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We present two 2-body Hamiltonians that approximate the exact PH-Pfaffian wavefunction with their ground
states for all the system sizes where this wavefunction has been numerically constructed to date. The ap-
proximate wavefunctions have high overlap with the original and reproduce well the low-lying entanglement
spectrum and structure factor. The approximate generating Hamiltonians are obtained by an optimisation pro-
cedure where three to four pseudopotentials are varied in the neighbourhood of second Landau level Coulomb
interaction or of a non-interacting model. They belong to a finite region in the variational space of Hamiltonians
where each point approximately generates the PH-Pfaffian. We diagonalize the identified Hamiltonians for up
to 20 electrons and find that for them the PH-Pfaffian shift appears energetically more favorable. Possibility to
interpret the data in terms of composite fermions is discussed.

I. INTRODUCTION

Fractional quantum Hall effect at the filling factor ν = 5/2
[1] is an interesting topological [2] state of matter that may
potentially be used as a building block of a topological quan-
tum computer [3, 4]. To large extent our understanding of
the phenomenon rests on the model wavefunctions proposed
to describe the state and their properties tested in experiment
or numerically in small systems. Until recently the two lead-
ing candidate wavefunctions were the Moore-Read Pfaffian
[5] and its particle-hole conjugate: anti-Pfaffian [6, 7]. The
finite magnetic field used in experiment means finite energy
difference between Landau levels [8] and leads to ”Landau
level mixing” that generates the particle-hole (PH) symmetry
breaking terms in the effective models that could favour one
of the two descriptions.

Although the two wavefunctions are topologically distinct,
in the small systems the exact numerics is limited to, the com-
petition between them is quite close. For example, including
the first five PH-symmetry breaking terms one finds that Pfaf-
fian is favoured [9] (see also [10, 11]) while a more precise
model including first 6 [12] terms determines anti-Pfaffian
(see also [13, 14]).

Particle-Hole symmetric Pfaffian (PH Pfaffian) [15] (also
see a related earlier work [16]) is the third very recent can-
didate that has received support from some experimental ob-
servations [17, 18] but not from numerics [19–21] (in contrast
to Pfaffian and anti-Pfaffian: [22–27]). Under the assump-
tion that the signatures of the PH-Pfaffian never show up in
the numerics and it thus can not be stabilised by any Hamil-
tonian relevant for ν = 5/2 a number of alternative scenarios
explaining the quantized thermal Hall conductance κxy mea-
surements [17] have been explored recently [28–41].

In this work, we report on a 2-body Hamiltonian that is a
deformation of the second Landau level (SLL) Coulomb in-
teraction and whose ground state approximates well the PH-
Pfaffian wavefunction as written down in Ref. [28] and in
all the finite-size systems where this model wavefunction has
been numerically constructed until now [42]. No such Hamil-
tonian has been reported to date [43] and we hope that it will
be instrumental for further studies.

In particular, we are using the wavefunction translated [44]

into the spinor coordinates [45] in the spherical geometry
where it reads

|ΨPH-Pf({rk})〉 =

PLLLPfk,l

{
1

ūkv̄l − ūlv̄k

}∏
k>l

(ukvl − ulvk)2, (1)

where PLLL stands for projection on the lowest Landau level.
Computing the actual weights of the wavefunction in the

fermion occupation basis is described in detail in Ref. [42].
It is analogous to the calculation of Coulomb matrix elements
on the sphere (given in the appendix of Ref. [44]) upon sub-
stitution of the Coulomb potential 1/r with 1/r2.

Particle-hole symmetry requires that exactly half of the
available single-particle states are filled with electrons such
that NΦ + 1 = 2Ne, where NΦ is the number of flux
quanta through the spherical surface and Ne - number of
(spin-polarized) electrons. The shift X [46] is a quantum
number that distinguishes different topological phases on the
sphere, for ν = 5/2 states it is defined by the equation
NΦ = 2Ne −X . We observe that X = 1 for the PH-Pfaffian
while for Pfaffian and anti-Pfaffian wavefunctions we have
XPf = 3 andXaPf = −1 respectively. A direct consequence
of this is that the finite-size calculations at PH-Pfaffian and
anti-Pfaffian shifts are performed in different Hilbert spaces
which one should keep in mind when comparing them.

II. OPTIMISATION APPROACH

An optimisation approach [47] is used to determine the ap-
proximate 2-body generating Hamiltonian. It varies the pseu-
dopotentials and searches the vicinity of a reference interac-
tion for the points that are best according to a certain criteria
or target function that is a weighted sum of the relevant prop-
erties. The highest contributions are given to the high overlap
with the PH-Pfaffian wavefunction and small energy variance
of the reference state (σrelE )2 =

〈ψr|H2
O|ψr〉−〈ψr|HO|ψr〉

2

〈ψr|HO|ψr〉2
,

which quantifies how close it is to being an eigenstate of the
variational Hamiltonian. Further properties accounted in the
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TABLE I. The lowest pseudopotentials of the approximate PH Pfaf-
fian generating Hamiltonians and the reference SLL Coulomb val-
ues. All higher pseudopotentials of CV7 are identical to the SLL
Coulomb (values are given in Table A3) and are 0 for MV3.

