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Dirac semimetals lack a simple bulk-boundary correspondence. Recently, Dirac materials with
four-fold rotation symmetry have been shown to exhibit a higher order bulk-hinge correspondence:
they display “higher order Fermi arcs”, which are localized on hinges where two surfaces meet and
connect the projections of the bulk Dirac points. In this paper, we classify higher order Fermi
arcs for Dirac semimetals protected by a rotation symmetry and the product of time-reversal and
inversion. Such Dirac points can be either linear in all directions or linear along the rotation axis
and quadratic in other directions. By computing the filling anomaly for momentum-space planes
on either side of the Dirac point, we find that all linear Dirac points exhibit higher order Fermi
arcs terminating at the projection of the Dirac point, while the Dirac points that are quadratic in
two directions lack such higher order Fermi arcs. When higher order Fermi arcs do exist, they obey
either a Z2 (four-fold rotation axis) or Z3 (three- or six-fold rotation axis) group structure. Finally,
we build two models with six-fold symmetry to illustrate the cases with and without higher order
Fermi arcs. We predict higher order Fermi arcs in Na3Bi.

I. INTRODUCTION

Topological semimetals encompass a large family of
materials exhibiting band crossings near the Fermi level
[1], such as Weyl [2–9], Dirac [10–14] and multifold
fermions [15–17]. One of the novel features of Weyl and
other chiral semimetals is their bulk-edge correspondence
in the form of surface Fermi arcs [2]. The surface Fermi
arcs are a direct consequence of the nontrivial bulk topol-
ogy of a Weyl fermion, i.e., that it is a source of Berry
curvature.

A similar bulk-edge correspondence does not exist
for Dirac semimetals because they are not a source of
Berry curvature [18–20]. However, recently, certain Dirac
semimetals have been shown to have a higher order bulk-
edge correspondence, in the form of higher order Fermi
arcs (HOFAs) [21]. HOFAs are 1D mid-gap modes that
are localized on the “hinges” of a crystal where two sur-
faces meet [21–23]. The HOFAs connect the projection
of the bulk Dirac points in the 1D rod BZ (i.e., the BZ
of a crystal finite in two dimensions and infinite in the
third), analogous to how surface Fermi arcs connect the
projection of bulk Weyl points on the surface BZ. An
example is shown in Figure 1. Ref. [21] proved that for
Dirac fermions in a crystal with a four-fold rotation sym-
metry, HOFAs are required. Thus, the HOFAs furnish a
“bulk-hinge correspondence” for these Dirac semimetals.

Refs [21, 22] were limited to the case of four-fold rota-
tional symmetry and relied on the nontrivial quadrupole
index [24, 25] specific to that case. However, Dirac cones
can also be protected by three- and six-fold rotations. In
this work, we derive a more general formulation of the
bulk-hinge correspondence that applies to any symme-
try group, thus answering the question: when do Dirac
fermions have HOFAs?

Our strategy is to compute the filling anomaly [26, 27]
for 2D symmetry-preserving momentum-space slices. A
nontrivial filling anomaly in an insulating plane requires

the existence of mid-gap states localized at corners where
two edges meet. Thus, when the filling anomalies of
planes on either side of the Dirac point are different, the
plane on at least one side of the Dirac point must have a
non-zero filling anomaly and accompanying corner states.
The corner states coming from adjacent planes together
form the HOFA. Thus, the bulk-hinge correspondence
that results from the change in filling anomaly across the
Dirac point is analogous to the bulk-edge correspondence
that results from the change in Chern number across a
Weyl point.

Our main result is that all linear Dirac points protected
by a three-, four- or six-fold rotation symmetry, along
with the product of time-reversal and inversion symme-
tries, have HOFAs that terminate at the projection of the
Dirac point; we use linear Dirac point to refer to a dis-
persion that is linear in all three directions. A six-fold ro-
tation symmetry can also protect quadratic Dirac points,
which are linear along the rotation axis but quadratic in
other directions; we find that the quadratic Dirac points
do not have HOFAs. These results are derived in Sec. II.
An additional consequence of our work is that multifold
fermions at time-reversal invariant momenta [15] do not
have HOFA that terminate at the projection of the bulk
gapless point because such HOFA would violate time-
reversal symmetry. Thus, it remains to find a bulk-edge
or bulk-hinge correspondence for these fermions.

Our results serve as a topological classification: a Dirac
fermion can be classified by how the filling anomaly
changes across the Dirac point, which is summarized in
Table II. We now compare this classification to previous
classifications of Dirac points. In Ref. [28], Dirac points
are classified by the change in symmetry of the valence
bands adjacent to the Dirac point. This is similar to our
approach, in that we both examine the valence bands ad-
jacent to the Dirac point. However, the classification in
Ref. [28] is a classification in momentum space, while our
classification uses momentum space eigenvalues to deter-
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mine the position of Wannier centers in real space. As a
result, the classifications differ in their definition of the
trivial phase: in Ref. [28], the trivial phase corresponds
to the absence of a Dirac point, while the trivial phase in
our classification is defined by the filling anomaly remain-
ing constant across a particular plane and, equivalently,
no HOFAs that terminate at the projection of the Dirac
point.

In Ref. [29], Dirac points are classified by the change
in the 2D topological invariant of each TRIM plane (i.e.,
the Z2 and mirror Chern indices) when a Dirac point
is between them. We rederive and extend these results
using topological quantum chemistry [30–35] (Sec. III)
and compare this classification to ours in Table V
(Sec. IV). Recently, a third classification was introduced
in Ref. [36], where Dirac points are classified by their
non-Abelian Berry flux. It remains an open question to
determine whether the physical observables of this clas-
sification correspond to higher order Fermi arcs.

Finally, we illustrate our results with several examples.
In Sec. V, we build two four band models protected by
six-fold rotation symmetry, with and without HOFAs.
We discuss the application to Na3Bi and predict the ex-
istence of higher order Fermi arcs.

II. HIGHER ORDER FERMI ARCS VIA THE
FILLING ANOMALY

As explained in Sec. I, three dimensional Dirac
semimetals do not have topologically protected surface
Fermi arcs [18, 19], but can have 1D HOFAs on hinges,
as illustrated schematically in Figure 1(c).

At the crux of our analysis of HOFAs is the filling
anomaly [26, 27]. The filling anomaly η is defined for an
insulator on a symmetrically terminated lattice that is in
an atomic limit phase (i.e. admits localized symmetric
Wannier functions [30]). It is given by the difference
between the ion charge and the electron charge in the
valence bands:

η = |#ion| − |#electron|, (1)

in units of the electron charge |e|. The filling anomaly
is only defined modulo an integer given by the minimal
number of electrons that can be added or removed to the
boundary of the system while preserving crystal symme-
try. For example, in a finite 2D lattice with four-fold
rotational symmetry, one can always add (or remove)
four electrons to the corners; thus, the filling anomaly
is defined mod 4. In the presence of time-reversal sym-
metry, electrons must be added in pairs, and the filling
anomaly would be defined mod 8. The filling anomaly
also depends on the choice of lattice termination [37]. In
the presence of an n-fold rotation symmetry, we will al-
ways consider a lattice termination whose cross-section
is a regular n-gon.

