
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Spin waves in doped graphene: A time-dependent spin
density functional approach to collective excitations in

paramagnetic two-dimensional Dirac fermion gases
Matthew J. Anderson, Florent Perez, and Carsten A. Ullrich
Phys. Rev. B 104, 245422 — Published 20 December 2021

DOI: 10.1103/PhysRevB.104.245422

https://dx.doi.org/10.1103/PhysRevB.104.245422


Spin waves in doped graphene: a time-dependent spin-density-functional approach to
collective excitations in paramagnetic two-dimensional Dirac fermion gases

Matthew J. Anderson,1 Florent Perez,2 and Carsten A. Ullrich1

1Department of Physics and Astronomy, University of Missouri, Columbia, Missouri 65211, USA
2Institut des Nanosciences de Paris, CNRS/Université Paris VI, Paris 75005, France
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In spin-polarized itinerant electron systems, collective spin-wave modes arise from dynamical
exchange and correlation (xc) effects. We here consider spin waves in doped paramagnetic graphene
with adjustable Zeeman-type band splitting. The spin waves are described using time-dependent
spin-density-functional response theory, treating dynamical xc effects within the Slater and Singwi-
Tosi-Land-Sjölander approximations. We obtain spin-wave dispersions and spin stiffnesses as a
function of doping and spin polarization, and discuss prospects for their experimental observation.

I. INTRODUCTION

Graphene is a material with many fascinating struc-
tural and electronic properties [1]. Most notably, it has
a Dirac cone feature in its energy bands that leads to the
electrons behaving as massless particles. In its pristine
form, graphene is a semimetal; it can be made metallic
through doping or gating, which then leads to a wealth of
applications, for instance in plasmonics [2–5]. Together
with many other new 2D materials, graphene also shows
promise for spintronics applications [6].

Plasmons are collective charge-density excitations,
which can be characterized as the collective response
of an electron gas to an induced electrostatic perturba-
tion. Typically, plasmon mode frequencies and disper-
sions are calculated using the random-phase approxima-
tion (RPA); such calculations were done for graphene
early on [7–11]. The left panels of Fig. 1 give a
schematic illustration of plasmons in doped graphene,
showing inter- and intraband single-particle excitations
and the plasmon dispersion. The latter is very similar
to the plasmon dispersion in a two-dimensional electron
gas (2DEG) [12], with a characteristic

√
q behavior for

small wavevectors q. However, in graphene there are also
interband excitations from the lower to the upper cone,
and the associated interband single-particle continuum
affects the plasmon dispersion for larger q. Such inter-
band excitations are absent in the 2DEG model.

In this paper we study a type of collective excitation
that has so far not attracted much attention in graphene,
namely, spin waves. As illustrated on the right side of
Fig. 1, we consider doped, magnetized graphene in which
the spin-up and spin-down bands are split by an effective
Zeeman energy Z∗. The upper right-hand panel shows
inter- and intraband spin-flip excitations, and the lower
right-hand panel shows the dispersion of a collective spin-
flip mode or spin wave.

The corresponding spin waves in magnetic 2DEGs have
been well studied theoretically and experimentally [13–
26]. On the other hand, apart from a recent study based
on Fermi-liquid theory [27], spin waves in doped graphene
have not been investigated to our knowledge. A differ-
ent type of collective excitation, known as magnetoplas-
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FIG. 1. Top left: spin-conserving single-particle transitions
of doped, nonmagnetic graphene near a Dirac point. Bottom
left: associated plasmon dispersion and intra- and interband
single-particle continua. Top right: spin-flip transitions of
doped, magnetized graphene near a Dirac point. The bands
are split by the Zeeman energy Z∗. Bottom right: associated
single-particle spin-flip continuum and spin-wave dispersion,
where ωL denotes the Larmor frequency.

mon, has been more widely studied in graphene, includ-
ing edges, nanoribbons, and other graphene nanostruc-
tures [28–36]. Magnetoplasmons occur in the presence
of Landau level quantization induced by perpendicular
magnetic fields. Here, by contrast, we will consider situ-
ations where the spin splitting can be thought of as being
induced by in-plane magnetic fields, hence there are no
Landau levels.

Traditional band theory, based on density-functional
theory (DFT), has been extremely successful in describ-
ing materials with Dirac-like topological features [37].
Thus, in principle, we could calculate the graphene band
structure using, for instance, the local spin-density ap-
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proximation (LSDA), and then obtain the spin-wave
dispersions using linear-response theory based on time-
dependent density-functional theory (TDDFT) [38], sim-
ilar to the standard way of calculating magnons in mag-
netic materials from first principles [39–41].

On the other hand, electrons in graphene and other
topological materials close to the Dirac points are well
described by simple tight-binding model Hamiltonians
[1, 42], which defines the model system of a 2D Dirac
fermion gas; the purpose of this paper is to study spin
waves within this model system. This simplifies the task
enormously, since a fully-fledged band-structure calcu-
lation is not needed, and the electronic single-particle
states are known analytically.

However, when it comes to the calculation of spin
waves, the Dirac fermion model presents us with an in-
teresting challenge. The formation of spin waves in itin-
erant electron systems is due to electronic many-body
effects beyond the RPA. Many-body effects in graphene
have been studied in the literature, see e.g. [43, 44]. In
the language of TDDFT, these are dynamical exchange-
correlation (xc) effects, which have to be approximated
as functionals of the (spin) density. Most standard ap-
proximations in DFT, such as the LSDA or gradient-
corrected functionals [45], are based on the homogeneous
electron gas (or the 2DEG [46, 47]); but a homogeneous
electron gas is not an appropriate reference system for
Dirac fermions. The reason is that Dirac fermions are
massless with an energy dispersion linear in the wavevec-
tor k, whereas the homogeneous electron gas is made up
of particles with finite mass m and an energy dispersion
quadratic in k; thus, the xc effects in the two systems will
be quite different, which means that the standard DFT
functionals are not applicable.

A way out of this dilemma is to use xc functionals
which are not tied to any reference system, such as the
so-called “orbital functionals” of (TD)DFT [48]. In this
paper we will use two orbital-dependent approximations,
namely, the local exchange functional of Slater [49], and
the Singwi-Tosi-Land-Sjölander (STLS) approach to in-
clude correlation [12, 50]. These functionals were recently
used to study the structure and dynamics in Hubbard
systems with noncollinear magnetism [51, 52]. Here, we
will use them to analyze the spin-wave dispersion and
spin stiffness of doped magnetized graphene as a function
of doping concentration and degree of spin polarization.

