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We study theoretically AB-stacked honeycomb bilayers driven by light in resonance with an in-
frared phonon within a tight-binding description. We characterize the phonon properties of honey-
comb bilayers with group theory and construct an electronic time-dependent tight-binding model for
the system following photo-excitation in resonance with an infrared phonon. We adopt an “atom-
ically adiabatic” approximation, introduced by Mohantya & Heller PNAS 116, 18316 (2019) to
describe classically vibrating nuclei, but obtain the Floquet quasienergy spectrum associated with
the time-dependent model exactly. We introduce a general scheme to disentangle the complex low-
frequency Floquet spectrum to elucidate the relevant Floquet bands. As a prototypical example, we
consider bilayer graphene. We find that light in the low-frequency regime can induce a bandgap in
the quasienergy spectrum in the vicinity of the K points even if it is linearly polarized, in contrast
with the expectations within the BornOppenheimer approximation and the high-frequency regime.
Finally, we analyze the diabaticity of the driven electron and driven phonon processes and found
contrasting effects on the autocorrelation functions at the same driving frequency: driven phonons
preserve the character of the initial state while driven electrons exhibit strong deviations within a
few drive cycles. The procedure outlined here can be applied to other materials to describe the
combined effects of low-frequency light on phonons and electrons.

I. INTRODUCTION

The study of periodically-driven systems has lead
to the prediction and discovery of novel phases of
matter1,2. For example, Floquet topological insula-
tors3,4, discrete time crystals5,6, hidden order phases7,
Kapitza pendulum-like many-body phases8, novel topo-
logical phases9–11 such as higher order Floquet topo-
logical phases11–16, and emergent Weyl semimetals and
Fermi arcs17–22. Optical cavities provide another path-
way to realize light-driven phases of matter 23–25. Exper-
imentally, Floquet states have been observed in driven
topological insulators via time-resolved photo-emission
spectroscopy26,27, and the light-induced anomalous Hall
effect has been reported in graphene28,29. Floquet states
have also been reported in photonic systems30–35.

Many of the theoretical works have focused on the
high-frequency regime, where analytical tools are avail-
able to derive effective models36–42. However, the low-
frequency regime is potentially more relevant for ex-
perimental applications since it allows driving with-
out electron resonances with high-lying states. Recent
theoretical developments 43–45 allow us to obtain non-
perturbative effective Hamiltonians and construct Flo-
quet states perturbatively. Studies in the low-frequency
regime have revealed breaking of Thouless pumping46,
emergence of Weyl semimetal states17,22, and a plethora
of large topological invariants38,47–56.

When considering low-frequency light driving an elec-
tronic system, the light can be in resonance with a
phonon, which for materials typically possesses excita-
tion frequencies in the THz regime. However, the ef-

fect of the light on the phonons and electrons is usually
not treated in a unified fashion. Recently, the phonons
have been considered in a Floquet picture revealing side-
band structure in phonon-dressed states in graphene57,
phonon-dressed spins carrying a net out-of-plane magne-
tization in MoS2

58, and phonon-induced Floquet second-
order topological phases59.

In this work, we study the effect of low-frequency light
in honeycomb bilayers taking into account both the elec-
tronic and phononic degrees of freedom within a time-
dependent and periodic tight-binding model. We char-
acterize the lattice vibrations using a group theory ap-
proach, and construct the time-dependent model based
on the symmetry-allowed real-space lattice displacements
corresponding to an infrared phonon’s irreducible repre-
sentation. The direct interaction of the electrons with
the laser pulse is introduced via minimal coupling.

In the derivation of our time-dependent tight-binding
model, we adopt the “atomically adiabatic” approxima-
tion introduced in Ref. [60] to describe lattice vibrations
in graphene associated with thermal excitations. In this
approximation, the in-plane atomic orbitals follow the
nuclei adiabatically, but the pz orbitals are treated ex-
actly within the tight-binding model. The atomically adi-
abatic approximation is distinct from the adiabatic Born-
Oppenheimer approximation, which has been shown to
fail to describe electron dynamics in graphene60,61. We
note that since we do not consider the back-action of
the dynamical electronic states on the phonons, inelas-
tic scattering constitutes an important correction to the
work here presented.

As a prototypical example, we consider AB-stacked bi-
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FIG. 1. (Color online) (a) Bilayer graphene lattice structure.
The red lines indicate the hopping between lattice sites. (b)
Brillouin zone with a highlighted high symmetry path.

layer graphene driven with infrared light in resonance
with a phonon. We show that the low-frequency Floquet
quasienergy spectrum develops a gap in contrast with
the expectation from an adiabatic Born-Oppenheimer
approximation. The procedure outlined here can be ap-
plied to other van der Waals materials to describe the
combined effects of low-frequency light on phonons and
electrons.