When η in Eq. (1) is nonzero, it means that the finite-
size insulator cannot be both neutral and symmetric.

This conflict is resolved by the presence of mid-gap states.
If the crystal is bulk-insulating and has no polarization
(surface charge), then the mid-gap states must be local-
ized at corners. Thus, the filling anomaly defines the
corner charge [26]:

Qc =
η

n
|e| (2)

for a crystal with an n-fold rotation axis. Since we do
not impose particle-hole or chiral symmetry, the corner
states are not required to be at exactly zero energy; fur-
ther, their energy can be manipulated by a surface or
corner potential. Nonetheless, the filling anomaly is ro-
bust because it is defined modulo the number of corner
states and thus does not change when energy of the cor-
ner states changes [21].

The filling anomaly in 2D can be a useful tool to under-
stand higher order topological insulators [24, 25, 37–51],
as well as semimetals, in 3D. For example, a Z8 higher
order topological insulator has a filling anomaly η = 4
mod 8 at one of its two TRIM planes (kz = 0, π), in-
dicating in which plane the helical hinge modes cross
[37, 38]. As discussed in Sec. I, the filling anomaly also
explains HOFAs. Specifically, in a 3D semimetal, the
2D momentum-space planes with fixed kz that do not
contain the Dirac point are 2D insulators. If the fill-
ing anomaly of a 2D plane is non-zero, then it will have
mid-gap corner states. Since the filling anomaly is ro-
bust to perturbations that do not close the gap, the fill-
ing anomaly must remain constant when continuously
varying kz. The corner states from all such planes make
up the HOFA. In four-fold symmetric Dirac semimetals,
it was shown that the filling anomaly changes when kz
moves across the Dirac point [21, 37]. Thus, the HOFAs
are terminated by the planes containing the Dirac points.

In this work, we will generalize this logic to determine
when Dirac points have HOFAs in other space groups.
Specifically, HOFAs begin/end on a Dirac point exactly
when the filling anomaly of 2D momentum-space planes
changes across it. We will classify the Dirac points that
have this property. By doing so, we show that not all
Dirac points have HOFAs. We remark here that such a
jump is only a sufficient condition. If there is a non-zero
filling anomaly on both sides of the Dirac point, then
there will also be HOFAs; however, these HOFAs are not
associated with the Dirac points and do not terminate at
them.

A. Symmetry of kz slices: magnetic layer groups

We consider Dirac points protected by the combina-
tion of time reversal, T , with T 2 = −1, inversion, I,
and an n-fold rotation symmetry, Cn, with n = 3, 4, 6.
We discuss these and other symmetries that can protect
Dirac points in more detail in Appendix A. We are only
interested in Dirac points not at a TRIM, since the fill-
ing anomaly, η, will not change across these Dirac points
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FIG. 1. Schematic diagram showing HOFAs. (a) Hexagonal unit cell of space group P6/m. (b) Each plane with fixed kz 6= 0, π
is regarded as an effective 2D system with the symmetry of the magnetic layer group p6/m′. After this dimensional reduction,
interlayer hopping between atoms separated by a unit cell is viewed as a kz-dependent onsite potential: t′ = teikz + t†e−ikz .
Other interlayer hopping terms are similarly projected to in-plane hopping terms. (c) When the crystal is terminated in a
C6-symmetric rod geometry, the 2D planes with nontrivial filling anomaly contribute corner states to HOFAs of the 3D model.
Red lines indicate HOFAs that could appear between two Dirac points (whose projection onto the hinges is labelled by crosses).

because η is invariant under time-reversal. Notice this
implies HOFAs cannot terminate at the projections of
multifold fermions at TRIMs in time-reversal symmetric
systems. This does not contradict Ref. [52] where the
HOFAs do not terminate at the six-fold fermion.

We take the n-fold rotation axis to be the ẑ direction.
Thus, to determine the presence/absence of HOFA, we
will compute the filling anomaly for 2D planes in the
BZ with fixed kz. The symmetry group of a 2D slice
of the BZ is described by a layer group. Generic slices
(kz 6= 0, π) are invariant under the product T I and
Cn=3,4,6. Since these slices are not time-reversal invari-
ant, they are described by the magnetic layer groups,
p3̄′, p4/m′, and p6/m′, respectively. If the crystal has
a mirror symmetry (in addition to T , I, and Cn), the
same analysis of the filling anomaly applies (see Ap-
pendices A 1 and B). The corresponding magnetic layer
groups are: p4/m′mm, p3̄′m1, p3̄′1m, and p6/m′mm.

Our analysis also applies to Dirac cones protected by
an n-fold screw symmetry along the z-axis instead of
an n-fold rotation symmetry because the little co-groups
along the high symmetry lines in the case of screw sym-
metry are isomorphic to the little co-groups in the case
of rotation symmetry, and therefore the irreducible rep-
resentations (irreps) are identical (up to a phase that
results from the translation), as long as kz 6= π [53]. We
discuss this point in more detail in Appendix A 2.

However, our analysis does not apply to non-
symmorphic groups that protect a Dirac point at the
boundary of the BZ [10, 15–17]. We discuss examples
in Appendix A 4.

B. Filling anomaly of kz slices

The filling anomaly is defined for finite systems. How-
ever, it is more efficient to compute the filling anomaly
from bulk invariants, which is accomplished via the bulk-

corner correspondence. Specifically, the filling anomaly
can be determined by the number of bulk Wannier func-
tions centered at each maximal Wyckoff position. Anal-
ogous to the well known relations between the polar-
ization, Wannier centers and Berry phase in 1D [54–
56], recently, the relation between the filling anomaly
and Wannier centers in 2D has been derived in gener-
ality [37, 57, 58]. It can be expressed succinctly as

η = aa − ea mod r (or 2r), (3)

where aa (ea) is the number of atoms (electron Wannier
centers) at the Wyckoff position 1a. The Wyckoff posi-
tions of the relevant magnetic layer groups (discussed in
Sec. II A) are reviewed in Appendix B.

The modulus r(2r) in Eq. (3) enters because the fill-
ing anomaly is defined modulo the minimum number of
electrons that can be added to the finite system while
preserving symmetry (as explained below the definition
of η in Eq. (1)). The choice of r in Eq. (3) applies to
a 2D system invariant under the product T I, but not
under T and I separately; the choice of 2r in in Eq. (3)
applies when both T and I are symmetries. The value of
r depends on the index of the rotation: if the crystal has
four-fold rotation symmetry, r = 4, while if it has three-
or six-fold rotation symmetry, r = 6. In Appendix C we
derive the modulus r(2r) using group theory.