This paper is organized as follows: Section II presents
the necessary formal background for describing collective
excitations within spin-TDDFT, namely, linear-response
theory for noncollinear spins and the definitions of the
Slater and STLS approximations. In Section III we define
our model for Zeeman-split Dirac fermions in graphene,
and show how to calculate spin waves using the Slater and
STLS approximations. Section IV then presents results
for spin-wave dispersions and spin stiffnesses for various
parameters, and discusses prospects for experimental ob-
servation. Conclusions are given in Section V. Further
information regarding the derivation of the noninteract-

ing response function, a discussion of the magnetic fields
required to produce spin-split bands, and additional nu-
merical details are given in the Appendix. Atomic units
(e = m = h̄ = 4πε0 = 1) are used throughout.

II. COLLECTIVE EXCITATIONS WITH
SPIN-TDDFT

A. Linear response formalism

The excitations of interacting electronic systems are
encoded in the many-body response function [12]. Here,
we are specifically concerned with spin waves, which are
collective spin-flip modes; thus, a spin-dependent linear-
response formalism is required, which will be based on
TDDFT for noncollinear spins. In this framework, the
basic variable is the spin-density-matrix,

n(r) =

(
n↑↑(r) n↑↓(r)
n↓↑(r) n↓↓(r)

)
. (1)

Alternatively, the theory can be formulated in terms of
the particle density n(r) = n↑↑(r) + n↓↓(r) and the mag-
netization vector m(r) = tr{σn(r)}, where σ is the vec-
tor of Pauli matrices.

Let us now consider the response of the system to a
frequency-dependent perturbation δv(r, ω), which has a
similar matrix form as the spin-density-matrix (1), and
couples to the charge and spin degrees of freedom. The
linear spin-density-matrix response is given by

δn(r, ω) =

∫
dr′�(r, r′, ω)δv(r′, ω) , (2)

where � is the many-body spin-density-matrix response
tensor. In TDDFT, Eq. (2) is rewritten as

δn(r, ω) =

∫
dr′�(0)(r, r′, ω)δveff(r′, ω) , (3)

where �(0) is the response tensor of the noninteract-
ing Kohn-Sham system, and the effective perturbation
is defined as the sum of the physical perturbation plus
a Hartree and exchange-correlation (Hxc) contribution,
δveff = δv + δvHxc. The latter is given by

δvHxc(r, ω) =

∫
dr′ fHxc(r, r′, ω)δn(r′, ω) . (4)

The Hartree part of the Hxc kernel is diagonal in the spin
indices, fH

σσ′,ττ ′(r, r
′, ω) = δσσ′δττ ′/|r− r′|. The remain-

der, the xc kernel fxc(r, r′, ω), needs to be approximated.
To obtain the excitation energies of the physical sys-

tems, we need an explicit expression for the interacting
spin-density matrix response tensor �. Comparing the
two response equations, Eqs. (2) and (3), leads to

� =
(
1− �(0)fHxc

)−1

�(0). (5)
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The excitations are at those frequencies where � diverges.
This can happen in two ways: when �(0) diverges, or
when 1−�(0)fHxc is not invertible. The former yields the
single-particle excitation spectrum, the latter the collec-
tive excitations.

Thus, all we need is the noninteracting response ten-
sor �(0) and an approximation for fxc. Here, we con-
sider the special case where the ground state is such that
the system is uniformly magnetized, i.e., the spins are

collinear. In that case, �(0) only has four nonvanishing

components: χ
(0)
↑↑,↑↑, χ

(0)
↓↓,↓↓, χ

(0)
↑↓,↑↓, χ

(0)
↓↑,↓↑, which directly

follows from its explicit form, see Eq. (28) below. The
xc tensor, on the other hand, has the nonvanishing ele-
ments fxc

↑↑,↑↑, f
xc
↓↓,↓↓, f

xc
↑↑,↓↓, f

xc
↓↓,↑↑, f

xc
↑↓,↑↓, f

xc
↓↑,↓↑ [53]. With

this, we find that 1 − �(0)fHxc can be represented in the
following 4× 4 matrix form:

1− �(0)fHxc =


1− (w + fxc

↑↑,↑↑)χ
(0)
↑↑,↑↑ 0 0 −(w + fxc

↑↑,↓↓)χ
(0)
↑↑,↑↑

0 1− fxc
↑↓,↑↓χ

(0)
↑↓,↑↓ 0 0

0 0 1− fxc
↓↑,↓↑χ

(0)
↓↑,↓↑ 0

−(w + fxc
↓↓,↑↑)χ

(0)
↓↓,↓↓ 0 0 1− (w + fxc

↓↓,↓↓)χ
(0)
↓↓,↓↓

 , (6)

where w represents the Coulomb interaction. This ma-
trix is noninvertible if its determinant is zero. We can
rearrange the matrix in block diagonal form, so that the
determinant factors into a product of the determinants
of two 2× 2 matrices:

det|1− �(0)fHxc| = det|M
L
| det|M

T
| , (7)

where the longitudinal block is

M
L

=

(
1− (w + fxc

↑↑,↑↑)χ
(0)
↑↑,↑↑ −(w + fxc

↑↑,↓↓)χ
(0)
↑↑,↑↑

−(w + fxc
↓↓,↑↑)χ

(0)
↓↓,↓↓ 1− (w + fxc

↓↓,↓↓)χ
(0)
↓↓,↓↓

)
(8)

and the transverse block is

M
T

=

(
1− fxc

↑↓,↑↓χ
(0)
↑↓,↑↓ 0

0 1− fxc
↓↑,↓↑χ

(0)
↓↑,↓↑

)
. (9)

Here, longitudinal and transverse refers to the spin quan-
tization axis. Thus, the condition det|M

L
| = 0 yields the

longitudinal (or spin-conserving) collective excitations,
and det|M

T
| = 0 yields the transverse (or spin-flip) col-

lective excitations. The former are the usual plasmon
mode and a longitudinal spin excitation, and the latter
are the spin waves. In the following we will make the
adiabatic approximation for the xc kernel, i.e., we ignore
the frequency dependence of the fxc’s.

B. Construction of dispersion relations

We see that both longitudinal unpolarized charge
(plasmon) and transverse spin (spin-wave) collective ex-
citations satisfy equations of the schematic form

1− f(q)χ(q, ω) = 0, (10)

where f and χ are placeholders for the corresponding
functions specific to the underlying system.