The remainder of the paper is organized as follows.
In section II we perform a group theory analysis of the
lattice vibrations, which apply to honey bilayers with
D3d point group. We discuss the symmetry properties of
the lattice that allow coherent photo-excitation. Based
on the phonon properties, we construct a tight-binding
model that captures the lattice distortions corresponding
to an infrared Eu phonon mode in section III. In sec-
tion IV, we describe the laser excitation of the phonons
and derive the effective time-dependence in the long-time
limit. In section V, we apply our procedure to bilayer
graphene, perform first principles calculations to deter-
mine the energy scales not accessible from the symmetry
arguments of group theory, and solve the correspond-
ing Floquet problem exactly. Finally, in section VI, we
present our conclusions.

II. GROUP THEORY ANALYSIS OF THE
LATTICE VIBRATIONS

We start studying the group theory aspects of the lat-
tice vibrations. We assume that the honeycomb bilayer
is AB-stacked and has D3d point group. In Fig. 1, we
show the lattice labeling the relevant hopping amplitudes
and sublattices, and the Brillouin zone (BZ). The ma-
trix representation for the twelve symmetry operations
of the space group are presented in Appendix A. Since
there are N = 4 atoms in the primitive unit cell lo-
cated at Wyckoff positions 2c ((0, 0, z), (0, 0,−z)) and 2d
((1/3, 2/3, z), (2/3, 1/3,−z)), we have 3N = 12 phonon
modes at the Γ point. The lattice vibration representa-
tion is given by Γlatt.vib. = 2A1g ⊕ 2A2u ⊕ 2Eg ⊕ 2Eu,
which we obtain using the Bilbao Crystallographic Sever
(BCS)62. Six modes are even under inversion (optical
Raman active A1g and Eg modes), and six modes are

2d 2c
A1 B2 B1 A2

A1g (0, 0, 1) (0, 0,−1) (0, 0,−1) (0, 0, 1)
A2u (0, 0, 1) (0, 0, 1) (0, 0, 1) (0, 0, 1)
Eg (−1, 0, 0) (1, 0, 0) (1, 0, 0) (−1, 0, 0)
Eu (−1, 0, 0) (−1, 0, 0) (−1, 0, 0) (−1, 0, 0)

TABLE I. Displacements that block-diagonalize the dynam-
ical matrix. The top row labels the Wyckoff position. The
second row indicates the carbon atoms sublattice label. The
vectors indicate the direction of the displacements in Carte-
sian coordinates, with the x−axis along the a crystallographic
axis. For the doubly degenerate E modes, the other partner
can be constructed by orthogonality.

odd under inversion (A2u, Eu), including three acoustic
modes and three optical modes.

In order to determine the set of lattice vibra-
tions that block-diagonalize the dynamical matrix,

we construct the projection operators63–65 P̂
(Γn)
kl =

ln
h

∑
Cα

(
D

(Γn)
kl (Cα)

)∗
P̂ (Cα), where Γn are the irre-

ducible representations, Cα are the elements of the group,

D
(Γn)
kl (Cα) is the irreducible matrix representation of el-

ement Cα, h is the order of the group, and ln is the
dimension of the irreducible representation. The result-
ing vectors are shown in Table I, derived with ISODIS-
TORT66. We obtain that shear modes, where the layers
move uniformly in opposite in-plane directions are allowed
by symmetry and possess irreducible representation (irrep)
Eg. Breathing modes with irrep A1g, where the layers move
away and towards each other are also allowed. This mode can
be constructed by subtracting the carbon atoms at Wyckoff
position 2c from the 2d carbon atoms. Next, we will discuss
the electronic tight-binding Hamiltonian.

III. STATIC TIGHT-BINDING MODEL

The spinless tight binding Hamiltonian for an undistorted
AB honeycomb bilayer can be written as67

H =−
∑
R

3∑
n=1

γ0(δ2
n,1)a†1(R)b1(R+ δn,1)

−
∑
R

3∑
n=1

γ0(δ2
n,2)b†2(R)a2(R+ δn,2)

− γ3

∑
R

a†1(R)b2(R+ δn,1)

− γ1

∑
R

a†2(R)b1(R) + h.c.,

(1)

where only intra-layer nearest neighbor hopping with ampli-
tude γ0 is considered. Here, γ1 describes the interlayer tun-
neling amplitude from the atoms lying directly on top of each
other: A2↔ B1, and γ3 is the tunneling amplitude from sub-
lattices B2 ↔ A1. In principle, γ3 should be δ2

n,1-dependent
to treat it on the same level as γ0. However, γ3 is already
small compared with γ0, and the distortions are assumed to
be small, which leads to higher order corrections that we ne-
glect.
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In Eq.(1), al (bl) is the annihilation operator for electrons
on sublattice A(B) and layer l = 1, 2, and R labels the real
space positions of the lattice sites on sublattice A of each
layer. The nearest-neighbor vectors at site R for layer l can
be written as

δn,l = (−1)laR
(

2πn

3

)
ŷ, (2)

which are labeled by the index n = 1, 2, 3, R(θ) is a rotation
matrix with angle θ and a is the nearest neighbor lattice spac-
ing. To be flexible enough to accurately describe distortions
to the lattice we consider a distance δ dependent hopping
function modeled as68

γ0(δ2) = c1e
−c2δ2 , (3)

where the parameters ci can be found via a fit to combined set
of first, second, and third nearest hopping parameters69,70.