CV7 MV3 SLL Coulomb
V1 1 1 1
V3 0.694456627311176 0.433617799341989 0.773278825612202
V5 0.665960300533016 0.370884676389928 0.576859542105588
V7 0.448785272954577 0 0.487302680505104
V9 0.52955224410569 0.164743667925535 0.433005097996708

search are: the total angular momentum of the ground state,
gap, deviation from the reference interaction and ground state
energy. All the system sizes where the model wavefunction
is available (plus Ne=16) are used and contribute to the tar-
get function being optimised proportionaly to the size of their
Hilbert space. As we work on the sphere at fixed Lz = 0 we
need to remember that the subspace, relevant for describing
FQHE ground state, is given by the condition L = 0. There
are 3;7;24;127 L = 0 states for systems with 6;8;10;12 elec-
trons respectively. This ensures that the problem of ”fitting”
four variational parameters (pseudopotentials) is not trivial or
over-parametrised as long as systems with at least 12 electrons
are used (we use up to 16 electrons).

The Hamiltonian is parametrized by the 2-body pseudopo-
tentials in spherical geometry [45]. The search is performed
following the non-linear conjugate gradient descent algorithm
with the Hestenes update rule (see [47] for details).

The method [47] can be viewed as mapping the variational
parameters (pseudopotentials) into the feature space (Hilbert
space) through diagonalizing the corresponding Hamiltonian
and taking its ground state wavefunction. The overlap then
defines a kernel in the feature space and other kernel methods
of machine learning could potentially be used on top. Thus
the method [47] may be considered a very simple example of
the kernel-based Machine Learning [48].

We also have attempted to find the exact 2-body generat-
ing Hamiltonian following the ”covariance matrix” methods
[49–51] without success as zero eigenvalues required by these
methods were absent for the covariance matrices constructed
for the problem in question. This may be an indication that
such an exact 2-body Hamiltonian doesn’t exist and an ap-
proximate Hamiltonian such as the one presented in this work
and found using [47] is the best one can do if restricted to
2-body terms only.

III. THE APPROXIMATE GENERATING HAMILTONIAN

The approximate 2-body generating Hamiltonian is deter-
mined in the vicinity of the two reference interactions: SLL
Coulomb given by the pseudopotentials computed for 20 elec-
trons and the non-interacting system H = 0. The explicit for-
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FIG. 1. Coulomb interaction in first and second Landau levels is
shown with black triangles and crosses respectively. Red circles and
crosses are the learned Hamiltonians MV3 and CV7. Magenta ”+”
data indicates the interaction closest to SLL Coulomb that is still a
reasonable approximation of PH-Pfaffian: 0.3 ∗HSLLCoul + 0.7 ∗
HCV 7. Blue crosses correspond to the CV7 interaction shifted down
by a constant -V SLLCoul31 .

mula for Coulomb pseudopotentials is given by the Eq. (6)
of Ref. [52]. It allows one to follow the slight dependence
of the pseudopotentials on the system size which is not cru-
cial for our purposes of finding an approximate Hamiltonian
in the neighbourhood of these reference values.

In case of Coulomb we vary four pseudopotentials V3

through V9 while ”freezing” all others to their reference val-
ues. In case of the ”minimal model” we only vary three pseu-
dopotentials V3, V5, V9, while freezing the rest. Although
one could achieve better fits varying more pseudopotentials
it is commonly believed that usually only the lowest Vm with
m ≤ 9 have physical significance. Another reason for limiting
the number of variational parameters is the desired simplicity
of the resulting model.

The optimisation results depend on the significance weights
that we assign to various criteria contributing to the target
function. Furthermore, because the optimisation problem is
non-convex different results might in general be obtained for
different initial conditions. Combined together this leads to a
certain freedom as to what results should be identified as the
best. In Table I we give two of the possible solutions with ids
”CV7” (near SLL Coulomb) and ”MV3” (minimal model).

Fig. 1 shows the learned pseudopotentials plotted together
with the reference SLL and LLL Coulomb interactions. Com-
pared to the SLL Coulomb V5 and V9 are the pseudopotentials
that differ the most and this deformation is in the direction op-
posite to the LLL Coulomb (the named pseudopotentials are
increased but would need to be decreased to obtain the LLL
Coulomb). We also notice that in all the solutions we have
obtained V3 and V7 are decreased and V5 and V9 are increased
relative to the SLL Coulomb.

Table II contains the information on how close the Hamilto-
nians found are to being exact generating Hamiltonians of the
PH-Pfaffian wavefunction. It lists the overlaps between the
Hamiltonian ground state and the exact model wavefunction
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TABLE II. Overlaps and energy variances for the two approximate
generating Hamiltonians and the lowest Landau level Coulomb in-
teraction

MV3 CV7 LLL Coulomb
〈ψo|ψr〉 (6) 0.99142087 0.99210070 0.98628980
〈ψo|ψr〉 (8) 0.98009459 0.96521979 0
〈ψo|ψr〉 (10) 0.97161429 0.96271627 0
〈ψo|ψr〉 (12) 0.95538874 0.98570050 0.92987018
〈ψo|ψr〉 (14) 0.95878369 0.97167128 0
(σrelE )2(6) 2.4646E-4 1.4254E-5 1.3853E-4
(σrelE )2(8) 4.0823E-4 5.2169E-5 4.6648E-5
(σrelE )2(10) 2.1047E-4 1.4792E-5 3.6334E-5
(σrelE )2(12) 9.3918E-5 4.5660E-6 3.5453E-5
(σrelE )2(14) 1.6555E-4 8.4828E-6 1.7261E-5

as well as the relative energy variance in exact PH-Pfaffian for
individual system sizes. We also include the information on
the LLL Coulomb that was noticed [19, 20] to provide a rel-
atively large overlap with PH Pfaffian for 6 and 12 electrons.
Relative energy variance quantifies how far a Hamiltonian is
from having a particular wavefunction as an eigenstate. To
put these numbers in perspective we provide the same data
for the second Landau level Coulomb interaction and the anti-
Pfaffian model wavefunction in Table A7. We observe that the
precision with which CV7 approximates PH-Pfaffian is not
worse than the one for SLL Coulomb and anti-Pfaffian.