When zero-dimensional mid-gap states exist, their de-
generacy must be equal to the modulus of the filling
anomaly (r or 2r) in order to preserve crystal symme-
try. (The value of η determines how many electrons are
available to fill these r or 2r states.) In the presence of
Cn (n = 3, 4, 6), T , and I symmetries (i.e., at a TRIM
plane), the degeneracy of the corner states jumps from r
to 2r. The additional states could come from gapless sur-
face states (if the TRIM plane has a nontrivial Z2 strong
2D TI index or mirror Chern number, as we discuss in
Sec. III), bulk states, or from another set of hinge states.

We now explain how to obtain the atomic positions
and electron Wannier centers that enter Eq. (3), which
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will be applied to each kz-slice. To obtain the atomic
positions, each atom in the unit cell is projected to the
z = 0 plane. Interlayer hopping terms then become kz-
dependent in-plane hopping terms in the 2D (fixed kz)
Hamiltonian. In Figure 1 we show an example of this
process in space group P6/m. In this example, the unit
cell compatible with the rod geometry is a hexagonal unit
cell, where the a3 lattice vector is in the z-direction and
is perpendicular to the other two lattice vectors. The ef-
fective 2D model at fixed kz 6= 0, π (see Figure 1(b)) has
an effective 2D lattice with layer group p6/m′. The kz-
dependent onsite term t′ of the 2D model is determined
by the inter-plane hopping t of the 3D model. The lo-
calization of the electrons in the a1 − a2 plane can be
determined by this 2D model. According to Eq. (3), the
localization center determines the filling anomaly, which
determines the presence/absence of HOFAs via the cor-
ner charge formula in Eq. (2).

If the 3D crystal has different planes with atoms in
different positions, all atoms in all planes in the unit cell
should be projected to z = 0 to obtain the Wyckoff posi-
tions that enter Eq. (3). Thus, the atomic positions will
be the same for each kz-slice (even though the atomic
positions in different real space planes with fixed z may
differ). An example with multiple distinct planes in the
unit cell is shown in Figure 4 for space group P63/m in
Appendix A.

C. Symmetry indicators for filling anomalies

The Wannier centers that enter Eq. (3) can be deter-
mined from the Wannier functions. However, this pro-
cess is computationally intensive and can often be sim-
plified by symmetry indicator formulas, where the filling
anomaly is expressed in terms of the number of times
each irreducible co-representation (co-irrep) appears at
each high symmetry point.

The symmetry indicator formula for the filling anomaly
has been derived for many 2D symmetry groups [26, 27,
37, 58]. In Ref. [37], we derived an algorithm to gener-
ate the symmetry indicators by building on the theory
of topological quantum chemistry [30]. There, we found
that the number of electrons whose Wannier centers are
at each Wyckoff position is determined by the Smith nor-
mal form of the so-called EBR matrix (see Appendix D
for details). This approach determines the number of
Wannier centers at each Wyckoff position only up to some
modulus, which indicates that the mapping from symme-
try co-irreps to Wannier centers is not one to one. We
will use our algorithm to compute the symmetry indica-
tor formulas for the magnetic layer groups of interest.

As discussed in Sec. II A, we are interested in three
layer groups: p4/m′, p3̄′, and p6/m′. We compute the
symmetry indicator formulas for each Wyckoff position
in these groups in Appendix D. The co-irreps are labelled
by the subscript jz, which determines the Cn eigenvalues
of a particular co-irrep by ξ = e±i2πjz/n (generalizing the

4/m′ E C4

E 1
2

2
√

2

E 3
2

2 −
√

2

6/m′ E C6 C3

E 1
2

2
√

3 1

E 3
2

2 0 −2

E 5
2

2 −
√

3 1

3̄′ E C3

E 1
2

2 1

E 3
2

2 −2

TABLE I. Character tables of the spinful irreducible co-
representations of magnetic point groups 4/m′, 6/m′ and 3̄′.

notation of Altmann and Herzig [59] to the co-irreps of
magnetic point groups). We now summarize the results:

p4/m′: The symmetry indicators giving the number of
electrons with Wannier centers at Wyckoff posi-
tions 1a and 1b are:

ea = N − 2[M 1
2
] mod 4, (4)

eb = 2[M 1
2
] mod 4, (5)

where N is the number of filled bands and [M 1
2
] is

the difference in the number of times the co-irrep
E 1

2
appears at M = (π, π) and at Γ = (0, 0) in the

valence bands. (The little co-group of both Γ and
M is 4/m′; its co-irreps are listed in Table I.) We
find ec = 0 mod 4.

Plugging Eq. (4) into Eq. (3) yields the symmetry
indicator formula for the filling anomaly:

η(4) = aa −N + 2[M 1
2
] mod 4, (6)

where the superscript 4 indicates the four-fold ro-
tation symmetry.

p6/m′: The symmetry indicators giving the number of
electrons with Wannier centers at Wyckoff posi-
tions 1a and 2b are:

ea = N − 2[K 1
2
] mod 6, (7)

eb = 2[K 1
2
] mod 6, (8)

where N is the total number of filled bands and
[K 1

2
] = #K 1

2
−#Γ 1

2
−#Γ 5

2
, where #Pρ indicates

the number of times the irrep ρ appears at the high-
symmetry point P in the valence bands. The little
co-group at K = (4π/3, 0) is 3̄′ and the little co-
group at Γ = (0, 0) is 6/m′. Their co-irreps are
listed in Table I.

Plugging Eq. (7) into Eq. (3) yields the symmetry
indicator formula for the filling anomaly:

η(6) = aa −N + 2[K 1
2
] mod 6. (9)

where the superscript 6 indicates the six-fold rota-
tion symmetry.

p3̄′: The symmetry indicators giving the number of elec-
trons with Wannier centers at Wyckoff positions 1a
and 2b are

ea = N + 2[K 1
2
] + 2[K ′1

2
] mod 6, (10)

eb = −2[K 1
2
]− 2[K ′1

2
] mod 6, (11)
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where N is the total number of filled bands, [K 1
2
] =

#K 1
2
−#Γ 1

2
, [K ′1

2

] = #K ′1
2

−#Γ 1
2

and #Pρ indi-

cates the number of times the irrep ρ appears at
the high-symmetry point P in the valence bands.
The little co-groups at Γ = (0, 0), K = (4π/3, 0)
and K ′ = (−4π/3, 0) are all 3̄′. Their co-irreps are
listed in Table I.

Plugging Eq. (10) into Eq. (3) yields the symmetry
indicator formula for the filling anomaly:

η(3) = aa −N − 2[K 1
2
]− 2[K ′1

2
] mod 6, (12)

where the superscript 3 indicates the three-fold ro-
tation symmetry.