Now we analyze the changes for the case of the lattice dis-
tortion induced by driving one of the in-plane IR phonon
modes with irrep Eu, constructed as discussed in Sec. II.
We may choose a coordinate system where only the nearest
neighbor vectors are affected, provided the shift is sufficiently
small. The shift then is in the direction ∆. Consequently,
the nearest neighbor vectors become

δn,l(A) = (−1)laR
(

2πn

3

)
ŷ +

∆

2
∆̂. (4)

where ∆ is the shift amplitude and the factor 1/2 was in-
troduced because the shift in the coordinate system, where
only the nearest neighbor vectors change, is twice of the shift
of the Eu mode. Now we replace the new nearest-neighbor
vectors into the Hamiltonian Eq.(1) to find the single particle
Hamiltonian

H =


0 f1(k,∆) 0 γ3g

∗(k,∆)
f∗1 (k,∆) 0 γ1 0

0 γ1 0 f2(k,∆)
γ3g(k,∆) 0 f∗2 (k,∆) 0

 , (5)

where the geometric factor for layer l = 1, 2 is

fl(∆) =

3∑
n=1

γ0(δ2
n,l)e

ik·δn,l(∆), (6)

and g(k,∆) =
∑3
n=1 e

ik·δn,1(∆). It is important to recognize
that introducing time-dependent lattice sites means that the
tight binding model now implicitly works with a time depen-
dent Wannier basis. This fact has important consequences.

We recall that to construct a tight binding model one usu-
ally works as follows. One starts from the full Hamiltonian
H and then chooses a set of Wannier orbitals to project on.71

This procedure can be described by a projection operator P .
For the time-independent case this makes it possible to com-
pute an effective tight binding Hamiltonian HTB = PHP .

For the time-dependent case we recall that, in principle, one
has to project the full Schrödinger equation including the time
derivative, −i∂t. For the time independent case this causes
no problem because [∂t, P ] = 0. For the time-dependent case,
however, one has to keep track of this term and one finds a
correction term HTB(t) = i(∂tP )P + PHP , which is similar
to the result in Ref. [72].

One should recognize that for a Floquet system this term
is relevant in the high frequency regime. Neglecting it in

the high frequency regime can lead to nonphysical results,
such as broken translation symmetry in momentum space. A
demonstration of this effect is given in appendix C, where we
consider a simple dimer model which shows how this effect
unravels analytically. The same effect appears in the high-
frequency regime for our current model.

In the general context, in order to obtain a physical ap-
proximation, one must restrict to frequencies satisfying the
condition ~Ω�W , where W is the bandwidth of the system.
In particular, here we propose to diagnose the regime of valid-
ity by comparing the quasienergies at a high-symmetry point
in the BZ (ε(k)) with the quasienergy at a momentum shifted
by a reciprocal lattice vector (ε(k +G1)). This criterion for
validity is motivated by the observation that if this differ-
ence is negligible, we have recovered translational symmetry
in momentum space. Translational symmetry is broken for
high frequency regimes where our approximation is not valid.
As Fig. 2 shows for a representative set of parameters, as the
drive frequency decreases, the difference approaches zero for
small enough lattice distortions characterized by ∆/a. We
note that our estimates, as explained later in the text, sug-
gest that experimentally one can achieve ∆/a < 0.05 and the
phonon frequency is Ω ≈ 0.2 eV. Therefore, the conditions
of the phonon of interest in this work are well approximated
neglecting the time dependence of the projection operator.
This diagnostic procedure could be implemented in other non-
interacting Floquet system with driven phonons to establish
the theory validity regime.

0 5 10 15 20
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FIG. 2. (Color online) Quasienergy difference |ε(k) − ε(k +
G1)| as a function of drive frequency for two lattice distor-
tion amplitudes ∆/a. For small-enough distortions, transna-
tional symmetry in momentum space is recovered in the low-
frequency regime.

IV. EFFECT OF THE INFRARED LASER
DRIVE AND TIME-DEPENDENT

HAMILTONIAN

When the laser is incident on the system normal to the
surface, the time-dependent Hamiltonian can be written as
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H(t) =


0 f1(k(t),∆(t)) 0 γ3g

∗(k(t),∆(t))
f∗1 (k(t),∆(t)) 0 γ1 0

0 γ1 0 f2(k(t),∆(t))
γ3g(k(t),∆(t)) 0 f∗2 (k(t),∆(t)) 0

 , (7)

where k(t) = k−A(t), and A(t) is the vector potential. This
form arises from coupling of the light with the electronics
degrees of freedom, valid for not too strong drives73. The
time-dependent model Hamiltonian Eq.(7) for both driven
electrons and phonons is the first result of this work.

The time-dependence of the lattice distortion ∆(t) is de-
rived through the the potential functional governing the IR
phonon QIR dynamics after photo-excitation and is given
by74,75

V [QIR] =
1

2
Ω2

IRQ
2
IR +Z∗ ·E0 sin(Ωt)F (t)QIR. (8)

where E0 is the electric field amplitude and Z∗ is the mode ef-
fective charge74,76,77, which determines the coupling strength
of the IR modes with the laser78,79.