The fact that the energy variance for the LLL Coulomb in-
teraction ground state for 8 electrons is lower than that for
CV7 highlights the crucial importance of using the multi-
variable target function when searching for an approximate
generating Hamiltonian. Minimizing the energy variance
alone would not necessarily lead to a desired solution as it,
for example, carries no information about the position of
the model wavefunction in the Hamiltonian spectrum and we
might find a Hamiltonian that produces it as an exact but
highly excited state. On the other hand, we know that energy
variance is positive-definite and assumes its minimal possible
value on the desired exact solution and it is therefore advanta-
geous to include it as a part of multi-variable target function in
order to reduce the effective size of the variational space and
arrive at the Hamiltonian for which the model wavefunction is
(almost) an eigenstate. We should also note that finite-size ef-
fects are commonplace in exact diagonalisation studies of the
fractional quantum Hall effect and the relatively small system
with 8 electrons may just as well be simply deviating from the
common trend because of its size.

Entanglement spectrum is a way of interpreting the singular
value decomposition (also known as Schmidt decomposition)
of a quantum system

|ψ〉 =
∑
i

si |ψiA〉 ⊗ |ψiB〉 , (2)

where the system is thought of to be made of two parts A and

B. Working on a sphere we will consider the separation along
the equator following Ref. [53].

Using si = e−
ξi
2 we can interpret ξi as energy levels

[53] and observe that the corresponding thermodynamic en-
tropy becomes identical to the entanglement entropy S =∑
i ξie

−ξi which is a widely used measure of entanglement.
The total projection of the angular momentum in sub-

system A (LzA) is a good quantum number that could be used
to label each singular value. The level counting in the low-
energy part of entanglement spectrum is thought [53] to be a
characteristic signature of the underlying topological phase.

An approximate generating Hamiltonian might not repro-
duce the complete model wavefunction exactly. But it should
at least be reasonably reproducing its universal topological
fingerprint encoded in the lowest levels of the entanglement
spectrum. For example it is known that the Coulomb interac-
tion [53] and some of its deformations [9] do reproduce the
level counting of the model Pfaffian wavefunction at the Pfaf-
fian shift on the sphere.

In Fig. 2 we show the entanglement spectra calculated for
the ground state of CV7 and the exact PH-Pfaffian for 12 and
14 electrons. We observe that the structure of the low-lying
levels is reproduced well. For comparison, the middle panel
of Fig. 2 shows the data for the LLL Coulomb ground state.
We observe that the learned Hamiltonians (see Appendix Fig.
A15 for the MV3 data) are substantially better than the LLL
Coulomb in reproducing the structure of the PH-Pfaffian en-
tanglement for 12 electrons (for 14 electrons the ground state
of LLL Coulomb has L 6= 0).

A central question related to the PH-Pfaffian wavefunction
and universality class is whether it could be a valid descrip-
tion of uniform gapped FQHE state observed at ν = 5/2 in
experiment. To make a step towards answering this question
we study the static structure factor of the model wavefunction
and the ground states of the learned Hamiltonians.

It has been argued [54–56] that the projected static structure
factor

S̄(q) =
1

N
〈ρ̄†qρ̄q〉 (3)

(with N - number of particles and ρ̄q - the Fourier transform
of the density operator projected onto the lowest Landau level)
must quite universally vanish as |q|4 or faster in order for the
state in which it is evaluated to be a gapped FQHE state.

The corresponding quantity on the sphere with 2S + 1
single-particle basis states (for L 6= 0)[57] is [58]

S0(L) =
1

2S + 1
〈ρ̄†LM ρ̄LM 〉 , (4)

whereL is the total angular momentum andM - its projection.
For L 6= 0 it can be evaluated [58] as [59]

S0(L) =
2L+ 1

2S + 1

∑
m,m′

〈S,m|L, 0;S,m〉 〈S,m′|L, 0;S,m′〉 ∗

〈n(m)n(m′)〉 . (5)
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FIG. 2. Entanglement spectrum for 12 (Top Panel) and 14 (Bottom
Panel) electrons computed in the model wavefunction and the ground
state of the learned Hamiltonian near SLL Coulomb (CV7). Middle
panel is obtained for 12 electrons and LLL Coulomb ground state.
The cut is made at the ”equator” of the sphere.

Here 〈J,M |J1,m1; J2,m2〉 is a Clebsch-Gordan coefficient
that couples two particles with total angular momentum (pro-
jections) of J1 and J2 (m1 and m2) into a state with total
angular momentum J and projection M . Operator n(m) is
the number operator in the ”orbital” m.