D. Classification of Dirac points

We classify each Dirac point by how the filling anomaly
of a 2D fixed-kz slice changes across the Dirac point.
Specifically, if the Dirac point is at some kz = k0, then

nearby planes at k
(−)
z = k0 − δkz and k

(+)
z = k0 + δkz

are insulating for small δkz. A 2D insulating system with
only Cn and T I symmetries has no symmetry indicated
stable topological phase, as we compute in Appendix D
by applying topological quantum chemistry to the mag-
netic layer groups. As a result, the 2D systems in the

planes k
(±)
x are either in an atomic limit or fragile [60, 61]

phase. In an atomic limit phase, we could compute the
exponentially localized Wannier functions and determine
the number of Wannier centers at each Wyckoff posi-
tion. Below, we will describe how to compute the filling
anomaly from this data. Although the fragile phases lack
exponentially localized Wannier functions, we can deduce
the filling anomaly for the fragile phases from that of the
atomic limit phases because each fragile phase can be
expressed as a “subtraction” between two atomic limit
phases.

From the number of Wannier centers nw at each Wyck-
off position, we can determine the filling anomaly for each
plane, from which we define the change in filling anomaly:

∆η = η(k(+)
z )− η(k(−)

z ). (13)

We can express ∆η using symmetry indicators by apply-
ing Eqs. (6), (9) and (12). The results, which we will
derive shortly, are summarized in the third and fourth
columns in Table II.

The classifications for n = 4, 6 and 3 are Z2, Z3 and
Z3, respectively. We interpret this group structure by
assigning each Dirac point a group element, or “charge”,
based on the change in filling anomaly between planes
adjacent to the Dirac point (Eq. (13)). Two Dirac points
can add in the sense that if they are both within the

range (k
(+)
z , k

(−)
z ), then the change in filling anomaly de-

fined by Eq. (13) will be the sum of the charges of each
Dirac point. If tuning some parameter in the Hamilto-
nian creates a pair of crossings between the conduction

n Layer group Symmetry indicator ∆η Class.

4 p4/m′ ∆η = ∆
(

2[M 1
2
]
)

2 mod 4 Z2

6 p6/m′ ∆η = ∆
(

2[K 1
2
]
)

0,±2 mod 6 Z3

3 p3̄ ∆η = −∆
(

2[K 1
2
] + 2[K′1

2
]
)
±2 mod 6 Z3

TABLE II. Classification of Dirac points based on ∆η. The
first column indicates the n-fold rotation that protects the
Dirac point (along with IT symmetry that squares to −1).
The second column indicates the minimal layer group that
determines the filling anomaly. The third column gives the
symmetry indicator formula for ∆η. The fourth column gives
the possible values of ∆η. When ∆η 6= 0 there must be a
HOFA terminating on the Dirac point. When ∆η = 0, there
will not be a HOFA terminating at the Dirac point. This
classification is different than Ref. [28] because we adopt a
different definition of a trivial phase: in Ref. [28], the trivial
phase is defined as the absence of a Dirac point, while our
classification defines a trivial Dirac point as one at which no
HOFAs terminate.

and valence bands, the Dirac points at the crossings will
have opposite co-irreps in their valence bands and thus
opposite ∆η; together their charges add to zero and these
Dirac points are inverses of each other. However, it may
be that the combined charge of two Dirac points is zero
even if they do not annihilate each other. Then, these
Dirac points are inverses according to the group struc-
ture, but if they are fine-tuned to be at the same mo-
mentum, no HOFA will terminate at that momentum.
This is where our classification differs from Ref. [28]: in
that classification, two Dirac points can only be inverses
if they annihilate each other. In that sense, the classifi-
cation in Ref. [28] is in momentum space, where a trivial
Dirac point implies a band gap, and our classification is
in real space, where a trivial Dirac point is one on which
a HOFA does not terminate.

We now derive ∆η for each n-fold rotation axis.

1. n = 4

We first list the space groups that have both inver-
sion I and C4 (or four-fold screw) symmetries accord-
ing to their point groups (with space group number in
parenthesis): 4/m (no. 83-88), 4/mmm (no. 123-142),
m3̄ (no. 200-206), and m3̄m (no. 221-230). If the rod ge-
ometry preserves I and C4 symmetries, p4/m′ is a sub-
group of the layer group of each kz slice of the rod. There-
fore, the filling anomaly of each kz slice is determined by
Eq. (6).

Dirac points occur when two two-dimensional co-irreps
cross, which can happen along the high-symmetry lines
(0, 0, kz) or (π, π, kz). These lines are denoted Λ or V ,
respectively, in the space group P4/m, which we consider
as a representative space group without loss of generality.
The little co-group of both Λ and V is 4/m′, which has
only two two-dimensional co-irreps: E 1

2
and E 3

2
. These



6

symmetry co-irreps appear in the formula for the filling
anomaly (Eq. (6)) as 2[M 1

2
] = 2(#M 1

2
− #Γ 1

2
). Since

a crossing between the two co-irreps changes [M 1
2
] by

±1, it results in a change ∆η(4) = ±2. Since η(4) is a
mod 4 quantity, ∆η(4) is also defined mod 4. Therefore,
∆η(4) = +2 is equivalent to ∆η(4) = −2. We deduce that
there is only one type of Dirac point, which always has a
HOFA. This analysis reproduces the result of Ref. [21].

2. n = 6

We first list the space groups that have both inver-
sion I and C6 (or six-fold screw) symmetries according
to their point groups (with space group number in paren-
thesis): 6/m (no. 175-176), 6/mmm (no. 191-194). If the
rod geometry preserves I and C6 symmetries, p6/m′ is
a subgroup of the layer group of each kz slice of the rod.
Therefore, the filling anomaly of each kz slice is deter-
mined by Eq. (9).

A Dirac point occurs when two two-dimensional co-
irreps cross, which can happen along the high-symmetry
lines (0, 0, kz) or (4π/3, 0, kz), denoted by ∆ or P , respec-
tively, in the space group P6/m, which we consider as a
representative. The little co-group at ∆ is 6/m′, which
has three two-dimensional co-irreps: E 1

2
, E 3

2
and E 5

2
; the

little co-group at P is 3̄′, which has two two-dimensional
co-irreps at P : E 1

2
and E 3

2
. We now discuss how cross-

ings between these irreps change the filling anomaly of
the 2D kz slices:

Crossings along ∆: According to Eq. (9), the sym-
metry co-irreps appear in the filling anomaly as
2[K 1

2
] = 2(#K 1

2
− #Γ 1

2
− #Γ 5

2
). Therefore, the

crossing between E 1
2

and E 5
2

does not change the

filling anomaly. The crossing between E 1
2

and E 3
2
,

and the crossing between E 3
2

and E 5
2

change the

filling anomaly by ±2.