In the most general case, the effective charge depends
on frequency77,80, Z(ω) = Zst + Zdyn(ω). The first term,

Zst = V/(|e|)∂ ~P/∂~uI , corresponds to the static contribution
where V is the area of the unit cell, e is the electron charge,
~P is the dipole moment, and ~uI is the ion displacement.
However, Zst is well-defined only for insulators. The second
dynamic contribution, Zdyn(ω), becomes relevant when the
electronic gap is smaller than the phonon frequencies such
as in bilayer graphene77,81. It originates from the polariza-
tion of the valence electrons induced by the atomic displace-
ments. Zdyn(ω) can be calculated within advanced DFPT
schemes77,80,82. Alternatively, we could adopt experimental
values.

In the following we assume that the laser profile has the
Gaussian form F (t) = exp{−t2/(2τ2)}, where τ2 is the vari-
ance. The differential equation governing the dynamics of
QR(i) becomes ∂2

tQR(i) + η∂tQR(i) = −∂QR(i)
V [QIR, QR(i)],

where η is a damping constant. In order to obtain the am-
plitude of the displacement for a given applied laser, we solve
the equation of motion numerically. The normal mode QR(t)
is related to the real-space displacement of atoms in the j-
direction via ∆j(t) = QIR(t)qj/

√
mC , where qj is the nor-

malized dynamical matrix eigenvector for the carbon atoms
obtained from first-principles calculations.

In the absence of damping, and for laser frequency in res-
onance with the Eu modes, Ω = ΩIR, and ΩIRτ � 1, the
solution is given by

QIR(t) =
√

2πZ∗E0τ/ΩIR cos (ΩIRt) sinh
[
(ΩIRτ)2] e−(ΩIRτ)2

≡ Qmax cos (ΩIRt) , (9)

where we assume83 QIR(−∞) = ∂tQIR(−∞) = 0, and

Qmax =
√

2πZ∗E0τ/ΩIR sinh
[
(ΩIRτ)2

]
e−(ΩIRτ)2 as bound-

ary conditions. Therefore, the maximum amplitude of the
phonon scales linearly with the applied electric field.

For simplicity, we assume the long-time time-dependence
∆(t) = ∆ sin (ΩIRt). Furthermore, the sinusoidal time-
dependence ensures that the undriven system is recovered for
no only Ω → 0 but also t → 0. For the electronic drive,
we consider the vector potential A(t) = Ã∆̂ sin (ΩIRt), where

Ã ≡ (e/~)aA = eE/(~ΩIR) is the dimensionless parameter
that defines the coupling strength with the electrons. The

factor ∆̂ arises from aligning the polarization with the phonon
displacement direction.

For periodically driven systems, H(t) = H(t + 2π/Ω).
such as the one defined here, and we can employ Floquet
theory to study the system. The remaining discrete time-
translation symmetry allows one to use the Floquet theo-
rem85 to write the wave functions as |ψ(t)〉 = eiεt|φ(t)〉, where
|φ(t + 2π/Ω)〉 = |φ(t)〉 and ε is the quasienergy. This wave-
function obeys the Floquet-Schrödinger equation

[H(t)− i∂t] |φ(t)〉 = ε|φ(t)〉. (10)

The exact solution can be written formally as UF =

T exp
{
−i
∫ 2π/Ω

0
H(s)ds

}
= e−iHF T . We employ the

extended-state picture which relies on an expansion of the
steady states in a Fourier series |φ(t)〉 =

∑
n e

inΩt |φn〉
which leads to

∑
m

(
H(n−m) + δn,mΩm

)
|φm〉 = ε |φn〉.

The Hamiltonian Fourier modes are given by H(n) =∫ 2π

0
dτ/(2π)H(τ)e−iτn. In the next section, we discuss the

application to bilayer graphene and discuss the effects in the
electronic band structure.

V. APPLICATION TO BILAYER GRAPHENE

Now, we apply the procedure discussed before to bilayer
graphene, which belongs to the space group P 3̄m1 (No. 164)
with D3d point group at the Γ point86. Experimental ev-
idence indicates that the Frozen phonon picture (adiabatic
limit) fails to describe the phonon properties in graphene as
a function of the carrier density because the electron relax-
ation time is larger than the phonon frequency.61 However,
in bilayer graphene, time- and angle-resolved photoemission
spectroscopy experiments revealed carrier dynamics that were
explained within the frozen phonon picture.87. Also, enhance-
ment of the electron-phonon coupling in bilayer graphene after
phonon excitation has been reported88. Theoretical studies in
graphene57 and transition metal dichalcogenides58 employing
first principles calculations indicate that the electronic struc-
ture of phonon-driven systems can be captured with Floquet
theory. In this section, we analyze the electronic dynamics
within our time-dependent tight-binding model.

