space directly by matrix algebra.  The diagonalization of the BTE has 

been previously discussed by Hardy in the context of second sound [7]; however at that time the 

scattering matrix could not be computed for any material. More recently, Cepellotti et al. studied 

the diagonalization of the scattering matrix and introduced the term “relaxons” for the 

corresponding eigenvectors [9,10]. However, the relaxon basis cannot be readily applied to the 

spatially non-uniform case as it makes the advective term in the BTE non-diagonal. Below we 

present a matrix-based approach for solving the BTE containing a non-uniform source term and 

derive the Fourier-domain Green’s function with the full scattering matrix for this problem [11]. 

Once the Green’s function is known, the temperature and phonon population distributions for an 

arbitrary space-time distribution of heat sources in an unbounded medium can be computed.  To 

illustrate the range of phenomena that can be described within the proposed framework, we will 

present two numerical examples for graphene: (i) steady-state heat dissipation by a spatially 

sinusoidal heat source at room temperature, (ii) transient heat transport following impulsive 

spatially sinusoidal heating, yielding second sound oscillations at low temperatures. 

 

II. Solving the BTE with the full scattering matrix 

Given an arbitrary volumetric heat generation rate Q r, t( ) in an infinite anisotropic crystal, we 

wish to calculate the phonon distribution function ( , )nf r t and temperature response 

T r, t( ) =T0 +DT r, t( ) , where T0
 is the background reference temperature, and DT  is the 

temperature change due to the heating Q. Assuming that deviations from the thermal equilibrium 
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distribution are small, the linearized phonon BTE with the full scattering matrix takes the 

form  [12]:  

¶fn
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where n is a short-hand index for a given phonon mode (defined by a branch and wavevector in 

the Brillouin zone), wn
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 ,    is the reduced Planck constant, k

B
  is the Boltzmann constant, and 

we define N to be the number of discretized points in the Brillouin zone, and b to be the number 

of phonon dispersion branches for the crystal, so that M = bN  is the number of phonon modes.  

The d-dimensional volume of the crystal unit cell is given by u  (which will be an area for a 2D 

material). The validity of Eq. (1) is restricted to crystals with translational symmetry where 

anharmonicity and disorder can be treated via perturbation theory and for length scales that are 

large compared to the phonon wavelength. The continuous integral of the collision term in the 

BTE has been discretized as matrix Wn, j  , which is a general scattering matrix of dimensions M  

M describing the scattering rate between phonon states n and j, acting on the difference between 

the equilibrium and non-equilibrium distribution functions  [13]. The RTA is the simple case of a 

diagonal matrix W
n, j

=
1

t
n

d
n, j

, where t
n
 are the relaxation times. The volumetric heat generation 

rate for a given mode is given by Qn = pnQ , where Q is the macroscopic volumetric heat 

generation rate, and the values pn  describe the distribution of heating among the phonon modes, 

which has been shown to have a large effect on the nanoscale thermal transport  [14]. These values 
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are non-negative and normalized so that pn
n

å =1.  The thermal distribution of the source is the 

particular case pn = cn /C ,   where cn is the heat capacity of a phonon mode at the reference 

temperature T0
, given by cn =

wn

Nu

¶

¶T0

fBE
wn

kBT0

æ

è
ç

ö

ø
÷ =

kB

Nu

wn
2kBT0

sinh wn
2kBT0

( )

é

ë

ê
ê

ù

û

ú
ú

2

, and C is  the total 

volumetric heat capacity, C = c
n

n

å . 

 

The temperature T is defined as the value for which the equilibrium energy density of phonons 

matches the nonequilibrium energy density, i.e.:  
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If we linearize the equilibrium distribution function in terms of the temperature rise above the 

background, we obtain:  

         (3) 

To simplify, we introduce the deviational phonon energy density per mode, 
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terms of the deviational phonon energy density after proper scaling of Eq. (1):  

       (4) 

The BTE given by Eq. (4) describes transport where not only the deviation from the equilibrium 

distribution at the local temperature is small, but the deviation of the latter from the background 

constant temperature distribution is also small.   The energy density above the background is given 
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simply by gn
n

å  and the heat flux by gnvn
n

å .  In this linearized regime, the scattering matrix W 

depends on the background temperature T0
 but not on the temperature rise DT .  Linearizing Eq. 