In order to obtain the dispersion relation, ω(q), that
satisfies this condition, one must be able to invert the
function χ(q, ω) for ω. It is possible to approximate the
inverse of χ to arbitrary degree using a technique called
series reversion [54]. The procedure consists of obtaining
a series approximation of χ in ω to arbitrary degree, ob-
tain the inverse of the series using series reversion, and
finally evaluate the inverse series at 1/f(q).

We expand the response in ω around ω(q = 0) ≡ ω0:

Xn[q, ω0](ω) =

n∑
l=0

χ(0,l)(q, ω0)

l!
(ω − ω0)l, (11)

where Xn[q, ω0](ω) is the truncated series approxima-
tion of χ(q, ω), and we define a shorthand for the partial
derivatives of a function of the form g(x, y):

g(m,n)(a, b) =

(
∂m

∂xm
∂n

∂yn
g(x, y)

)
x=a,y=b

. (12)

We then use X in place of χ in Eq. (10),

χ(q, ω) ≈ Xn[q, ω0](ω) =
1

f(q)
, (13)

and inversion of this yields

ω(q) ≈ X inv
n [q, ω0]

(
1

f(q)

)
. (14)

The details of this inverse series are left to the specifics
of the system.

C. The Slater and STLS approximations

To calculate spin-wave excitations, the transverse xc
kernels fxc

↑↓,↑↓, f
xc
↓↑,↓↑ are needed. As discussed in the In-

troduction, we shall work with two orbital-dependent ap-
proximations: Slater and STLS. Both xc kernels are in-
dependent of the frequency ω.
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The Slater exchange kernel [12, 55] was generalized for
noncollinear spin dynamics in Ref. [51]. In the limit
where the ground state has collinear spin, the Slater ex-
change kernel has the following elements:

fx,S
σσ,σσ(r, r′) = − |γσσ(r, r)|2

nσσ(r)nσσ(r′)|r− r′|
(15)

fx,S
σσ̄,σσ̄(r, r′) = −4

γσσ(r, r′)γσ̄σ̄(r′, r′)

n(r)n(r′)|r− r′|
, (16)

where γσσ′(r, r
′) is the spin-resolved reduced one-body

density matrix of the Kohn-Sham system.
For an unpolarized 2DEG, the Fourier transform of

the Slater exchange kernel was worked out in Ref. [56].
The generalization to the spin-polarized 2DEG, with
spin densities nσ and total density n = n↑ + n↓ and
corresponding Fermi wavevectors kFσ =

√
2πnσ and

kF =
√

2πn, is as follows:

fx,S
σσ,σσ(q) = − 8π

k2
Fσ

∫ ∞
0

dx

x2
J0(qx)J2

1 (kFσx) (17)

fx,S
σσ̄,σσ̄(q) = −8πkFσkFσ̄

k4
F

∫ ∞
0

dx

x2
J0(qx)J1(kFσx)J1(kFσ̄x)

(18)

where J0 and J1 denote Bessel functions of the first kind.
The corresponding expressions for graphene will be dis-
cussed below in Sec. III D.

The STLS approach was originally introduced to de-
scribe correlations in the homogeneous electron gas [12,
50]. The idea is to write fxc as a function of the static
structure factor of the electron gas, S(q); the latter is
related to the imaginary part of the response function χ
via the fluctuation-dissipation theorem. Since χ in turn
depends of fxc, see Eq. (5), one ends up with a self-
consistent scheme, which leads to excellent correlation
energies over a wide range of densities [57].

The STLS xc kernel [12, 50] was generalized to sys-
tems with noncollinear spin in Ref. [51]. More precisely,
the noncollinear formulation of Ref. [51] involved a sim-
plified, scalar form of the original STLS scheme, termed
sSTLS. Again, let us consider the special case where the
ground state is collinear. The elements of the xc tensor
fxc,sSTLS(r, r′) are then given by

fxc,sSTLS
σσ′,αα′ (r, r′) =

1

|r− r′|
Rσσ′,αα′(r, r′) (19)

× [Sσσ′,αα′(r, r′)− δσαδ(r− r′)nα′σ′(r)] ,

where Rσσ′,αα′ are the elements of the following matrix:

R =


1

n↑(r)n↑(r′)
2

n(r)n↑(r′)
2

n(r)n↑(r′)
1

n↓(r)n↑(r′)

2
n↑(r)n(r′)

4
n(r)n(r′)

4
n(r)n(r′)

2
n↓(r)n(r′)

2
n↑(r)n(r′)

4
n(r)n(r′)

4
n(r)n(r′)

2
n↓(r)n(r′)

1
n↑(r)n↓(r′)

2
n(r)n↓(r′)

2
n(r)n↓(r′)

1
n↓(r)n↓(r′)

 .

(20)

Sσσ′,αα′(r, r′) are the elements of the generalized static
structure factor:

S(r, r′) = − 1

π

∫ ∞
0

=�(r, r′, ω)dω . (21)

The response tensor �, in turn, follows from Eq. (5)
evaluated with the sSTLS kernel (19), which closes the
self-consistency loop. If in the first step of the iteration
Eq. (21) is initialized with �(0), then Eq. (19) yields the
Slater exchange kernel. Correlation enters in the subse-
quent iteration steps.

Consider again the homogeneous 2D case and carry out
a Fourier transformation of Eq. (19); specifically, for the
transverse xc kernel in sSTLS approximation we obtain

fxc,sSTLS
σσ̄,σσ̄ (q) =

4

n2

∑
q′

vq′ [Sσσ̄,σσ̄(q− q′)− nσ̄σ̄], (22)

where vq = 2π/q. We also introduce an alternative form
of the xc kernel, which directly generalizes the original
STLS approach [50]:

fxc,STLS
σσ̄,σσ̄ (q) =

4

n2

∑
q′

q · q′

q2
vq′ [Sσσ̄,σσ̄(q− q′)− nσ̄σ̄] .

(23)
The difference between the two schemes is that the scalar
sSTLS is based on the effective potential whereas the
full STLS is based on the effective force [12]. Express-
ing the full STLS kernel in real space and for inhomoge-
neous systems causes some technical complications, since
forces formally couple to currents rather than densities
[57]. However, in the homogeneous case the transition
from Eq. (22) to (23) is straightforward.

For graphene, the construction of the (s)STLS xc ker-
nels involves some subtleties, which we will discuss below.