First, we calculate the phonons frequencies and eigenmodes
at the Γ point. It is enough to consider regions near the Γ
point because photons carry momentum that is small com-
pared to the size of the Brillouin zone. For this, we employ
density-functional perturbation theory (DFPT)82, imposing
the acoustic sum rule to the dynamical matrix, as imple-
mented in QUANTUM ESPRESSO89–91. Table II shows
the phonon frequencies, while the lattice displacements are
shown in Fig. 4. The first observation is that the DFPT
lattice displacements are consistent with the group theory re-
sults. We also compute the electronic band structure within
density functional theory (DFT). The details of the calcu-
lation are presented in Appendix B . In Fig. 3, we show
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FIG. 3. (Color online) AB-stacked bilayer graphene band
structure with corresponding irreducible representations at
the high-symmetry points Γ, K, and M. The symmetry anal-
ysis was performed with IrRep92.

Eg Eg

Eg

Eg
A1g

A1g

A2u

EuEu

FIG. 4. (Color online) Bilayer graphene Γ-point real-space
lattice vibrations. The low-frequency shear modes (top-left
corner) are relevant for the non-linear phonon processes.
These figures were created with VESTA.

the bands along a high-symmetry path with their correspond-
ing irreducible representations at the special high-symmetry
points Γ, K, and M obtained with IrRep92. We note that adi-
abatic and nonadiabatic phonon frequencies can be computed
following the approach introduced in Ref. [93].

We will drive the Eu mode with frequency Ω = 0.2 eV,

Frequency (THz) irrep
1 0 A2u

2,3 0 Eu
4,5 0.581536 Eg
6 2.854691 A1g

7 26.045346 A1g

8 26.122256 A2u

9,10 46.873384 Eg
11,12 47.027640 Eu

TABLE II. Γ point phonon modes for bilayer graphene with-
out SOC.

with ∆̂ = ∆/|∆| ≈ (0.049,−0.998). The next step is to cal-
culate the Born effective charges, which determine the cou-
pling strength between the phonon and the incident laser.
Here, we will adopt the value measured by Kuzmenko et.
al. in Ref. 94 for the Eu mode with frequency Ω = 0.2 eV,
Z∗ ≈ 0.25e/

√
mC , where e is the electron charge and mC is

the carbon mass, similar to the equivalent mode in graphite95.
With the Born effective charges for bilayer graphene, we can
compute the relative displacement induced for a given laser
peak electric field E0 and laser pulse width τ . Away from
the regime ΩIRτ � 1, we need to solve the equation of mo-
tion derived from the potential (8) numerically. In Fig. 5,
we plot ∆/a as a function of the peak electric field E0 for
several values of the laser pulse width τ . The maximum am-
plitude still scales linearly with the applied electric field E0

in this regime. In particular, for τ = 0.8 ps and peak electric
field ∼ 1MV/cm we can reach distortions of about 5% of the
carbon-carbon distance (∆/a ≈ 0.05). We assume that the
effects of non-linear phonon couplings75,83,96–109 are negligi-
ble.

In the tight-binding model, we use the nearest neighbor,
next nearest neighbor and third nearest neighbor distances
a,
√

3a, 2a and we find the coefficients c1 ≈ 12 eV and c2 ≈
1.5a−2. For the interlayer tunneling, we use γ1 = 0.361 eV
and γ3 = 0.283 eV.110 These parameters fully define the time-
dependent Hamiltonian. In the next sections, we discuss a
low-energy approximation for the tight-binding model, and
solve the full model exactly within a Floquet scheme in the
extended space.

A. Low-energy approximation

Before we proceed with the solution in the low-frequency
regime, and to get intuition about the model, we consider the
Hamiltonian near the K point and for small lattice displace-
ments ∆. We find that the effective Hamiltonian is given
by

H(t) ≈
(
~vF (k +B(t) +A(t))σ T (k +A(t))

T †(k +A(t)) ~vF (k −B(t) +A(t))σ

)
,

(11)

where ~vF = 3/2aγ0 = 3/2ac1e
−a2c2 . The diagonal blocks

describe the graphene layers with linearized bands near the
K point. They include the usual electromagnetic vector
potential A(t) introduced via minimal substitution as well
as an additional vector potential B(t) = c2(∆2,∆1) (note

(∆1,∆2) = ∆∆̂) induced by lattice distortion. The addi-
tional vector potential B(t) has different signs for different
layers. Lastly, the off-diagonal blocks

T (k) =

(
0 ~v3(kx + iky)
γ1 0

)
, (12)

where ~v3 = 3/2aγ3, describe the interlayer hopping including
trigonal warping. Now, we proceed with the solution of the
low-frequency Floquet problem.

B. Exact quasienergy spectrum

To study the effect of infrared light in bilayer graphene,
we solve the Floquet-Schrödinger equation in extended space
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FIG. 5. (Color online) ∆/a as a function of the laser pulse
width τ and the peak electric field E0, where a ≈ 0.142 nm
is the interlayer carbon-carbon distance.

exactly. Within this approach, the low frequency regime in-
volves many overlapping Floquet modes, which leads to a
dense quasienergy spectrum with no easy comparison with
the original band structure. This, however, can be avoided
if one chooses to plot bands for judiciously chosen Floquet
copies. After all, only one Floquet copy is necessary to de-
scribe the physical problem. Treating the driven problem for
N Floquet copies, we recall that one finds an eigenvector of
the form ψ = (ψ−N/2, ..., ψ0, ψN/2), where ψm is the wave-
function corresponding to the sector of Floquet copy m.