Fig. 3 shows the structure factor (5) as a function of
Q =

√
L2/S for 12 and 14 electrons computed in the model

wavefunction and in the ground states of relevant Hamiltoni-
ans. We observe that the learned Hamiltonian CV7 is best at
reproducing the original structure factor while the data ob-
tained in the LLL Coulomb ground state shows more pro-
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FIG. 3. Structure factor S0(Q) for 12 (Left Panel) and 14 (Right
Panel) electrons computed in the model PH-Pfaffian wavefunc-
tion and the ground states of the learned Hamiltonians and the
LLL Coulomb interaction. The normalized deviation from the PH-
Pfaffian data is ε =

∑Lmax
L=1 (|S0(Q)− SPHPf0 (Q)|)/Lmax

.

nounced oscillations and also grows slower at small Q than
all other data.

Although the two Hamiltonians CV7 and MV3 are visually
quite different (Fig. 1) their ground states have relatively high
overlap above 0.98 up to 20 electrons (Tab. A5).

If we interpolate between them H(α) = (1 − α)HMV 3 +
αHCV 7 (Fig. A8) we do not observe any sign of gap closing
and the PH-Pfaffian overlap stays above 0.955 for all system
sizes at all interpolation points. This suggests that the two
Hamiltonians CV7 and MV3, actually belong to a single con-
tinuously connected region in the parameter space defining the
Hamiltonians that approximately generate PH-Pfaffian [60].
This conclusion is supported by the entanglement spectrum
data computed at every third interpolation step (Fig. A9) for
Ne = 12, 14. The original level counting of the PH-Pfaffian
(forming a ”signature” of a topological phase [53]) is pre-
served for every interpolation step. A further evidence is the
good agreement between the low-lying entanglement spectra
of CV7 and MV3 for Ne = 18, 20 (Fig. A7).

An interesting direction for the future studies would be to
use the presented data for mapping out the full subspace of
Hamiltonians that approximate PH-Pfaffian. Given the ob-
served distinction between CV7 and MV3 defined in terms of
pseudopotentials (Fig. 1) it is possible that this is best done in
terms of other variables. It would also be interesting to under-
stand the similarities between the two learned Hamiltonians
as real-space interactions with a certain screening.

Blue crosses in Fig. 1 show the CV7 pseudopoten-
tials shifted downwards by a constant equal to the largest
pseudopotential that was used in the optimisation procedure
V SLLCoul31 = V CV 7

31 . Note how close the resulting V3 and
V5 become to the values in MV3. Together with V9 increased
over V7 this might be the underlying general feature that is
required for approximating PH-Pfaffian.

The available data indicates that the learned Hamiltonians
CV7 and MV3 represent a reasonable approximation of the
PH-Pfaffian wavefunction for the system sizes with up to 14
electrons. We will now attempt to extract additional infor-
mation about the PH-Pfaffian state from these Hamiltonians.
Note however, that this program may only be successful if
the small system sizes we used for Hamiltonian learning al-
ready contained enough information representative of the PH-
Pfaffian phase [47] which can not be verified before the PH-
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and the learned Hamiltonian CV7 (α = 1). <> stands for averaging
over the available system sizes. Overlap is averaged over systems
with 8-14 particles and gap - over systems with 8-16 particles.

Pfaffian wavefunction for larger sizes is available.

IV. PHYSICS OF THE APPROXIMATE GENERATING
HAMILTONIAN

First we would like to understand how the learned Hamil-
tonians compare to the Coulomb interaction in the first and
second Landau levels keeping in mind that the SLL Coulomb
interaction ground state was shown to be adiabatically con-
nected to the three-body interaction exactly generating the
MR Pfaffian state [61] at the Pfaffian shift on the sphere.

When interpolating between SLL Coulomb and CV7
(H(α) = (1 − α)HCoul + αHCV 7) we perform the diago-
nalisation at both the PH-Pfaffian and anti-Pfaffian shifts. For
each of the system sizes we keep track of the neutral gap (dif-
ference between the lowest eigenvalues) and the overlap with
the relevant model wavefunction. Fig. 4 shows the cumula-
tive averaged data for the system sizes with 8 to 16 electrons
(holes). If at a given α we find an L 6= 0 ground state for
any of the available system sizes (up to Ne=18) we mark the
gap with a red cross indicating that no fractional quantum Hall
state is possible for that interaction at the corresponding shift.

Both PH-Pfaffian and anti-Pfaffian appear to be stabilized
in the accessible finite systems in the vicinity of the CV7
or SLL Coulomb interactions at the PH-symmetric and anti-
Pfaffian shifts accordingly. As we interpolate between the two
interactions the gap at both shifts appears to decrease and have
a minimum in the region of α ≈ 0.5−0.7. For most individual
system sizes (Fig. A12) the gap actually closes accompanied
by a sharp drop of the overlap (where available). This how-
ever is not the case for the ”closed shell” [42] systems such as
12 particles.

At least some of the system sizes have non-uniform (L 6= 0)
ground states in the same region α ≈ 0.5−0.7. Taken together
these observations would be consistent with a phase transition
from PH-Pfaffian to anti-Pfaffian universality classes as we
tune the interaction between CV7 and SLL Coulomb. Fur-

ther, there might be an intermediate phase with broken spa-
tial symmetry. The detailed characterization of the possible
phase transition however goes beyond the scope of this work
and due to the extremely small energy gaps would require ac-
cess to significantly larger system sizes. Such a study may
also be best performed in another geometry - on the sphere
the two universality classes appear at different shifts which
would complicate their direct comparison.