III. COLLECTIVE EXCITATIONS IN
GRAPHENE

A. Model: Dirac fermions with Zeeman splitting

The tight-binding model is commonly used to describe
the band structure of graphene [1]. We consider a gen-
eralization in which the spin-up and spin-down bands
are split by a Zeeman energy Z∗. For isolated atoms in
strong magnetic fields, the Zeeman effect includes con-
tributions from both spin and orbital angular momen-
tum. In graphene, on the other hand, the orbital angular
momentum of the 2pz electrons is quenched [58] and the
tight-binding model only needs to include the spin. Thus,
we consider a Hamiltonian of the form

Ĥ = −t
∑
〈l,m〉,σ

(ĉ†lσ ĉmσ + H.c.) +
Z∗

2

∑
j,σ

sσ ĉ
†
jσ ĉjσ, (24)

where t (≈ 2.8 eV) is the nearest-neighbor hopping en-

ergy, ĉ†lσ(ĉlσ) is the creation (annihilation) operator for
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an electron with spin σ at the lth site, and sσ = +1 and
−1 for σ =↑ and ↓, respectively. The sum over 〈l,m〉 is
restricted to nearest neighboring sites.

In our model, Z∗ is treated as an adjustable parameter.
Notice that Z∗ denotes the Zeeman energy renormalized
by electronic many-body effects, which in general dif-
fers from the bare Zeeman energy Z [21]. To determine
Z∗ from first principles would require a self-consistent
calculation of the band structure in the presence of an
externally applied uniform in-plane magnetic field, or a
magnetic field induced by proximity to a ferromagnetic
substrate; how this could be realized will be further dis-
cussed in Sec. IV B. In Appendix B we calculate the ef-
fective magnetic field strengths required to produce given
values of Z∗ in graphene.

Notice that we here neglect any effects resulting from
the coupling of in-plane magnetic fields to orbital cur-
rents. The orbital motion of the electrons is not affected
by in-plane magnetic fields up to field strengths of or-
der 103 T, since the magnetic length ` =

√
h̄/eB is

much larger than the single-atom width of graphene [59].
However, for rippled graphene or for graphene bilayers
or multilayers, magnetic orbital effects may no longer be
negligible [60–65].

We are particularly interested in the electronic states
close to the Dirac points. Instead of working with the
eigenstates of the full tight-binding Hamiltonian (24), one
can consider the eigenstates of the reduced Hamiltonian
ĤK , valid around the K point of the graphene Brillouin
zone [1, 66]:

ĤK = γ
(
σ̂(b)
x kx + σ̂(b)

y ky

)
+
Z∗

2
σ̂(s)
z . (25)

Here, γ = 3at/2, where a is the C-C bond length in
graphene, σ̂x,y,z are Pauli matrices operating on the band
(b) or spin (s) degrees of freedom, and k = (kx, ky) is a
wave vector measured with respect to the Dirac point K.
The energy eigenvalues of ĤK are

εkbσ = bγ|k|+ sσ
Z∗

2
, (26)

where b = ±1 is the band index. The spin-split Dirac
cones are illustrated in Fig. 2. The associated eigenstates
are

ψKkbσ(r) =
eik·r√

2

(
e−iφk

b

)
⊗ sσ , (27)

involving the product of a two-component pseudospinor
(since there are two sites within a unit cell) with the
two-component (up/down) spinor sσ. The eigenstates

ψK
′

kbσ(r) around the K ′ point are obtained by replacing b
with −b in Eq. (27).

We note that our model for graphene is isotropic in the
plane and does not include spin-orbit coupling. There-
fore, all spin-wave results will be independent of the di-
rection of the spin quantization axis (which is, in turn,
defined by the in-plane magnetic field).

FIG. 2. Spin-split Dirac cones of doped graphene. The Zee-
man splitting gives rise to different Fermi surfaces for the
majority and minority spins.

B. Noninteracting response function

As discussed in Sec. II A, the noninteracting response
tensor �(0) is the fundamental object needed to calculate
collective excitations. The generic definition is

�(0)(r, r′, ω) =
∑
jl

(fl−fj)
ψj(r)ψ†l (r)ψ†j (r

′)ψl(r
′)

ω − (εj − εl) + iη
, (28)

where the ψj are single-particle spinor wave functions
labeled by a set of quantum numbers j, εj are the associ-
ated single-particle energies, fj are occupation numbers
(here, either 0 or 1), and η is a positive infinitesimal.

The noninteracting response function of graphene
(within the Dirac fermion model) is obtained by sub-
stituting the single-particle energies (26) and eigenstates
(27) into Eq. (28). The spin-independent form of the
graphene response function is well known from the lit-
erature [7, 9, 66]; here, we generalize it to the spin-
dependent case. Details of the derivation are given in
Appendix A. Furthermore, instead of real frequencies ω
we evaluate the response function for complex frequencies
z, which has certain technical advantages, as discussed in
Appendix C. The result for the non-spin-dependent re-

sponse function at Z∗ = 0, χ(0) = χ
(0)
↑↑,↑↑ + χ

(0)
↓↓,↓↓, is as

follows:

χ(0)(q, z)

gsgv
= − kF

2πγ
− q

16γ

√
1−

(
z
γq

)2

+

±1∑
α

q

16πγ
G

(
αz

γq
,
αz + 2γkF

γq

)
, (29)
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FIG. 3. The renormalized Zeeman energy, Z∗, as a function
of doping concentration n and spin polarization ζ.

where gs and gv are the spin and valley degeneracies,
respectively, kF =

√
4πn/gsgv is the Fermi wave vec-

tor associated with the 2D electron density of the upper
bands n, and the function G(a, x) is defined as

G(a, x) =
x(x2 − 1)−

√
1− x2 arcsinx

(ax− 1)
√

(1−x2)(1−a2)
(1−ax)2

. (30)

Eq. (29) reduces to the real frequency form from previous
work by taking limη→0+(z = ω + iη). It is important to
note that Eq. (30) cannot be further reduced since the
proper branch cuts must be preserved.

The transverse spin-dependent response functions at

finite Z∗, χ
(0)
↑↓,↑↓ and χ

(0)
↓↑,↓↑, are given by

χ
(0)
σσ̄,σσ̄(q, z)

gv
= −kFσ + kFσ̄

4πγ
− q

16γ

√
1−

(
z+εσσ̄
γq

)2

+
q

16πγ

[
G

(
z + εσσ̄
γq

,
z + εσσ̄ + 2γkFσ

γq

)
−G

(
z + εσσ̄
γq

,
z + εσσ̄ − 2γkFσ̄

γq

)]
, (31)

where σ̄ =↓ if σ =↑ and vice versa, kFσ =
√

2πnσ is the
Fermi wavevector associated with the spin density of the
upper band nσ, and εσσ̄ = εkbσ − εkbσ̄ = sσ−sσ̄

2 Z∗ is the
single-particle spin-flip energy, which is independent of b
and k for the simple Zeeman splitting considered here.