For the undriven system every solution ψ will have only
one of the ψm 6= 0. In this case, the spectrum for Floquet
copy zero for a Hamiltonian of dimension d can be obtained if
we pick all d eigenvectors with spectral weight |〈ψ0|ψ0〉|2 = 1.
For the driven case, if the drive is sufficiently weak, the spec-
tral weight |〈ψ0, ψ0〉|2 will be especially large for d of the
eigenvectors. In this case one may plot the quasi-energies
corresponding to these eigenvectors and may obtain a band
structure that can easily be compared to the bandstructure
of the undriven system. This is similar to the approach taken
in Ref.[111], where instead of taking the d largest contribu-
tions, contributions up to an arbitrary cut-off in the averaged
density of states were taken. Our approach is more robust
and can be used to check for convergence of the Floquet band
structure. All our results are converged with respect to the
number of Floquet modes N , and typically we require N ' 20.

In Fig. 6, we plot the quasienergy spectrum in the vicin-
ity of the −K point for bilayer graphene driven with a laser
pulse of duration τ = 0.3 ps, Ω = 0.2 eV in resonance with
the Eu phonon mode, and a set of values of the peak elec-
tric field E0. As E0 increases, the quasienergy gap shows a
non-monotonous behavior. To elucidate the behavior of this
gap as a function of the peak electric field, in Fig. 7, we
plot the quasienergies for the two central bands at the −K
and Γ points in panels (a) and (b). At the −K point, the
applied laser pulse induces a splitting of the quasienergies as
the peak electric field increases. On the other hand, at the
Γ point, presents a negligible effect (|ε(Γ)| ≈ 0.4812 eV).
The quasienergy gap near the Floquet zone center is shown
in Fig. 7 (c) as a function of the peak electric field, where
we consider the effect of driven phonons and electrons. The
behavior is non-monotonic. For comparison, in Fig. 7 (d),

FIG. 6. (Color online) Light-driven bilayer graphene exact
quasienergies in the vicinity of the −K point. The pulse du-
ration is τ = 0.3 ps and the frequency Ω = 0.2 eV. The peak
electric field intensities E0 are (a) 0.0, (b) 0.2,(c) 0.3, and (d)
0.35 MV/cm.

FIG. 7. (Color online) Light-driven bilayer graphene
quasienergy difference at the (a) −K and (b) Γ points as
a function of the peak electric field for a pulse duration
τ = 0.3 ps. The quasienergy gap when considering both
driven phonons and electrons is shown in panel (c), while
(d) shows the gap when considering only driven phonons.

we show the quasienergy gap obtained when considering only
driven phonons. For the short pulse considered, the change
in the quasienergy induced by the laser is dominated by the
direct coupling with the electrons.

C. Diabaticity of the electronic dynamics

In the previous section, we discussed the exact solution
of the time-dependent Schrödinger equation, |ψα(t)〉, from a
Floquet perspective. In this section, we compare the exact so-
lution with the adiabatic Born-Oppenheimer (ABO) approx-
imation, |ψAB0

α (t)〉, defined as the solution of the eigenvalue
equation

Ĥ(s) |ψAB0
α (s)〉 = Eα(s) |ψAB0

α (s)〉 , (13)



7

FIG. 8. (Color online) (a) Overlap probability Pn(s) of the
ABO approximation with the exact electronic state following
laser excitation of the phonons for E0 = 0.35 MV/cm and
τ = 0.8ps at the −K point. Gray and orange colors indicate
bands n = 2 and n = 3 respectively. The overlap probability
for bands n = 1 and n = 4 remains zero. (b) Autocorrelation
function Ak(s) for the exact electronic state. In panels (b)
and (d), we show the corresponding probability Pn(s) and
autocorrelation for the case where electrons couple to the laser
directly.

where Eα(s) and |ψα(s)〉 are the instantaneous energies and
eigenstates for the rescaled time s = Ωt. Since momentum re-
mains a good quantum number in the presence of the Γ-point
phonon we consider in this work, we will consider as our initial
state |ψ0〉 = |ψAB0

α=−K,2(s = 0)〉. This corresponds to a state
with momentum −K and band index n = 2. In the numerical
calculations, we introduce an infinitesimal symmetry break-
ing term that allows to define unambiguously the band in-
dex. The deviation of the ABO approximation solution from
the exact electronic wavefunction is quantified by the over-
lap probability Pn(s) = |〈ψ(s)|ψAB0

n (s)〉|2. We obtain the
exact electronic wavefunction by solving the time-dependent
Schrödinger equation exactly within a numerical approach.
As an example, we consider the dynamics resulting from a
laser pulse with peak electric field E0 = 0.35 MV/cm and
duration of 0.8 ps. In Fig. 8(a), we show Pn(s) assuming first
that only phonons couple to the laser. In less than one full cy-
cle (s/(2π) = 1) the probability Pn=2(s) deviates from unity,
and Pn=3(s) acquires non-zero values, indicating the diabatic
nature of the exact electronic wavefunction |ψ(t)〉. This result
is expect from the previous section’s analysis, which revealed
the formation of an electronic gap in the quasienergy spec-
trum.