If the learned Hamiltonian CV7 is deformed in the direction
of the LLL Coulomb the PH-Pfaffian state is destroyed much
faster (Fig. A13). For Ne = 18 (not shown) there is no sin-
gle datapoint in that direction with L = 0, meaning no valid
FQHE state is possible if we move towards LLL Coulomb.
The system with 12 electrons again does not seem to close
the gap during the interpolation while the first excited state
changes from L = 6 at LLL Coulomb to L = 2 for CV7.

The SLL Coulomb-to-CV7 interpolation data (Fig. 4) al-
lows us to conclude that the found Hamiltonian CV7 is a rea-
sonable approximation for PH-Pfaffian in a finite region in the
parameter space rather than at a single special point.

The neutral energy gaps for the two learned Hamiltonians
are shown in the top panel of Fig. 5. The analysis is compli-
cated by both the finite-size effects and the fact that the closed-
shell systems with 6,12 and 20 electrons have much higher
gaps as if they stemmed from a different dataset. Therefore
the data doesn’t seem to allow a reliable extrapolation and a
conclusion if the corresponding states are gapped in the ther-
modynamic limit. For comparison we also show the more
consistent data at anti-Pfaffian shift and SLL Coulomb inter-
action.

For CV7 we also compare the ground state energy at var-
ious shifts at fixed electron number (Bottom Panel of Fig.
5). We observe that the energy at the PH-Pfaffian shift is
lower than the average at nearby flux values. For 12 elec-
trons energy at the PH-Pf shift is E(24) = 36.2963 while
the average of energies at the Pfaffian and anti-Pfaffian shifts
is (E(22) + E(26))/2 = 36.3845. For 14 electrons corre-
sponding energies are 47.5120 and 47.6207 again favouring
PH-Pfaffian shift. The energies and angular momenta at vari-
ous fluxes and electron numbers for CV7 and MV3 are listed
in Table A6 and support the discussed trend. The fact that
L 6= 0 at ±1 flux is consistent with the PH-Pfaffian flux be-
ing most energetically favourable and the nearby states corre-
sponding to quasiparticles.

The systems withNe = 6,12,20 electrons stand out by every
possible measure. In Fig. 5 we observe that the neutral gap for
these system sizes is significantly higher and extrapolates to a
positive value while a linear fit including all data extrapolates
to negative values. Note that the model wavefunctions them-
selves are also substantially different as can be seen from the
structure factor plots (Fig. A11).

The special properties of these systems are consistent with
them corresponding to closed-shell configurations of compos-
ite fermions [62] with the effective flux 1 where a system with
(ñ+ 1)(ñ+ 2) electrons completely fills all Λ-levels up to ñ
so that maximum filled level for Ne =6,12,20 is ñ =1,2,3.
Further numerical data consistent with this assumption is as-
sembled in Appendix F.
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To discuss whether the state described by the model wave-
function and approximated by the ground states of the learned
Hamiltonian is gapped we perform the scaling analysis of the
structure factor S0(Q) (5). For a gapped state the structure
factor should grow as Qα = LαS−α/2 with α ≥ 4 [54–
56]. Consider the two smallest values L∗ = 2, 3 and plot
ln(S0(L∗)) against ln(S). For sufficiently large system sizes
we should be able to read off −α/2 from the slope of the lin-
ear fit to the data. We do obtain α ≥ 4 for such an analysis
performed for the anti-Pfaffian model wavefunction and large
enough (Nh ≥ 12) systems (Fig. A10). However, as the lin-
ear fit using smaller system sizes shows (Fig. A10) the answer
wouldn’t have been so clear even for the anti-Pfaffian had only
the systems with Nh ≤ 14 been available. As the previous lit-
erature suggested [19, 20, 42] the gap of the PH-Pfaffian must
be much smaller should it be gapped. It is therefore to be ex-
pected that the ”reliable” system size threshold is higher for

the PH-Pfaffian.
Large finite-size effects in the CV7 and MV3 data for PH-

Pfaffian case and the special behaviour of the closed-shell sys-
tem sizes lead to several possible ways to linearly fit the avail-
able data some of which are shown [63] in Fig. 6. The ex-
tracted α and the qualitative result would depend on which
data is used for the fit. In particular, a fit for the closed-shell
sizes Ne = 6, 12, 20 gives α <= 3.6 suggesting gapless
state while a fit using the four largest available system sizes
Ne = 14, 16, 18, 20 leads to α >= 4.6 which would be con-
sistent with a gapped state. Given this uncertainty we are not
able to draw a solid conclusion and leave it (along with all the
raw data available in SM [64]) to the reader.

Analogous data for the PH-Pfaffian wavefunction for Np ≤
14 is shown in the Bottom Panel of Fig. 6 but is likely to not
be representative of the thermodynamic limit behaviour as the
data for anti-Pfaffian (dashed lines in Fig. A10) suggests.

A related issue are the oscillations of the structure factor at
large Q and the two-peak structure noted earlier [42] for the
model PH-Pfaffian at some Ne. With the approximate wave-
functions we have access to larger system sizes and observe
in Fig. A11 that the oscillations decrease and the two-peak
structure becomes less pronounced for larger system sizes. It
is thus possible that these two artefacts would be gone com-
pletely in larger systems. This assumption is substantiated
by the comparison to the anti-Pfaffian data (bottom left panel
of Fig. A11) where the 8-hole structure factor resembles
the double-peak structure and the 12-14-hole data exhibits
remainder oscillations similar to the 20-electron PH-Pfaffian
data.