The renormalized Zeeman energy can be expressed as

Z∗ = γ|kF↑ − kF↓| = γ
√
πn
∣∣∣√1 + ζ −

√
1− ζ

∣∣∣ , (32)

where ζ = (n↑−n↓)/n is the spin polarization of the con-
duction electrons. Figure 3 shows Z∗ within the density-
polarization parameter space. The range of doping den-
sities n (1011 − 1013cm−2) is chosen such that the Dirac

model is still valid, i.e., the Fermi level does not reach
those parts of the conduction band where the band dis-
persion deviates significantly from linearity. We find that
Z∗ can reach values of a few hundreds of meV for strong
doping and high degrees of spin polarization.

C. Mode dispersions and spin stiffness

1. Plasmons

Let us first consider the spin-unpolarized case. The
graphene plasmon dispersion energy goes to zero as q
approaches zero, see Fig. 1. This is problematic for
the inverse series procedure because the response func-
tion has a singularity in the q-ω plane at (0, 0). The
limit of the response function depends on the direction
as (0, 0) is approached. For collective excitations, it is
important to calculate the dispersion in the dynamical
long-wavelength limit (DLWL) [12], i.e. ω � vF q, where
vF is the Fermi velocity. It is useful to introduce the
parameter ν = ω/γq, which defines the slope of a line
passing through the origin and thus the direction of the
limit. In order to obtain the low-q behavior and still be
in the DLWL, we expand the response function in ν near
infinity. This is equivalent to expanding in 1/ν near 0.

The first few terms of the series expansion of the re-
sponse function of Eq. (29) in ν are

χ(0)(q, γqν) =
kF
πγν2

+
kF

2πγν4
+O

(
1

ν6

)
. (33)

The corresponding inverse series is

ν(y) =
ω(y)

γq
≈
√
γkF
π

(
1

γ
√
y

+
π

4kF

√
y

)
+O

(
y3/2

)
,

(34)
where y = 1/fHxc(q). Thus, the plasmon dispersion re-
lation becomes

ωpl(q) =

√
γkF /π

fxc(q) + 2π
q

(
2π + q

(
fxc(q) +

γπ

4kF

))

+ O
(

1

fHxc(q)

)3/2

. (35)

In principle, it is straightforward to obtain higher order
terms by including more terms in Eq. (33). However, it is
best to stop at the 4th order terms because of the DLWL.
The series diverges quickly for higher order terms.

2. Spin waves

The spin polarization ζ of the conduction electrons can
be positive or negative. Let us consider the case where
ζ > 0: this implies n↑ > n↓ and therefore, from Eq. (26),
the upper (lower) of the two spin-split conduction bands
has spin σ =↓ (σ̄ =↑). Hence, (sσ−sσ̄)/2 = −1. The spin
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waves are obtained from Eq. (9), but only the condition

1 − fxc
↓↑,↓↑χ

(0)
↓↑,↓↑ = 0 is needed. The case ζ < 0 works in

an analogous fashion, except that σ and σ̄ are reversed.

The spin waves in graphene have a finite dispersion
energy as q goes to 0, see Fig. 1. The series can be cal-
culated directly with ω. The low-q spin-wave dispersion
relation becomes:

ωsw(q) = εσσ̄

(
−1 +

fxc
0

2πγ
(kFσ + kFσ̄)

)
+ q

k2
F ζ(sσ − sσ̄)fxc

0
′

2π

+
q2

2

(sσ − sσ̄)

2
S +O(q3), (36)

where

S =
γ(
√

1 + sσζ +
√

1 + sσ̄ζ)

2kF ζ
+

πγ2

k2
F ζf

xc
0

+
(sσ − sσ̄)

2

fxc
0

4π

(
ln

∣∣∣∣fxc
0 −

4πγ
√

1 + sσ̄ζ

kF ζ(sσ − sσ̄)

∣∣∣∣
− ln

∣∣∣∣fxc
0 +

4πγ
√

1 + sσζ

kF ζ(sσ − sσ̄)

∣∣∣∣)+
k2
F ζf

xc
0
′′

2π
. (37)

Here, we use the abbreviations fxc
0 , fxc

0
′ and fxc

0
′′ for

the q = 0 limit of fxc
σσ̄,σσ̄(q) and its first and second

derivatives with respect to q, respectively. Notice that
for the Slater and STLS approximation we consider here,
we have fxc

0
′ = 0 and the linear term in the spin-wave

dispersion (36) vanishes.

The generic form of spin-wave dispersions in itinerant
paramagnetic electron liquids for small q is as follows:

ωsw(q) = ωL +
Ssw

2
q2 +O

(
q4
)
. (38)

Here, ωL is the Larmor frequency, which indicates a col-
lective precessional motion of all spins about the mag-
netic field direction. For the case of graphene we find
ωL = Z∗(1 + fxc

0 /2γ2), which is smaller than Z∗ since
fxc

0 < 0. From electronic many-body theory one would
have expected that ωL = Z (Larmor’s theorem), where
Z is the bare Zeeman energy, i.e., all many-body ef-
fects cancel out exactly in the Larmor precessional state
[21]. However, Larmor’s theorem does not apply here
since the band structure is obtained from a tight-binding
Dirac fermion Hamiltonian and not from first principles;
in other words, Z∗ is given but Z remains unknown.
One should therefore refer to ωL more appropriately as
pseudo-Larmor frequency.

The spin-wave stiffness, Ssw, determines the curva-
ture of the spin-wave dispersion for small q; it can have
positive or negative values depending on the parame-
ters characterizing the electron liquid. Here, we have
Ssw = (sσ − sσ̄)S/2.

x,S
, ( )f qσσ σσ

(0)
, ( )qσσ σσS(0)

, ( , )qσσ σσχ ω

( )h q

zeroth order sSTLS:

xc,STLS
, ( )f qσσ σσ, ( )qσσ σσS, ( , )qσσ σσχ ω

self-consistent full STLS:

FIG. 4. Modified STLS approach for Dirac fermions. To ob-
tain the STLS xc kernel, an integration cutoff h(q) is needed,
which follows from the requirement that the zeroth iteration
of the sSTLS scheme yields the Slater exchange kernel.