Crossings along P : There are only crossings between
E 1

2
and E 3

2
. The filling anomaly changes by ±2

according to Eq. (9).

In conclusion, there are three types of Dirac points along
∆ that change the filling anomaly by ∆η(6) = −2, 0, or
2 and there are two types of Dirac points along P that
change the filling anomaly by ∆η(6) = ±2. HOFAs ter-
minate at Dirac points that have ∆η 6= 0. Thus, not all
Dirac points have HOFAs, in contrast to the case of four-
fold rotation symmetry. As we elaborate on in Sec. II D 4,
the presence (absence) of HOFAs corresponds to a linear
(quadratic) Dirac point.

3. n = 3

We first list the space groups that have both inversion
I and C3 symmetries according to their point groups

(with space group number in parenthesis): 3̄ (no. 147-
148), 3̄m (no. 162-167), m3̄ (no. 200-206), and m3̄m
(no. 221-230). If the rod geometry preserves I and C3

symmetries, p3̄′ is a subgroup of the layer group of each
kz slice. (We always refer to the C3 axis as the kz axis.)
The filling anomaly of each kz slice is defined mod 6 (see
Sec. II B) and determined by Eq. (12).

Dirac points exist when two two-dimensional co-
irreps cross along the high-symmetry lines (0, 0, kz) and
(4π/3, 0, kz), which are denoted by ∆ and P in the rep-
resentative space group P 3̄. (Notice this BZ is the same
as that of P6/m, but the little co-groups are different;
for example, the high symmetry line (−4π/3, 0,−kz) is
mapped to (4π/3, 0, kz) under inversion symmetry.) The
little co-group of both ∆ and P is 3̄′, which has two
two-dimensional co-irreps, E 1

2
and E 3

2
. A crossing be-

tween the two co-irreps along either the high symmetry
line ∆ and P changes the filling anomaly by ∆η(3) = ±2
mod 6.

In conclusion, there are two types of Dirac points along
∆ and P that change the filling anomaly by ∆η(3) = ±2.
Since HOFAs terminate at Dirac points that have ∆η 6=
0, all Dirac points have HOFAs.

4. Summary of Dirac classification

In summary, we have classified Dirac points by how the
filling anomaly changes across the Dirac point. We have
found that for a four-fold rotation axis, there is only one
type of Dirac point, corresponding to ∆η(4) = 2 mod 4;
for a six-fold rotation axis, there are three types of Dirac
points with ∆η(6) = 0,±2 mod 6; and for a three-fold
rotation axis, there are two types of Dirac points with
∆η(3) = ±2 mod 6. These results are summarized in
Table II.

Since Dirac points have HOFAs terminating on them
if and only if ∆η 6= 0, we have now answered the ques-
tion of when Dirac points have HOFAs: for a Dirac point
protected by a three- or four-fold rotation, there is al-
ways a HOFA terminating on it, while for a Dirac point
protected by a six-fold rotation, whether or not a HOFA
terminates at it can be determined by the symmetry in-
dicator formula in Table II.

Our analysis is based on symmetry indicators, but
we observe that the presence(absence) of a HOFA that
terminates at a Dirac point is exactly determined by
whether the Dirac point is linear(quadratic). Specifically,
Dirac points protected by three- and four-fold rotations
are always linear, while the Dirac point protected by six-
fold symmetry and formed by the crossing between the
irreps E 1

2
and E 5

2
is linear in kz but quadratic in kx,y [29].

(The other Dirac points protected by a six-fold rotation
are linear [29].) As we derived in Sec. II D 2, this is the
only type of Dirac point that does not have a HOFA ter-
minating on it. Thus, we conclude that the linear Dirac
points along rotation axes have HOFAs that terminate
on them, while the quadratic Dirac points do not.
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In a crystal with inversion symmetry, each Dirac point
with change in filling anomaly ∆η has an inversion-
partner with −∆η. The annihilation and creation of
Dirac points is compatible with the algebra of ∆η. In
this sense, the Nielson-Ninomia theorem [62, 63] is satis-
fied and ∆η can be viewed as the topological charge.

For Dirac semimetals with T I symmetry, but not T
or I separately, ∆η is still well defined for each Dirac
point, and the total topological charge must vanish, but
the Dirac points do not have inversion or time-reversed
partners. When n = 3 or n = 4, there are only two irreps
that can cross along the high-symmetry lines: thus, due
to the periodicity of the BZ, Dirac points must come in
pairs (even if there is no symmetry that relates them.)
However, when n = 6, there are three irreps that can
cross and Dirac points need not come in pairs. For exam-
ple, a band structure of three two-fold degenerate bands
with co-irreps E 1

2
, E 3

2
and E 5

2
can be arranged so that

each pair of co-irreps cross once near the Fermi level,
creating three Dirac points near the Fermi level while
maintaining the periodicity of the BZ.

III. TRIM PLANE TOPOLOGICAL INDICES
AS A CLASSIFICATION OF DIRAC POINTS

We now compare our classification of Dirac points by
the change in the filling anomaly to an earlier classifi-
cation by Yang and Nagaosa [29] where Dirac points are
classified by the change in the topological index of TRIM
planes (specifically, the mirror Chern number, Cm, and
time-reversal protected Z2 invariant, ν).

The classification in Ref. [29] was accomplished by con-
structing k.p models of four band Hamiltonians along
the (0, 0, kz) line. Here, we use the theory of topological
quantum chemistry to systematically reproduce their re-
sults, and generalize to situations when Dirac points are
along other high symmetry lines. Our results apply to
any number of occupied bands.

To this end, we apply the Smith normal form symmetry
indicator formula of the stable topological indices [64, 65]
to the three minimal magnetic layer groups at TRIM
planes, which are generated by T (with T 2 = −1), I and
Cn, where n = 3, 4, 6. The details are in Appendix D.
Here we summarize the results:

p4/m1′: the little co-groups at Γ = (0, 0), X = (π, 0),
M = (π, π) are 4/m1′, 2/m1′, 4/m1′ (in the mag-
netic point group notation). The co-irreps of the
little co-groups are listed in Table III. There is one
stable topological index, which is the mirror Chern
number:

C(4)
m = −[M 1

2 g
]+[M 3

2 g
]+2[X 1

2u
]−2[M 1

2u
] mod 4 (14)

where [X 1
2u

] = #X 1
2u
− #Γ 1

2u
− #Γ 3

2u
, [Mρ] =

#Mρ−#Γρ. The superscript 4 in the mirror Chern

number C
(4)
m indicates the four-fold rotation axis.