V. CONCLUSIONS AND OUTLOOK

We presented two 2-body Hamiltonians that reasonably
well approximate an implementation [42] of the PH-Pfaffian
wavefunction on a sphere for all the system sizes where it is
available. One of the Hamiltonians is a deformation of the
second Landau level Coulomb interaction, the other - of a non-
interacting model. Both Hamiltonians belong to a finite region
of the four-dimensional Hamiltonian variational space where
each point approximately generates PH-Pfaffian. Access to
these microscopical models of PH-Pfaffian will enable multi-
ple future studies of its relevance for the 5/2 fractional quan-
tum Hall effect. Diagonalizing the Hamiltonians for up to 20
electrons we find that the finite-size effects improve; remain
however present consistent with a gap much smaller than the
one for anti-Pfaffian. The available data neither asserts nor ex-
cludes the possibility that the ground state of the approximate
PH-Pfaffian-generating Hamiltonian is gapped. Larger system
sizes are more consistent with a valid FQHE state by some
measures. Access to several higher sizes of the model wave-
function and exact learned Hamiltonian eigenstates would be
needed to gain certainty while we do not expect more than
one additional system size to become accessible in the near
future due to the computational complexity of the problem.
Approximate methods might therefore be worth considering.

There are several interesting directions for the future inves-
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FIG. 6. Structure factor extrapolation over the ground states of the
CV7 (Top Panel) and MV3 (Middle Panel) learned Hamiltonians.
Several possible linear fits including subsets of the available system
sizes are displayed. Data for the PH-Pfaffian model wavefunction is
shown in the Bottom Panel.

tigation. Since there is no preferred way of constructing a
PH-Pfaffian it would be reasonable to study other implemen-
tations than used in this work [28] and all prior literature. The
presented Hamiltonian is a simplest 4-parameter model while
adjusting further pseudopotentials would improve the approx-
imation precision. An important open question is whether the
required deformation of the Coulomb interaction may be ob-
tained within some effective realistic model? For example,

the pseudopotentials that perturbatively account for the Lan-
dau level mixing and finite width [10, 13, 65] to lowest or-
der do not to our knowledge produce the suitable two-body
corrections. It has been argued that 3-body pseudopotentials
may be required to stabilize PH-Pfaffian [66–68] and it would
be interesting to include 3-body and higher-order pseudopo-
tentials into the variational Hamiltonian ansatz. The 2-body
Hamiltonians presented here will be a valuable starting point
for such a study.

It is also possible to modify the search/optimisation criteria
that could lead to a PH-Pfaffian approximation with smaller
overlaps but larger gaps or include new terms that would en-
force the expected topological properties of PH-Pfaffian.

In case one is able to find a 3- plus 2-body Hamiltonian
(breaking PH-symmetry) of which the PH-symmetric model
wavefunction is an exact eigenstate it may also be possi-
ble to further deform this Hamiltonian [69, 70] such that the
model wavefunction would not thermalize with the rest of the
Hilbert space and become an example of a many-body scar
state, the phenomenon also known as weak ergodicity break-
ing [71, 72].
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Appendix A: Pseudopotentials

Table A3 lists the pseudopotentials defining the learned
Hamiltonians (CV7 and MV3) along with the pseudopo-
tential corresponding to the 2nd Landau level Coulomb in-
teraction. Coulomb pseudopotentials in the lowest Landau
level are given in Table A4 together with the Hamiltonian
HSLLtoCV 7(α = 0.7) - it is the closest to the SLL Coulomb
Hamiltonian that reasonably approximates the PH Pfaffian by
various measures.

Appendix B: Similarities between MV3 and CV7

The learned Hamiltonians MV3 and CV7 appear to belong
to the same continuous region of Hamiltonians in the parame-
ter space that approximate the PH Pfaffian. This is supported
by the high overlaps between the corresponding ground states
(Table A5) and similarities between their entanglement spec-
tra (Fig. A7). Furthermore the structure of the low-lying en-
tanglement spectrum is preserved if we interpolate between
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TABLE A3. Pseudopotentials corresponding to the reference
Coulomb interaction in the 2nd Landau level for 20 electrons and
for the two learned Hamiltonians CV7 and MV3.

SLL Coulomb CV7 MV3
V1 1 1 1
V3 0.773278825612203 0.694456627311176 0.433617799341989
V5 0.576859542105588 0.665960300533016 0.370884676389928
V7 0.487302680505104 0.448785272954577 0
V9 0.433005097996708 0.52955224410569 0.164743667925535
V11 0.395897298672305 0.395897298672305 0
V13 0.368758810329097 0.368758810329097 0
V15 0.348037679627816 0.348037679627816 0
V17 0.331753451882209 0.331753451882209 0
V19 0.318704133349498 0.318704133349498 0
V21 0.308114220905112 0.308114220905112 0
V23 0.299460095621806 0.299460095621806 0
V25 0.292375954106269 0.292375954106269 0
V27 0.286599807671959 0.286599807671959 0
V29 0.281940903418088 0.281940903418088 0
V31 0.278259296382938 0.278259296382938 0
V33 0.275452674381172 0.275452674381172 0
V35 0.273447719307893 0.273447719307893 0
V37 0.272194443356685 0.272194443356685 0
V39 0.271662583897594 0.271662583897594 0

TABLE A4. Pseudopotentials corresponding to the lowest Lan-
dau level Coulomb interaction and the closest to the SLL Coulomb
Hamiltonian that still approximates PH-Pfaffian

LLL Coulomb HSLLtoCV 7(α = 0.7)