D. Slater and STLS kernels for Dirac fermions

The Slater approximation for Dirac fermions uses the
same expressions as for the 2DEG, Eqs. (15) and (16).
We use the graphene eigenstates (27) to construct the
density matrix:

γσσ(r, r′) =

occ∑
bk

ψ†bkσ(r′)ψbkσ(r) = 2

occ∑
bk

eik·(r−r
′), (39)

where the factor 2 accounts for the valley degeneracy.
Within the Dirac model, the so defined density matrix
nominally involves a diverging integral over an infinite
lower band. To avoid this problem, we impose a finite
cutoff to the lower band at a wavevector kv. The nat-
ural choice for this cutoff is that which reproduces the
undoped density of graphene, nv = 1.91× 1015 cm−2:

kv =
√
πnv = 0.41 a−1

0 . (40)

Since γσσ(r, r′) only depends on the coordinate differ-
ence, we can make the substitution r − r′ = ρ, and we
also define an occupation function fb(k) which depends
on the band index b:

γσσ(ρ) =
2

(2π)2

∑
b

∫ ∞
0

kdkfb(k)

∫ 2π

0

dθeikρ cos(θ)

=
1

π

∑
b

∫ ∞
0

kdkfb(k)J0(kρ)

=
1

πρ
[kFσJ1(kFσρ) + kvJ1(kvρ)]. (41)

With this, the transverse Slater kernel for Dirac fermions
becomes:

fx,S
σσ̄,σσ̄(ρ) =

−4

π2n2ρ3
[kFσJ1(kFσρ) + kvJ1(kvρ)]

× [kFσ̄J1(kFσ̄ρ) + kvJ1(kvρ)] . (42)
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Fourier transform of this yields

fx,S
σσ̄,σσ̄(q) = − 8

πn2

∫ ∞
0

dρ

ρ2
[kF↑J1(kF↑ρ) + kvJ1(kvρ)]

× [kF↓J1(kF↓ρ) + kvJ1(kvρ)]J0(qρ). (43)

The Slater kernel is typically dominated by the valence
band contribution because of the larger number of parti-
cles compared to the conduction band.

Let us now discuss how to implement the STLS scheme
for Dirac fermions. As for the Slater approximation, a
cutoff for the lower Dirac cone is necessary; otherwise,
the static structure factor S(q) diverges as q → ∞ (this
happens because the structure factor is proportional to
the density in the high-q limit). We introduce the same
cutoff as above, Eq. (40), which ensures that the static
structure factor remains finite and bounded for all q.

The next problem arises from the shape of the struc-
ture factor itself. The calculation of the xc kernel con-
verges only when S(q)−n is asymptotically smaller than
1/q. However, the tail of the structure factor goes as

nv/2 +
2k3
F−k

3
v

6πq , which approaches the wrong value for

the density as 1/q. This produces an unavoidable sin-
gularity in the integrand of the xc kernel. As a remedy,
we alter the integration limits in Eq. (22) such that the
sSTLS xc kernel remains finite for all q. We fix this limit
by enforcing that the zeroth sSTLS iteration reproduces
the Slater kernel [12, 51]:

4

n2

h(q)∫
0

q′dq′

(2π)2

2π∫
0

dθvq′
(
S(0)
σσ̄,σσ̄(q− q′)− nσ̄σ̄

)
= fx,S

σσ̄,σσ̄(q)

(44)
The integration limit h(q) can be determined numerically
using standard root finding algorithms. We then use the
same integration limit for the non-scalar, full STLS ker-
nel, Eq. (23). Our modified STLS scheme is schemati-
cally illustrated in Fig. 4. In the following, all spin-wave
results are obtained with the so defined full STLS kernel.

Figure 5 shows the Slater and STLS spin-flip local-
field factors, defined via fxc

↓↑,↓↑(q) = −vqgxc
↓↑,↓↑(q), for

n = 1.89 × 1013 cm−2 and ζ = 0.82. The xc kernels
are dominated by the scale set by the valence electron
density nv. For the spin-wave dispersions, only the re-
gion of small q values is relevant, in which the local-field
factors have a linear behavior, as indicated in the figure
by the vertical dashed lines. It can be seen that Slater
has a larger slope than STLS, which directly affects the
spin-wave dispersions, as we will see below.

IV. RESULTS AND DISCUSSION

A. Spin wave characteristics

Figure 6 shows spin-wave dispersions, calculated using
STLS, for ζ = 0.4 and three doping densities: n = 1011,
1012, and 1013cm−2. For smaller densities, the dispersion

FIG. 5. Slater and STLS transverse-spin local field factors
gxc↓↑,↓↑(q) for n = 1.89 × 1013 cm−2 and ζ = 0.82. The region
in which spin-waves can exist is left of the dashed grey line
corresponding to the wavevector Z∗/γ = |kF↑ − kF↓|.

0 1
q/|k k |

0

1

/Z
*

= 0.4

0.0 0.2
0.8

1.0

1011 cm 2

1012 cm 2

1013 cm 2

FIG. 6. Spin-wave dispersions for various doping densities
and polarization ζ = 0.4. The dispersions are scaled by the
renormalized Zeeman energy, Eq. (32). The grey region is
the spin-flip continuum. The response function has a finite
imaginary part in this region and thus the spin-wave damps
away.

curves lie closer to the boundary of the spin-flip contin-
uum; Z∗ − ωL increases with n. The inset to the figure
shows a close-up of the spin-wave dispersions for small
q: this illustrates how, for smaller n, the spin waves are
more and more squeezed into a narrow corner below the
spin-flip continuum, which causes the spin-wave stiffness
Ssw to increase.

To summarize the characteristic behavior of the spin-
flip waves, Fig. 7 shows 1 − ωL/Z∗ and Ssw as a func-
tion of n and ζ, calculated using Slater (left panels) and
STLS (right panels). The quantity 1−ωL/Z∗ represents
the q = 0 offset of the spin wave with respect to Z∗,
i.e., the position of the Larmor mode with respect to the
spin-flip continuum. Large values of 1− ωL/Z∗ indicate
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that the Larmor mode is well separated from the con-
tinuum, which increases its lifetime and the chance of it
being experimentally observable (see the discussion be-
low). The red line in the top panels of Fig. 7 indicates
that Z∗ − ω0 = 0.5 meV, which is comparable to typical
linewidths of spin waves found in 2DEGs [17].

Comparing Slater and STLS, we find that the STLS
spin waves tend to lie significantly closer to the contin-
uum than Slater. This is because exchange is negative
and correlation gives a positive correction. We also see
this from the slopes in Fig. 6.