4/m1′ E C4 C2 I
E 1

2
g 2

√
2 0 2

E 1
2
u 2

√
2 0 −2

E 3
2
g 2 −

√
2 0 2

E 3
2
u 2 −

√
2 0 −2

2/m1′ E C2 I
E 1

2
g 2 0 2

E 1
2
u 2 0 −2

6/m1′ E C6 C3 I
E 1

2
g 2

√
3 1 2

E 1
2
u 2

√
3 1 −2

E 3
2
g 2 0 −2 2

E 3
2
u 2 0 −2 −2

E 5
2
g 2 −

√
3 1 2

E 5
2
u 2 −

√
3 1 −2

6̄1′ E C3 C6I
E 1

2
2 1

√
3

E 3
2

2 −2 0

E 5
2

2 1 −
√

3

3̄1′ E C3 I
E 1

2
g 2 1 2

E 1
2
u 2 1 −2

E 3
2
g 2 −2 2

E 3
2
u 2 −2 −2

1̄1′ E I
Eg 2 2
Eu 2 −2

31′ E C3

E 1
2

2 1

E 3
2

2 −2

TABLE III. Character tables of the spinful irreducible co-
representations of the magnetic point groups 4/m1′, 2/m1′,
6/m1′, 6̄1′, 3̄1′, 1̄1′, and 31′. These point groups are the little
co-groups of TRIMs of the magnetic layer groups p4/m1′,
p6/m1′ and p3̄1′ as we explain in the text.

C
(4)
m mod 2 is the 2D strong topological insulator

index ν.

p6/m1′: the little co-groups at Γ = (0, 0), M =

(π,−π/
√

3), K = (4π/3, 0) are 6/m1′, 2/m1′, 6̄1′.
The co-irreps of the little co-groups are listed in Ta-
ble III. There is one stable topological index, which
is the mirror Chern number:

C(6)
m = 2[K 3

2
] + 4[K 1

2
]− 3[M 1

2 g
] mod 6 (15)

where [K 1
2
] = #K 1

2
− #Γ 1

2 g
− #Γ 5

2u
, [K 3

2
] =

#K 3
2
− #Γ 3

2 g
− #Γ 3

2u
, and [M 1

2 g
] = #M 1

2 g
−

#Γ 1
2 g
− #Γ 3

2 g
− #Γ 5

2 g
. The superscript 6 in the

mirror Chern number C
(6)
m indicates the six-fold ro-

tation axis. C
(6)
m mod 2 is the 2D strong TI index

ν.

p3̄1′: the little co-groups at Γ = (0, 0), M = (π,−π/
√

3),
K = (4π/3, 0) are 3̄1′, 1̄1′, 31′. The co-irreps of
the little co-groups are listed in Table III. There is
one stable topological index, which is the 2D strong
topological insulator index:

ν = [Mu] mod 2 (16)

where [Mu] = #Mu −#Γ 1
2u
−#Γ 3

2u
.

We now can classify the Dirac points by the change
in the stable topological index of TRIM planes, i.e. the
difference ∆Cm or ∆ν between the kz = 0 and kz = π
planes. Specifically, the high symmetry line where the
Dirac point lies contains one TRIM point in each TRIM
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plane. The co-representations (co-reps) of the bands that
cross at the Dirac point are compatible with specific co-
reps at each TRIM point. By plugging the co-rep at each
of the two TRIM points into Eq. (14), (15), or (16), the
difference ∆Cm or ∆ν is obtained. The result is shown
in Table IV.

This classification based on symmetry indicators is in
the spirit of Ref. [29], although goes beyond Ref. [29] by
including Dirac points along both high symmetry lines.
In particular, the crossings along P in P6/m were not
included in the earlier literature. They are distinct from
crossings along ∆, because the little co-group at K and
A is 6̄1′, while the little co-group at Γ and Z is 6/m1′.

The k.p analysis in Ref. [29] has one advantage over
our classification by topological quantum chemistry: it
distinguishes ∆Cm = +2 and −2 in the C4 case, and
∆Cm = +3 and −3 in the C6 case. If one can determine
all the parameters of the k.p model and the k.p model is
a complete description of the low energy physics, Cm can
be determined completely. In our approach, the Z-valued
mirror Chern number can only be partially determined
(up to Zn) by symmetries.

The changes in topological indices ∆Cm and ∆ν can
also be viewed as topological charges associated with
Dirac points (albeit a different charge than the change
in filling anomaly). Since a Dirac point with ∆Cm or
∆ν must have an inversion-partner with −∆Cm or −∆ν,
the generalized Nielson-Ninomia theorem [62, 63] is again
satisfied.

As a final note on this classification, let us clarify that
it does not apply to Dirac cones protected by screw sym-
metries because the irreps in the kz = π plane are dif-
ferent for a group with a screw symmetry versus a group
with a pure rotation symmetry of the same order. Since
the classification specifically requires symmetry indices in
the kz = π plane (unlike our classification based on ∆η,
which only requires symmetry indices in planes adjacent
to the Dirac point), it does not apply.

IV. RELATION BETWEEN THE FILLING
ANOMALY AND THE STABLE INDEX

A non-zero filling anomaly and a non-zero stable topo-
logical index at a TRIM plane give rise to different physi-
cal observables: the former gives rise to HOFAs, while the

n Classification [29] Stable TCI index ∆index

4 Z4 ∆C
(4)
m (14) ± 1, ± 2

6 Z6 ∆C
(6)
m (15) ± 1, ± 2, ± 3

3 Z2 ∆ν (16) 0, 1 mod 2

TABLE IV. The classification of Dirac points with an n-fold
rotation axis based on ∆Cm and ∆ν. When either is nonzero,
there must be gapless surface states on at least one of the
TRIM planes. These surface states do not necessitate the
existence of Fermi arcs that terminate at the Dirac points
because they can form a closed loop [18, 19].

FIG. 2. (a) The unit cell of P6/mmm. a3 is in the z-direction
and is perpendicular to a1 and a2. (b) The cross section of a
rod which is C6 symmetric, finite in the a1 and a2 directions
and infinite in a3 direction.

latter implies gapless surface states at TRIM planes. In
general, it is not possible to determine the filling anomaly
from the stable topological index of the TRIM planes
and vice versa because the addition of occupied trivial
bands with a nontrivial filling anomaly changes the fill-
ing anomaly but leaves the stable indices invariant.

Nonetheless, the change in the filling anomaly and the
change in the stable index are both constrained by sym-
metries. The change in the filling anomaly can be de-
termined by the symmetry irreps at the high symmetry
lines, while the change in the stable index can be deter-
mined by the symmetry irreps at the TRIMs. Compati-
bility conditions relate these irreps, and thus the change
in the filling anomaly and the change in the stable index
are related.