V1 1 1
V3 0.634091267132277 0.71934784782728967
V5 0.506828037378007 0.63782321892435445
V7 0.438070153616146 0.46094866481263819
V9 0.394056175977230 0.49906367165022203
V11 0.363219697006843 0.39589729867230494
V13 0.340394925412771 0.36875881032909702
V15 0.322888152268689 0.34803767962781601
V17 0.309143471292678 0.33175345188220901
V19 0.298194956815023 0.31870413334949799
V21 0.289410570149645 0.30811422090511198
V23 0.282360535479264 0.29946009562180598
V25 0.276744644896987 0.29237595410626899
V27 0.272349828383384 0.28659980767195897
V29 0.269024340615875 0.28194090341808797
V31 0.266661617786382 0.27825929638293800
V33 0.265190083071634 0.27545267438117199
V35 0.264566839059207 0.27344771930789302

-90 -85 -80 -75 -70

Lz
A

4

5

6

7

8

9

-2
ln

(
i)

MV3
CV7

-110 -105 -100 -95 -90

Lz
A

4

5

6

7

8

9

10

-2
ln

(
i)

MV3
CV7

FIG. A7. Entanglement spectrum for 18 (Top) and 20 (Bottom)
electrons in the ground states of the two learned Hamiltonians.

TABLE A5. Overlaps between the ground states of the learned
Hamiltonians CV7 and MV3.

CV7 and MV3
〈ψCV 7|ψMV 3〉 (6) 0.99998591277202543
〈ψCV 7|ψMV 3〉 (8) 0.99510909086629048
〈ψCV 7|ψMV 3〉 (10) 0.99786862142518831
〈ψCV 7|ψMV 3〉 (12) 0.98280787588118113
〈ψCV 7|ψMV 3〉 (14) 0.98474351735983609
〈ψCV 7|ψMV 3〉 (16) 0.98701364088021704
〈ψCV 7|ψMV 3〉 (18) 0.99005884851780076
〈ψCV 7|ψMV 3〉 (20) 0.98352526730226702

MV3 and CV7 as shown in Fig. A9. In the course of such
interpolation the gap does not appear to close in the systems
studied (Fig. A8).

Appendix C: Stability and structure factors

Scaling of the structure factor and its form bear information
on the stability of the underlying state.

Scaling analysis for the anti-Pfaffian model wavefunction
is presented in Fig. A10. The state would appear gapless if
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without any background corrections.
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tem sizes in the ground state of the learned Hamiltonian CV7. Left
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ground states of learned Hamiltonians and of the LLL Coulomb in-
teraction.

only systems with less than 16 particles (as available for PH-
Pfaffian) were considered.

In Fig. A11 we plot the structure factors for all available
ground states of the learned Hamiltonian CV7 and for the
model anti-Pfaffian wavefunction.

Different topological states correspond to different ”shifts”
on the sphere that determines the number of fluxes corre-
sponding to a certain Ne in finite systems. Therefore one
can extract information about the stability of the PH Pfaffian
state (for which 2Ne = Nφ+1) under certain interaction by
comparing it’s ground state energy to the lowest energy at the
nearby shifts where one flux quantum is added or subtracted.
The necessary data is given in Table A6 and confirms the sta-
bility of the PH-Pfaffian state for the Hamiltonians CV7 and
MV3.
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TABLE A6. Learned Hamiltonians diagonalized at nearby shifts.
Following system sizes are aliased: 6,12 with ν = 2/5; 12,24 with
ν = 3/7; 16,31 with ν = 4/9; 12,22 with ν = 4/9; 18,38 with
ν = 3/7; 20,40 with ν = 4/9. Extra stability of 16,31 for MV3 is
likely because the state there corresponds to the LLL ν = 4/9 state.
For all other sizes in case of MV3 and for all available sizes for CV7
the PH-Pfaffian shift corresponds to the lowest ground state energy
w.r.t. the nearby shifts at ±2 flux quanta.

Ne,Nφ+1 E, CV7 L E, MV3 L
12,22 37.75779031942652 0 17.56284812507863 0
12,23 37.0547351356873 2 16.65270506190967 2
12,24 36.29631579008422 0 15.62965756265555 0
12,25 35.66441319316203 2 14.83880981496597 2
12,26 35.0112559096271 2 14.02912633787132 2

14,26 49.16430588912498 2 20.88725047201897 2
14,27 48.33780059455478 1 19.83464758433945 1
14,28 47.51196100367208 0 18.8376266029838 0
14,29 46.77664603481952 3 17.93643762732407 3
14,30 46.07713591920228 4 17.12495015897343 4

16,30 61.65843181189761 4 24.11892235185186 4
16,31 60.71255531205486 0 22.96860300250802 0
16,32 59.88278337534194 0 22.03566015418639 0
16,33 59.0611893949843 4 21.07776538314662 4
16,34 58.28352775461818 0 20.19318847939453 0

18,34 75.22172551641899 0 27.29104448189041 0
18,35 74.26146141886335 1 26.22629910173576 1
18,36 73.35589800221878 0 25.19975494811957 0
18,37 72.48241065038177 3 24.25618648940761 3
18,38 71.5903121524222 0 23.25195072313593 0

Appendix D: Interpolation between Coulomb and learned
Hamiltonians

In Figs. A12 and A13 we show the model wavefunc-
tion overlap and gap as the Hamiltonian interpolates be-
tween Coulomb interaction in the 2nd and lowest Landau
levels and the learned CV7 interaction. Besides the neutral
gap (difference between the lowest eigenvalues), for some
systems we also show the charge gap estimated as ∆c =

0.5
[
E0(NPHPf

φ + 1) + E0(NPHPf
φ − 1)

]
− E0(NPHPf

φ )

without any background corrections.