Figure 8(b) shows the square modulus of the autocorrela-
tion Ak(s) = |〈ψ(s)|ψ0〉|2, which quantifies the preservation
of the electronic character, defined in Ref60. For the first
five cycles (s/(2π) = 5), the autocorrelation remains close
to unity, preserving the electronic state character for several
vibrational cycles. This behavior suggests a diabatic time
evolution of the electronic states following laser excitation,
when only the lattice vibrations are considered. This result
is expected following the study presented in Ref.60, where
thermally-excited phonons leads to a diabatic time-evolution
and preservation of the electronic initial state character. Pan-

FIG. 9. (Color online) (a) Averaged overlap probability P̄n=2

map in the Brillouin zone of the ABO approximation with
the exact electronic state following laser excitation for E0 =
0.35 MV/cm and τ = 0.8ps. (b) Averaged autocorrelation
function Āk for the exact electronic state.

els (c) and (d) show Pn(s) and Ak(s) taking into account
the direct coupling of the electron with the laser. While the
ABO approximation also deviates from the exact electronic
wavefunction, the exact electronic wavefunction does not re-
tain its initial state character, as shown by the deviation of
Ak(s) from unity in one cycle. Thus, although both processes
(driven electrons and driven phonons) occur at the same fre-
quency, their impact on the electronic dynamics is completely
different.

At the Γ point, the initial state |ψ0〉 = |ψAB0
α=Γ,2(s = 0)〉

leads to probabilities Pn(s) ≈ δn,2, which supports an adia-
batic time-evolution for electronic states away from the de-
generacy points for both direct electronic and phononic cou-
pling with the laser. In Fig. 9 we show the diabaticity maps
across the whole Brillouin zone. Deviations are mainly ob-
tained only at the zone boundary due to the relative energy
difference between the bilayer graphene bands in equilibrium.

VI. CONCLUSIONS

In this work, we derived a time-dependent tight-binding
model Hamiltonian for phonon- and electron-driven honey-
comb bilayers with point group D3d assuming an “atomi-
cally adiabatic” approximation. We applied our model to
AB stacked bilayer graphene driven with infrared light, and
solved the time-dependent model exactly, without invoking
the adiabatic Born-Oppenheimer approximation. We showed
that the exact electronic quasienergy spectrum develops a gap
near the −K point, in contrast with the expectation from the
adiabatic approximation. We studied the behavior of the gap
as a function of the peak electric field in the laser pulse, and
compared the effect of driving the electrons and driving the
phonons. Within our time-dependent tight-binding model, we
find that the electronic gap is dominated by the effect of the
direct coupling of the laser with the electrons and not by the
vibrating nuclei. We analyzed the diabatic nature and auto-
correlation of the electronic dynamics for both driven electron
and driven phonons separately. In both cases, the adiabatic
solution deviates from the exact solution within one cycle.
However, the electronic autocorrelation showed contrasting
behavior. When driving only the phonons, the exact solution
remains highly correlated with the initial state. This result
is in agreement with previous studies on thermal phonons
in graphene. When including the effect of the laser on the
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electrons, the exact electronic wavefunction quickly deviates
from the initial state. The procedure here detailed to derive
time-dependent tight-binding models for driven systems can
be applied to other van der Waals materials to uncover the in-
terplay of driven phonons and electrons in the low-frequency
regime, accessible in current experimental setups.
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Appendix A: Electronic band representations

Bilayer graphene corresponds to the space group P 3̄m1
(No. 164). The symmetry operations in Seitz notation and
in the Standard setting are112:

1) {1 | 0} =

 1 0 0 0
0 1 0 0
0 0 1 0


2) {−1 | 0} =

 −1 0 0 0
0 −1 0 0
0 0 −1 0


3)
{

3+
001 | 0

}
=

 0 −1 0 0
1 −1 0 0
0 0 1 0


4)
{
−3+

001 | 0
}

=

 0 1 0 0
−1 1 0 0

0 0 −1 0


5)
{

3−001 | 0
}

=

 −1 1 0 0
−1 0 0 0

0 0 1 0


6)
{
−3−001 | 0

}
=

 1 −1 0 0
1 0 0 0
0 0 −1 0


7) {2110 | 0} =

 0 1 0 0
1 0 0 0
0 0 −1 0


8) {m110 | 0} =

 0 −1 0 0
−1 0 0 0
0 0 1 0


9) {2100 | 0} =

 1 −1 0 0
0 −1 0 0
0 0 −1 0



LDA GGA LDA Ref.122 GGA Ref.122

a (Å) 2.44 2.46 2.44 2.46

d (Å) 3.30 3.25 3.34 3.20

TABLE III. Lattice constant and distance between the layers
for bilayer graphene obtained with LDA and GGA approxi-
mations. Experimentally, d = 3.35 (Å) for graphite123.