We summarize the relations in Table V. Let us now ex-
plain the notation. Each Cn-preserving (n = 3, 4, 6) high
symmetry line connects two TRIMs. We denote the occu-
pied co-irreps at the two TRIMs by the pair (Eα′ , Eβ′),
where Eα′ appears at one TRIM point and Eβ′ at the
other. The indices α′(β′) each contain two values, j, ξ,
where j = 1

2 ,
3
2 ,

5
2 indicates the rotation eigenvalue and

ξ = g, u (+1,−1) indicates the inversion eigenvalue. For
each Dirac point, we need only consider one co-irrep at
each TRIM because only one co-irrrep is exchanged at the
Dirac point. The co-irreps at the two TRIM, (Eα′ , Eβ′),
uniquely determine the co-irreps (Eα, Eβ) at adjacent
points on the high symmetry line, where α, β = 1

2 ,
3
2 ,

5
2

indicate the rotation eigenvalues. The definition of these
co-irreps are given by the characters in Tables I and III.
The Dirac point is exactly the crossing between Eα and
Eβ along the high-symmetry line; thus these co-irreps de-
termine the change in the filling anomaly ∆η, while the
co-irreps (Eα′ , Eβ′) determine the change in the stable
index ∆Cm or ∆ν. The mapping (Eα′ , Eβ′) 7→ (Eα, Eβ)
is many to one, which means one value of ∆η is com-
patible with multiple values of ∆Cm or ∆ν, as shown
by Table V. Table V serves to synthesize the results of
Sec. II D and Sec. III.
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n k line co-irreps of Dirac point dispersion ∆η compatible co-irreps at TRIMs ∆Cm ∆ν mod 2

(E 1
2
g, E 3

2
g) or (E 1

2
u, E 3

2
u) 0

∆ (ΓA) (E 1
2
, E 3

2
) linear ±2 mod 6 (E 1

2
g, E 3

2
u) or (E 1

2
u, E 3

2
g) 1

3 (E 1
2
g, E 3

2
g) or (E 1

2
u, E 3

2
u) 0

P (KH) (E 1
2
, E 3

2
) linear ±2 mod 6 (E 1

2
g, E 3

2
u) or (E 1

2
u, E 3

2
g) 1

(E 1
2
g, E 3

2
g) or (E 1

2
u, E 3

2
u) ± 2 0

Λ (ΓZ) (E 1
2
, E 3

2
) linear 2 mod 4 (E 1

2
g, E 3

2
u) or (E 1

2
u, E 3

2
g) ± 1 1

4 (E 1
2
g, E 3

2
g) or (E 1

2
u, E 3

2
u) ±2 0

V (MA) (E 1
2
, E 3

2
) linear 2 mod 4 (E 1

2
g, E 3

2
u) or (E 1

2
u, E 3

2
g) ±1 1

(E 1
2
g, E 3

2
g) or (E 1

2
u, E 3

2
u) ± 2 0

(E 1
2
, E 3

2
) linear ±2 mod 6 (E 1

2
g, E 3

2
u) or (E 1

2
u, E 3

2
g) ± 1 1

(E 5
2
g, E 3

2
g) or (E 5

2
u, E 3

2
u) ± 2 0

∆ (ΓA) (E 5
2
, E 3

2
) linear ±2 mod 6 (E 5

2
g, E 3

2
u) or (E 5

2
u, E 3

2
g) ± 1 1

(E 1
2
g, E 5

2
g) or (E 1

2
u, E 5

2
u) ± 2 0

6 (E 1
2
, E 5

2
) quadratic 0 mod 6 (E 1

2
g, E 5

2
u) or (E 1

2
u, E 5

2
g) ± 3 1

(E 1
2
, E 3

2
) ±2 0

P (KH) (E 1
2
, E 3

2
) linear ±2 mod 6 (E 5

2
, E 3

2
) ±2 0

TABLE V. Relations between ∆η and ∆Cm or ∆ν. The first column indicates the n-fold rotation symmetry of the crystal.
The second column indicates the high-symmetry line where the Dirac point occurs. The third column gives possible irreps that
can cross along that line to form a Dirac point; the dispersion of that Dirac point is indicated in the fourth column, where
linear indicates the Dirac point is linear in all directions and quadratic indicates that it is linear along the axis of rotation and
quadratic in other directions. The fifth column indicates the change in the filling anomaly, ∆η, defined in Sec. II D. Each pair
of co-irreps that define a Dirac point is compatible with several different possible co-irreps at TRIMs, as indicated by the sixth
column (the irrep notation is explained in Sec. IV). The last two columns indicate the possible values of the change in the
stable index between the TRIM planes, ∆Cm and ∆ν, which are derived in Sec. III. Tables I and III provide the characters for
irreps along high-symmetry lines and at TRIMs, respectively.

V. EXAMPLES

Ref. [21] proved that Dirac points in crystals with four-
fold rotation symmetry always have HOFAs. In this sec-
tion, we give two examples of Dirac points with six-fold
rotation symmetry, with and without HOFAs. This pro-
vides an explicit demonstration that not all Dirac points
have HOFAs and verifies the symmetry indicators for
n = 6 in Table II.

Our models are in space group P6/mmm, which has a
hexagonal lattice shown in Figure 2. In this space group,
T I symmetry forces the Hamiltonian to take the form of
H = ε0(k) +

∑5
j=1 cj(k)Γj , where k = (kx, ky, kz). We

choose a basis where the Γ matrices are:

Γi = τ3 ⊗ σi, i = 1, 2, 3

Γ4 = τ2 ⊗ σ0, Γ5 = τ1 ⊗ σ0

where σi and τi, i = 1, 2, 3 are Pauli matrices represent-
ing the mixed spin and orbital degrees of freedom, σ0

is identity matrix and ⊗ is the tensor product. In this
basis, the Hamiltonians for both models take the form
[11, 66]:

H = ε0(k) +

M(k) A(k) B(k) 0
A∗(k) −M(k) 0 B(k)
B∗(k) 0 −M(k) −A(k)

0 B∗(k) −A∗(k) M(k)

 (17)

The bulk spectrum is E = ε0(k) ±
√
M2 + |A|2 + |B|2.

We set ε0(k) = 0 for simplicity, which does not influ-
ence the topology of the bands. The functions A(k) and
B(k) differ between the two models, but the function
M(k), which determines the position of Dirac points, is
the same. We now describe the two models explicitly.

A. Higher order Fermi arcs in Na3Bi

Our first example is motivated by the known Dirac
semimetal Na3Bi [9, 11, 12], which we predict exhibits
higher order Fermi arcs. We start in Sec. V A 1 by pre-
senting a simpler toy model on a hexagonal lattice. We
use the symmetry indicator formula in Eq. (9) to deter-
mine the presence of HOFAs in this model, and verify
it with a numerical calculation. Then, in Sec. V A 2, we
discuss the application of our model to the real Na3Bi
material.