The associated spin-wave stiffnesses Ssw are shown in
the lower panels of Fig. 7. The stiffnesses in Slater and
STLS are very similar. We find that Ssw diverges as
n and ζ approach zero. This is because the window in
which the spin-wave can exist is shrinking: 0 < ω <
Z∗ − γq. The curvature must get larger in order to fit in
this window. At some point this window shrinks to the
point of physical irrelevance, which implies that the spin
wave merges with the continuum and ceases to exist as
a well-defined collective mode; however, it will still show
up as a resonance feature that can be distinguished from
the broad background of the continuum. We also mention
that it is, in principle, possible to observe positive values
of Ssw; however, these would be for much larger values
of n, where the Dirac model is no longer applicable.

B. Prospects for experimental observation

For the experimental observation of spin waves in
graphene, doping concentrations of order n ∼ 1011 to
1013 cm−2 and significant spin polarizations ζ are needed.
In Appendix B we show that for free-standing graphene
this would require the applications of in-plane magnetic
fields of tens to hundreds of Tesla, which is clearly not
practical. Instead, suitable values of n and ζ should be
attainable by depositing graphene on a magnetic sub-
strate. For instance, experimental and theoretical stud-
ies of graphene on Ni(111) have shown that interfacial
hybridization of graphene atoms with the top interface
atoms of the magnetic layer causes a spin polarization
in the graphene layer [67–69]. Similarly, Wang et al.
[70] demonstrated proximity-induced ferromagnetism in
graphene/YIG (yttrium iron garnet) structures. Wei et
al. [71] observed strong interfacial exchange fields (in
excess of 14 T) in graphene/EuS structures, with the po-
tential to reach hundreds of Tesla; device properties may
be further improved by encapsulation of the graphene
sheet in hexagonal boron nitride [72]. The proximity-
induced spin polarization in graphene may even be con-
trolled through electric gating [73, 74].

Assuming, then, that the necessary conditions (doping
and spin polarization) can be achieved in graphene, the
next question is how to create and detect spin waves. For
2DEG systems in semiconductor quantum wells, spin-flip
excitations and spin waves have been studied using in-
elastic light scattering (also known as electronic Raman

scattering) [13–19, 26]. For this technique to work, the
presence of spin-orbit coupling in the material is essential
to satisfy the optical selection rules for spin-flip scattering
[75]; clearly, this rules out pristine graphene, where the
spin-orbit coupling is very small [1]. Proximity-induced
Rashba-type spin-orbit coupling in graphene has been
well documented in the literature [6, 76, 77]. However,
for light-induced spin dynamics, L·S-type spin-orbit cou-
pling in deeper valence bands is needed to enable spin
mixing of interband electron-hole pairs in the 1 eV en-
ergy range. Whether these conditions can be achieved by
proximity is an open question. Alternatively, one could
excite the magnetization dynamics in the ferromagnetic
proximity layer and in this way trigger the spin dynamics
in graphene. However, the resulting hybrid spin modes
are expected to be more complex than the pure spin
waves considered here, requiring a theoretical description
beyond the model considered in this paper.

An alternative approach could be to use microscopy.
Plasmons in graphene have been studied using near-field
microscopy [78–80]. Spin-sensitive scanning probes such
as spin-polarized scanning tunneling microscopy (SP-
STM) [81] have been used to probe spin structure and
dynamics of ferromagnets at the atomic scale, including
magnon excitations [82–84]. There have been STM stud-
ies of the electronic and magnetic properties of quantum
Hall states in graphene [85–87], and it seems conceivable
that similar techniques could be used for spin waves.

V. CONCLUSION

In this paper we have presented a detailed study of
spin waves in doped graphene with in-plane spin polar-
ization, using linear-response TDDFT. From a (TD)DFT
perspective, many-body effects in graphene pose an inter-
esting challenge, since Dirac fermions do not lend them-
selves to a treatment using approximate density function-
als derived from the homogeneous electron gas. Thus, we
placed some emphasis on the development and implemen-
tation of orbital-based functionals, and showed that the
Slater and STLS approximations can be successfully used
for the charge and spin dynamics in doped graphene.

We calculated spin-wave dispersions and spin stiff-
nesses for a wide range of doping concentrations and
spin polarizations, and identified regions where the spin
waves are well separated from the spin-flip continuum,
which means that they should be sufficiently long-lived
to be observable. Creating and detecting spin waves in
graphene is without doubt a significant practical chal-
lenge, and we discussed various experimental techniques
that appear promising.

Our calculations are based on the ideal model of free-
standing graphene with a given Zeeman splitting. In
practice, achieving a spin-polarized Dirac fermion gas
most likely involves interaction with a magnetic sub-
strate, which will also introduce spin-orbit coupling. To
account for these effects, our model can be generalized to
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FIG. 7. Top left: The pseudo-Larmor frequency, ωL, of spin-waves calculated with the Slater approximation and scaled by
the renormalized Zeeman energy, Z∗. The red line indicates where Z∗ − ωL = 0.5meV. Bottom left: The spin-wave stiffness
calculated with the Slater approximation. The stiffness diverges as it approaches the origin. Right: The same as the left but
calculated with the STLS scheme.

include Rashba-type spin-orbit coupling; if the Rashba
terms are not too strong, this will preserve the essential
features of the spin waves (as is the case in the 2DEG [17–
21]). On the other hand, if the spin waves in graphene
are coupled with spin excitations in the magnetic sub-
strate, more complex hybrid modes may occur. This will
be the subject of future studies.
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Appendix A: Derivation of the noninteracting
response functions

Starting from Eq. (28) we get the definition of the non-
interacting response function for a Dirac model. We first
consider the nonmagnetic case with Z∗ = 0, where the

single-particle energies are εkb = bγ|k|, and the occupa-
tion factors become fkb = θ(εF − εkb). The labels j and
l of the single-particle states are replaced with j → (b,k)
and l → (b′,k′), where b, b′ = ±1 are the band indices.
The summation over k implies the substitution

∑
k

→
∞∫

0

kdk

(2π)2

2π∫
0

dφk. (A1)

Setting k′ = k+q, we introduce the orbital overlap func-
tion

F β(k,q) =
1

2
(1 + β cos(φk′ − φk)) , (A2)

where

cos(φk′ − φk) =
k + q cosφk√

k2 + q2 + 2kq cosφk

=
k′ − q cosφk′√

k′2 + q2 − 2k′q cosφk′
. (A3)
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The response function then becomes

χ(0)(q, ω) = gsgv
∑
bb′k

(fkb − fk′b′)F bb
′

+ (k,q)

ω + εb(k)− εb′(k′) + iη
, (A4)

where gs and gv are the spin and valley degeneracies and
η is a positive infinitesimal required to preserve causality.
Next, we introduce the complex frequency z and separate
the response function based on the b = ±1 terms:

χ(0)(q, z) = χ+(q, z) + χ−(q, z) , (A5)

where

χ+(q, z)

gsgv
=
∑
αβk

F β(k,q)

αz + εkb − εk′β
(A6)

and

χ−(q, z)

gsgv
=
∑
αk

F−(k,q)

αz + εk− − εk′+

= − q

16γ

√
1−

(
z
γq

)2
, (A7)

where α = ±1 comes from separating the fkb−fk′b′ terms
and transforming the integration limits of the k′ integrals
and β = bb′ = ±1 is the (intra)interband transition. The
χ− term is a direct continuation from Ref [7].