(2) gives the temperature rise as the ratio of the nonequilibrium energy density of phonons divided 

by the heat capacity:  

DT =
1

C
g
n

n

å          (5) 

The full scattering matrix must be energy conserving. This means that summing over the scattering 

matrix term on the right hand side of Eq. (4) must yield zero, regardless of the distribution g
n
  [12].    

If we insert the temperature of Eq. (5) into Eq. (4), and sum over all modes, energy conservation 

for an arbitrary distribution of modes g
n
 will require:   
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which must be true for every phonon mode indexed by nÎ Méë ùû  here. For a scattering matrix 

which satisfies the condition of Eq. (6), the system is energy conserving in any heat transfer 

configuration.  In the RTA, the diagonal form of the scattering matrix inserted into Eq. (6) yields 

the following condition for the relaxation times in order for the system to be energy conserving:  

1

t
n

=
1
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j
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jj

å          (7) 

Since the index n does not appear on the right-hand side of Eq. (7), the relaxation time must be the 

same for every mode n, i.e., the only energy conserving diagonal matrix W is an identity matrix 

with a single relaxation time. Consequently, the use of realistic phonon relaxation times in the 

RTA violates the conservation of energy. What is typically done to circumvent the violation of 
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energy conservation in the RTA is a re-definition of the temperature, such that the energy 

conservation equation is used to obtain a pseudo-temperature  [15,16] as opposed to the 

conventional  temperature given by Eq. (5).   The full scattering matrix is energy conserving by 

construction, although due to the numerical broadening used to approximate the delta functions in 

the matrix elements, small deviations from energy conservation may occur  [13]. 

 

To solve for the phonon distribution for a system with no boundaries, we take the spatial and 

temporal Fourier transform of Eq. (4) to convert the differential equation into an algebraic matrix 

equation, and find the Fourier transform of the deviational non-equilibrium distribution function 

in terms of the temperature:  

     (8) 

where the matrix A, whose inverse appears in Eq. (8), is defined as 

, tilde denotes the Fourier transform, w  represents the temporal frequency from the Fourier 

transform, not to be confused with the frequency of a phonon mode wn
, and  is the spatial wave 

vector from the Fourier transform. We find the temperature by inserting Eq. (8) into Eq. (5) and 

solving to obtain:  

        (9) 

By inserting the temperature of Eq. (9) into Eq. (8) we obtain the energy density distribution for 

each phonon mode: 
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   (10) 

Eqs. (9) and (10) constitute the main result of this work. For 1Q   (i.e., for Q given by a Dirac 

delta function in time and space), we obtain the Fourier-domain Green’s functions of the full 

scattering matrix BTE. For an arbitrary heat source Q, the temperature and phonon distribution as 

functions of time and position can be obtained by an inverse Fourier transform.  The computational 

complexity of the inversion of matrix A, for a single point in (discretized) Fourier-space, scales 

like O((M)3) and is therefore the dominant contribution to the overall computational cost of this 

approach. However, since each point in Fourier-space is independent, one can employ a trivial 

parallelization scheme. 

 

We note that the previously obtained RTA Green’s function solution of Ref.  [17] is not a particular 

case  of Eq. (9).  Since Eq. (9) utilizes the definition of temperature given by Eq. (5) and an energy 

conserving scattering matrix W that satisfies Eq. (6), the temperature field obtained with Eq. (9) 

will not be the same as the pseudo-temperature obtained with a non-energy-conserving scattering 

matrix W in the RTA.  However, if Eq. (5) is replaced by the equation for the pseudo-temperature 

[17], then following the same procedure as described above, we get a result for a diagonal 

scattering matrix that is equivalent to Eq. (9) of Ref. [17]. 

 

 

III Examples 

This presented formalism allows us to study thermal transport in the micro/nanoscale regime.  As 

the first example, we consider the one-dimensional steady state thermal grating, in which the heat 
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source is constant in time and sinusoidal in space, Q =Qeiq×r .  This is a grating in one dimension 

along the direction of the vector q with a grating period l = 2p / q . Inserting the Fourier-transform 

of the source function in Eq. (9), we get the temperature distribution 

 
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where the matrix A is now given by the steady state form . It is instructive 

to compare this result with the temperature profile given by the heat diffusion equation in the same 

geometry,  DTFourier =Qeiq×r
1

q2kq̂
 where kq̂ º q̂TK q̂  is the element of the thermal conductivity 

tensor in the direction of the thermal grating. The spatial temperature distributions predicted by 

the Fourier heat conduction equation and by the BTE are identical: both are sinusoids of the same 

spatial wavevector q as the volumetric heating profile. However, the expression for the amplitude 

of the temperature modulation are different. One can define an effective thermal conductivity by 

matching the Fourier temperature profile to the solution of the BTE from Eq. (12). The effective 

thermal conductivity depends on the grating spacing l ,  

        (13) 