10) {m100 | 0} =

 −1 1 0 0
0 1 0 0
0 0 1 0


11) {2010 | 0} =

 −1 0 0 0
−1 1 0 0

0 0 −1 0


12) {m010 | 0} =

 1 0 0 0
1 −1 0 0
0 0 1 0


The first three columns (from left to right) define the three-

dimensional rotation matrix. The last column corresponds to
translations. The Γ point posses the 12 symmetries listed
above. The K point has symmetries 1, 3, 5, 7, 9, 11. Finally,
the M point posses symmetries 1, 2, 11, 12.

Appendix B: Bilayer graphene band structure from
first principles

To determine the electron and phonon properties, we em-
ploy density functional theory (DFT)113 as implemented
in QUANTUM ESPRESSO89–91. We two approximation
schemes for the exchange and correlation potentials: 1) the
local density approximation (LDA)114; and 2) the generalized-
gradient approximation (GGA) 115 supplemented with van
der Waals interactions116,117. In both cases, we consider pro-
jector augmented-wave (PAW) pseudo-potentials118,119. We
introduce a vacuum of 15Å to avoid interaction effects be-
tween supercells.

First, we perform a variable cell relaxation calculation to
obtain our optimal lattice parameters. We employ a kinetic
energy cutoff for the wave functions of 45 Ry and 540 Ry
for the charge density. The Brillouin zone (BZ) was sampled
with a 34× 34× 1 grid, dense enough for the convergence of
our results. We use a smearing for the Fermi distribution of
10−3 Ry120. The forces between the atoms were converged to
1 meV/Å, and the total energy to 0.05 meV. Table III shows
our result for the lattice constants and separation between the
graphene layers. The lattice constant a and distance between
the layers d are in good agreement with other equivalent DFT
calculations121,122 and experiments123. In Fig. 1, we show
the band structure along a high-symmetry path in the BZ.
Near the K and K′ points, we obtain quadratic band touching
points at the Fermi level.

Appendix C: The problem with a time-dependent
Wannier basis in the high frequency regime

In this section we will consider a simplified problem that
will allow us to understand what nonphysical behaviour can
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FIG. 10. Dimer with period 1 and hopping strength g = 1.
The distance between atoms a and b in a unit cell is alternat-
ing as d and 1− d.

arise in the Floquet case if we consider a time-dependent Wan-
nier basis and do not correct by a term i(∂tP )P .

Let us consider the dimer depicted in figure 10. We assume
that electrons moving on this lattice are described by the
simple tight binding Hamiltonian

H =
∑
i

a†i bi+d + a†i+1bi+d + h.c. (C1)

In momentum space it can be rewritten as

H = (a†k, b
†
k)hk

(
ak
bk

)
(C2)

with

hk =

(
0 eikd + eik(d−1)

e−ikd + e−ik(d−1) 0

)
. (C3)

Now the eigenvalues one finds for hk are

E = ±2 cos(k/2) (C4)

and are periodic with period 4π of the Brillouin zone as one
would expect regardless of value d.

Next we consider the case where d = cos(ωt)d0 and the
position of site b changes with time. In the adiabatic limit
where i(∂tP )P can be neglected we find that the instanta-
neous energies all have the periodicity of the Brillouin zone
and therefore at first everything is fine. However, when we
take the high frequency regime ω →∞ where i(∂tP )P cannot
be neglected we will see totally different behaviour.

In this limit the Floquet Hamiltonian is just given by the
Hamiltonian time averaged over one period and one finds that

hF,ω→∞k =

(
0

(
1 + e−ik

)
J0(d0k)(

1 + eik
)
J0(d0k) 0

)
(C5)

For the eigenvalues one obtains

E = ±2 cos

(
k

2

)
J0(d0k). (C6)

Therefore, one finds the nonphysical result that the quasiener-
gies are not periodic in momentum space anymore despite the
system being periodic at all times.

This effect is also present in the tight-binding model studied
in the main text. In Fig. 11, we plot the a quasienergy
band in the first Floquet zone for more than one Brillouin
zones to reflect the momentum space periodicity for a set
of representative parameters. In the high-frequency regime,
the periodicity is lost, while in the low-frequency regime (not
necessarily the adiabatic limit) the periodicity is recovered.

FIG. 11. (a) Momentum space periodicity is lost in the high-
frequency regime for driven bilayer graphene. In the low-
frequency regime (b), the periodicity is recovered. The red
dashed line corresponds to the first Brillouin zone.

Appendix D: Low-frequency momentum space
periodicity for driven bilayer graphene

In the main text, we showed that the full time-dependet
tight-binding Hamiltonian is given by HTB = i(∂tP )P +
PHP , where P is the projection operator P onto the suit-
able Wannier orbitals71. One of the most striking effects of
the neglecting the term i(∂tP )P appears in the loss of momen-
tum space periodicity in the high-frequency regime. In Fig.
11 we show the Fourier transform in the (a) high-frequency
regime (~Ω ≈ 10 eV), and in the (b) low-frequency regime
(~Ω ≈ 1 eV). The phonon drive parameters is ∆/a = 0.8,
much stronger than a realistic lattice distortion achievable
in experiments, ∆/a = 0.05. The laser coupling with the
electrons is not considered since it does not introduce time-
dependence in the projector operator P .
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57 H. Hübener, U. De Giovannini, and A. Rubio, Nano Let-

ters 18, 1535 (2018).
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