Next, we perform the β sum in χ+ to eliminate difficult
terms:

χ+(q, z)

gsgv
=
∑
αk

1

2γk

 1−
(
αz̃+2k
q

)2

1− αz̃
q (αz̃+2k

q ) + 2k
q cosφk

− 1

 ,

(A8)
where z̃ = z/γ. The angular integral evaluates to:

2π∫
0

dφ[1− (a+ b)2]

1− a(a+ b) + b cosφ
=

1− (a+ b)2

(1− a(a+ b))

× 2π√
1− b2

(1−a(a+b))2

(A9)

and therefore

χ+(q, z)

gsgv
= − kF

2πγ
+
∑
α

1

4πγ

kF∫
0

dk
1−

(
αz̃+2k
q

)2

(
1− αz̃

q

(
αz̃+2k
q

))
× 1√

1− ( 2k
q )

2

(1−αz̃q (αz̃+2k
q ))

2

. (A10)

The radial integral evaluates to:∫
dx(1− x2)

(1− ax)
√

1− (x−a)2

(1−ax)2

=
x(x2 − 1)−

√
1− x2 arcsinx

2(ax− 1)
√

(1−x2)(1−a2)
(1−ax)2

=
1

2
G(a, x). (A11)

0.0 0.2 0.4 0.6 0.8 1.0
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FIG. 8. Contour lines of constant magnetic field in the
n− ζ parameter space, illustrating that rather large magnetic
fields are required to generate significant spin polarization in
graphene via the Zeeman effect.

This finally gives

χ+(q, z)

gsgv
= − kF

2πγ
+
∑
α

q

16πγ
G

(
αz̃

q
, x

)∣∣∣∣x=
αz̃+2kF

q

x=αz̃
q

= − kF
2πγ

+
∑
α

q

16πγ

(
G

(
αz̃

q
,
αz̃ + 2kF

q

)
−G

(
αz̃

q
,
αz̃

q

))
= − kF

2πγ
+
∑
α

q

16πγ
G

(
αz̃

q
,
αz̃ + 2kF

q

)
(A12)

The spin-resolved response functions at finite Z∗ follow
in a similar way, except that the occupation factors are
now spin dependent and that the frequency is shifted by
εσσ̄. We substitute j → (b, σ,k) and l → (b′, σ′,k′), use

the single-particle energies εkbσ = bγ|k| + sσ
Z∗

2 and the
occupation factors fkbσ = θ(εF − εkbσ), and we define

zστ = ω + εσσ̄ + iη . (A13)

The response function then becomes:

χ
(0)
σσ̄,σσ̄(q, ω)

gv
=
∑
kbb′

(fkbσ − fk′b′σ̄)

× F bb
′
(k,q)

ω + εkbσ − εk′b′σ̄ + iη
. (A14)

To do the k-integration we then follow the same proce-
dure as in the non-spin-polarized case above, taking care
to note the different spin occupation factors; in this way,
we arrive at Eq. (31).

Appendix B: Magnetic field estimates

The effective Zeeman energy can be written as

Z∗ = gµB(Bext +Bxc) = gµBBeff , (B1)
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where µB is the Bohr magneton and the effective mag-
netic field Beff is the sum of the externally applied mag-
netic field Bext and an additional magnetic field Bxc due
to exchange-correlation many-body effects [21]. Using
the experimental g-factor of graphene, g = 1.952 [88],
we can calculate the Beff that produces a given value of
Z∗. Using Eq. (32) we can then relate Beff to the spin
polarization ζ and doping concentration n.

This is illustrated in Fig. 8, which shows lines of con-
stant Beff in the n − ζ parameter space. Clearly, a high
degree of spin polarization in strongly doped graphene
would require very large field strengths. Notice that Bxc

is not available in our tight-binding model. Therefore,
we cannot obtain the external magnetic field Bext that
produces ζ for a given n; however, Beff provides a rea-
sonable estimate for Bext since xc effects can be expected
to be comparatively small.

As discussed in Sec. IV B, the most promising way
to achieve significant degrees of spin polarization in
graphene is via the magnetic proximity effect. This is dif-
ferent from the simple picture in which a ferromagnetic
substrate causes a magnetic field Bext in the adjacent
graphene due to its bound surface currents [89]; in the
case of YIG, this would produce a field strength of about
0.25 T, which is too low to cause the desired effect.

Appendix C: Some numerical details

1. Nonuniform q-grid

It is important that our choice of grid spacing for q be
sensitive to all of the relevant scales in the model, de-
termined by the three characteristic wavevectors kF , kv,
and |kF↑−kF↓|. It is also important for the q-grid to ex-
tend all the way to infinity to account for the integration

limits in Eqs. (22) and (23). We satisfy these conditions
through the repeated use of the following transformation:

t =
(

1 +
q

k

)−1

, (C1)

where k is one of the aforementioned wavevectors, and
q/k ∈ [0,∞) maps to t ∈ (0, 1]. We then create a uni-
formly spaced t-grid and transform back to a nonuniform
q-grid. This results in about half of the q points lying
below k and the remaining points having a successively
larger spacing. Finally, we repeat this procedure for each
wavevector and merge all of the grids together. The in-
tegration along q is then carried out using integration
routines appropriate for nonuniform grids.

2. Frequency integration

It is numerically convenient to use an alternate defini-
tion of the structure factor. One can use a special con-
struction of the Cauchy integral theorem to show that
the integral in Eq. (21) can be transformed into

S(r, r′) = − 1

π

∫ ∞
0

<�(r, r′, iu)du . (C2)

This expression for the structure factor, involving inte-
gration along the imaginary frequency axis, is numeri-
cally much better behaved than Eq. (21). The reason
is that =�(r, r′, ω) has minute details along the ω-axis,
whereas <�(r, r′, iu) is quite smooth away from the real
frequency axis. This transformation is the reason why
in Sec. III B we formulate the noninteracting response
function with a fully complex frequency as argument.
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