 

To provide a numerical example, we calculate kq given by Eq. (13) for graphene with a natural 

abundance of isotopes and compare it with the RTA result.  Details of the construction of the 

scattering matrix can be found in a previous work by Fugallo et al. [13], and the parameters we 

used as well as an example of convergence with respect to q-mesh can be found in the 
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Supplemental Material [18] (see, also, references[13,19], therein). Figure 1 shows the effective 

thermal conductivity of graphene obtained using the full scattering matrix as well as with the RTA 

as a function of the grating period for the case of a thermal source distribution pn = cn /C .   

 

 

FIG. 1. Effective thermal conductivity of graphene for a steady state thermal grating at room 

temperature as a function of the grating period calculated with the full scattering matrix and with 

the RTA. Note that pseudo-temperature is used for the RTA solution. 

 

It is well known that the RTA underpredicts the macroscopic thermal conductivity of 

graphene  [20], therefore a large discrepancy between the two curves in the limit of large  is not 
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surprising.  More interestingly, we find that RTA also fails to predict the size effect: the full 

scattering matrix calculations show that the effective conductivity decreases by 50% from the bulk 

macroscopic value at ≈ 4 um, while according to the RTA, a 50 % reduction occurs at ≈ 300 

nm. We note that a localized heat source of size L can be represented as a superposition of thermal 

gratings with periods extending down to about 2L; thus Fig. 1 can be used to qualitatively predict 

the size effect in the heat dissipation from microscopic hot spots in graphene. The temperature 

distribution for a given profile of a localized source can be obtained by the inverse spatial Fourier 

transform of the solution given by Eq. (9).  

 

Our methodology also enables modeling of transport induced by transient heat sources. As an 

example, we consider a transient thermal grating with the heating profile ,  where a 

sinusoidal heat pattern is rapidly deposited into the system. Experimentally, such a source can be 

created by the interference two short laser pulses; the laser-based transient grating technique has 

been used extensively to study phonon-mediated thermal transport  [21].  The Fourier transform 

of the temperature distribution is numerically calculated using Eq. (9), and then the inverse 

temporal Fourier transform yields the amplitude of the thermal grating as a function of time. 

Temperature responses at 100, 200 and 300 K for isotopically-pure graphene for a grating period 

of 10 μm are shown in Fig. 2. 
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FIG 2: The amplitude of the temperature modulation in a transient thermal grating versus time for 

isotopically-pure graphene for a grating period of 10 μm at different background temperatures for 

the full scattering matrix (full line) and RTA (dashed line) BTE solutions. Note that pseudo-

temperature is used for the RTA solution. 

 

The time-dependent oscillations (i.e., sign changes of temperature modulation amplitude) at lower 

temperatures (< 200 K) indicate standing temperature waves, i.e. second sound, with a wavelength 

given by the transient grating spatial period λ and the speed determined by the ratio of the 

wavelength to the period of oscillation. These oscillations are signatures of the phonon 

hydrodynamic regime, where the frequency of normal scattering must be much greater than the 
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frequency of Umklapp scattering  [22]. Our approach enables one not only to predict the window 

of temperatures where one can expect second sound to exist [23], but simulate the temperature 

waves that can be experimentally observed. Indeed, recently transient grating measurements have 

revealed second sound in graphite at temperatures exceeding 100 K [24, 25]. 

 

IV Conclusions  

We have described a Green’s function treatment of the BTE with full scattering matrix enabling 

calculations of the temperature and phonon population distributions produced by a heat source 

with an arbitrary spatio-temporal dependence. The methodology presented extends the rigorous 

ab-initio framework previously used to compute macroscopic thermal conductivity values to 

problems involving transient and spatially non-uniform heat flux. It allows a wide variety of 

thermal transport phenomena and heating geometries to be studied and will be particularly useful 

where both the heat equation and the RTA fail, for example, in studying nanoscale heat transport 

in high thermal conductivity materials and phonon hydrodynamic phenomena such as second 

sound. Extending this methodology to geometries with boundaries presents a challenging problem 

for future work. 
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