Appendix E: Optimization parameters

The following optimisation parameters were used to obtain
CV7. Step scheme: Hestenes; overlap weight: 1.5; (neu-
tral) gap weight: 0.725; weight for the deviation of the vari-
ational parameters from the reference point (SLL Coulomb
pseudopotentials): 0.0001; weight for the term enforcing uni-
form L = 0 ground state: 50000; weight for energy variance:
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FIG. A12. Interpolation between the Coulomb interaction in second
Landau level (α = 0) and the learned Hamiltonian CV7 (α = 1).
Shown are model wavefunction overlap with the ground state and
the neutral gap for Ne=12 (Top Left), Ne=14 (Top Right), Ne=16
(Bottom Left) and Ne=18 (Bottom Right). Charge gap is shown ad-
ditionally for 12 electrons. Red crosses indicate the datapoints where
the total angular momentum L 6= 0 for the lowest energy eigenstate.
For 12 electrons neither neutral nor charge gap appear to close.
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FIG. A13. Interpolation between the Coulomb interaction in the low-
est Landau level (α = 0) and the learned Hamiltonian CV7 (α = 1).
Shown are model wavefunction overlap with the ground state and
the neutral gap for Ne=12 (Left Panel), Ne=14 (Right Panel). Red
crosses indicate the datapoints where the total angular momentum
L 6= 0 for the lowest energy eigenstate. For 12 electrons the lowest
excitation has L = 2 for the learned Hamiltonian and L = 6 for LLL
Coulomb. Change of the lowest excitation coincides with the point
where the neutral gap changes the slope in the left panel.

4.

Appendix F: Spectra and composite fermions interpretation

Pairing of composite fermions and existence of closed shell
could also restrict the allowed total momentum L for the
low-energy excited many-body states for not-closed-shell Ne.
The problem reduces to finding possible fermionic many-body
states that can be formed from the particles in the ”valent”
Λ-level. The resulting numbers appear consistent with L of
the excited states that we obtain by diagonalising the learned
Hamiltonians (see Fig. A14).

When diagonalizing systems with odd electron number
for both learned Hamiltonians we get the following angular
momentum of the ground state: ((Ne;L)): (7;2.5), (9;2.5),
(11;2.5), (13;3.5), (15;3.5), (17;3.5). This is consistent with
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FIG. A14. Learned Hamiltonian spectrum for 12 (Top Left), 20
(Top Right), 14 (Bottom Left) and 18 (Bottom Right) electrons. For
each individual system size the spectra for different interactions are
shifted by a constant to make the ground state be at E = 0 and
rescaled such that their ”bandwidth” is equal.

any even number of electrons pairing to form an L = 0 state
and the single remaining electron being in the state with high-
est L̃ available to it: L̃ = 2.5 for ñ = 2 and L̃ = 3.5 for
ñ = 3.

In the composite fermions picture the systems with 14/18
electrons have two electrons/holes in the 8-orbital ñ = 3 Λ
level with angular momentum projection from -7/2 to 7/2. It
is natural to expect that the low energy spectrum of the two
systems is similar as they may be approximately related by the
particle-hole transformation within the ñ = 3 Λ level. Com-
parison of the data (Bottom Panel of Fig. A14) for 14 and 18
electrons for the same interaction, say CV7, confirm this. The
low-energy states are separated from the bulk of the spectrum
by a visible gap and only have even L = 2, 4, 6 (also true for
the not shown data with Ne=16). The states with odd L cor-
respond to the symmetric (”bosonic”) two-body states and are
absent in the low-energy spectrum.

The systems with 12 and 20 electrons correspond to filled
Λ-levels. Here (see Fig. A14), the low lying excitations are
one-electron states in an excited Λ-level. They have both
odd and even angular momenta and form a distinct disper-
sion curve separated from higher excitations where the second
electron is placed in the excited Λ-level.

Although the 20 electron ground states are similar between
the learned Hamiltonian CV7 and LLL Coulomb (overlap be-
tween them is 0.8557) we observe the difference in the spec-
trum (Fig. A14) : both odd and even L low-energy states
occur for the learned Hamiltonians while for LLL Coulomb
only even L states are present. Another striking difference is
in the structure factor (bottom panel of Fig. A11): the oscil-
lations at larger Q are much more pronounced in case of LLL
Coulomb.
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FIG. A15. Entanglement spectrum in the ground state of MV3. Top:
12el; Bottom: 14el. In both plots the data for the model PH Pf wave-
function is shown with black + symbols.

TABLE A7. Overlaps and energy variances for the second Landau
level Coulomb interaction and anti-Pfaffian wavefunction. The indi-
cated system sizes from 8 to 14 is the number of holes in the system.

SLL Coulomb
〈ψo|ψr〉 (8) 0.936407935222018
〈ψo|ψr〉 (10) 0.8910370857075266
〈ψo|ψr〉 (12) 0.8228169487809225
〈ψo|ψr〉 (14) 0.7060756836847729
(σrelE )2(8) 1.724761519337407e-05
(σrelE )2(10) 1.0722752038401e-05
(σrelE )2(12) 1.35787594338842e-05
(σrelE )2(14) 7.215644779918406e-06
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