1. Model

In this section, we construct a four-band tight-binding
model on a hexagonal lattice in space group P6/mmm.
We first introduce the basis and symmetry of the orbitals
and then derive a k · p Hamiltonian to third order. We
construct a tight-binding model by extending the k · p
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FIG. 3. (a) Rod spectrum of the tight-binding model de-
scribed by Eq. (24) (see Sec. V A for connection to Na3Bi.)
There are HOFAs between kz = 0 and kz = k0, the pro-
jection of the bulk Dirac point. There are also gapless sur-
face states projected to kz = 0. (b) Energy of states at
0 < kz = π/4 < k0 for the same model. The dashed red line
indicates charge neutrality. The nontrivial filling anomaly is
indicated by the charge neutrality point residing in the middle
of six degenerate corner states. (c) Rod spectrum of the tight-
binding model described by Eq. (31). There are no HOFA. (d)
Energy of states at 0 < kz = π/4 < k0 for the second model.
The dashed red line indicates charge neutrality. The lack of
filling anomaly is indicated by the charge neutrality point re-
siding in between two groups of degenerate states. There are
gapless surface states projecting to kz = 0. For both models,
the side length of the hexagon cross section (see Figure 2(b))
is 15. The parameters used to generate the plots are listed in
Appendix E.

model to the whole Brillouin zone. Finally, we use the
symmetry indicator formula in Eq. (6) to study the HO-
FAs and verify the formulas by plotting the tight-binding
spectrum on a rod geometry that is finite in two dimen-
sions.

The orbital notation follows Ref. [11]: |S+
1
2

, jz〉 de-

notes s-orbitals with angular momentum quantum num-
bers (J, jz) = (1

2 ,±
1
2 ) and inversion eigenvalue +1, while

|P−3
2

, jz〉 denotes p-orbitals with (J, jz) = (3
2 , jz), jz =

± 1
2 ,±

3
2 , and inversion eigenvalue −1.

We work in the four-band basis: |P−3
2

,+ 3
2 〉, |S

+
1
2

,+ 1
2 〉,

|S+
1
2

,− 1
2 〉, |P

−
3
2

,− 3
2 〉; these are the relevant orbitals in

Na3Bi [11]. In this basis, the symmetry generators of
6/mmm (D6h), which is the little group at Γ, are

C6z =


−i 0 0 0
0 e−iπ/6 0 0
0 0 eiπ/6 0
0 0 0 i

 (18)

C2x =

0 0 0 i
0 0 −i 0
0 −i 0 0
i 0 0 0

 (19)

I =

−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

 (20)

and time-reversal symmetry is implemented by

T =

0 0 0 −1
0 0 −1 0
0 1 0 0
1 0 0 0

K (21)

where K represents the complex conjugation operator.
In the third order k.p approximation, the coefficients in
Eq. (17) are:

M(k) = m+M1k
2
z +M2k+k−

A(k) = Ak−(1 +A1k
2
z +A2k+k−)

B(k) = Bk2
−kz (22)

where k± = kx ± iky and all the parameters are real.

The Dirac point appears along the high symmetry line
∆ = (0, 0, kz), along which A,B = 0, and M changes
sign across the Dirac point. The co-irreps in the valence
bands that swap across the Dirac point are E 1

2
and E 3

2
.

According to Eq. (9), this crossing changes the filling
anomaly by ∆η(6) = ±2 mod 6. The non-zero change
∆η(6) implies that HOFAs terminate at the Dirac points.

We would like to extend this k.p Hamiltonian to a
tight-binding Hamiltonian to explicitly verify the pres-
ence of hinge arcs. We now describe the tight-binding
model. The hexagonal lattice vectors are a1 = (1, 0, 0),

a2 = (− 1
2 ,
√

3
2 , 0), a3 = (0, 0, 1). The tight-binding model

is defined by the real space hopping terms:

Va1 = M̃2Γ3 + iÃΓ1, Va1+a3 = B̃Γ5, Va3 = M̃1Γ3 (23)

and an onsite term mΓ3, where Vr indicates the hopping
matrix from an atom at r0 to an atom at r0 + r. Other
hopping terms are related to these terms by C6z and
C2x symmetries. Parameters with a tilde are real and
are proportional to the corresponding k.p parameters in
Eq. (22).

The tight-binding Hamiltonian in momentum space
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takes the form of Eq. (17), with coefficients:

M(k) = m+ 2M̃1 cos kz + 4M̃2 cos
kx
2

cos

√
3ky
2

+ 2M̃2 cos kx

A(k) = −2Ã
(

sin
kx
2

cos

√
3ky
2

+ i
√

3 cos
kx
2

sin

√
3ky
2

+ sin kx

)
B(k) = 2B̃ sin kz

(
cos kx − cos

kx
2

cos

√
3ky
2

− i
√

3 sin
kx
2

sin

√
3ky
2

)
(24)

Dirac points can exist along the two high symmetry lines
∆ and P , where A(k) = B(k) = 0. The term M(k) de-
termines whether and where there is a Dirac point: if
|m + 6M̃2| < |2M̃1| there is a pair of Dirac points along

∆, while if |m − 3M̃2| < |2M̃1|, there is a pair of Dirac
points along P . In the interest of connecting to Na3Bi,
we choose M̃2 = −1, m = 4, M̃1 = −2.5, so that there
is exactly a pair of Dirac points along ∆, related by in-
version symmetry. (Although in Na3Bi, the Dirac points
are much closer to Γ; here, we choose parameters where
the Dirac points are further from Γ so that the HOFAs
are clearly visible.) In Figure 3(a), we plot the spectrum
of this model in a rod geometry (the rod cross-section is
shown in Figure 2(b)), which shows the existence of mid-
gap HOFAs terminating on the Dirac point. Figure 3(b)
shows that the filling anomaly at kz = π/4 (a representa-
tive kz-slice with corner states) is 2 mod 6, in agreement
with Eq. (9). The bulk and surface band structures are
plotted in Appendix E.

There are also surface cones projected onto kz = 0 in
the rod spectrum in Figure 3(a). Such states are often
seen in Dirac semimetal systems with HOFAs in the pres-
ence of both T and I symmetries because the degener-
acy of mid-gap states is 6 at non-TRIM planes, but 12 at
TRIMs. The gapless surface states ensure the rod band
structure is continuous where the HOFAs pass through a
TRIM plane.

2. Application to Na3Bi

In this section, we discuss the connection between
the model described in the previous section and the
Dirac material Na3Bi. Na3Bi is in the non-symmorphic
space group P63/mmc, while our tight-binding model
described by Eq. (24) is in the symmorphic space group
P6/mmm; the six-fold rotation symmetry in the latter is
replaced by a six-fold screw symmetry in the former. Al-
though the little co-groups of the high-symmetry points
are different for the two space groups, the co-irreps of
the two groups are the same, up to an overall phase
factor, for momenta not in the kz = π plane [65]. (In
the kz = π plane, inversion does not commute with

the screw symmetry; this is not an issue for the other
planes because when kz = 0, inversion commutes with
the screw symmetry, and when 0 < kz < π, inversion
does not leave the plane invariant. For a general discus-
sion of Dirac points protected by screw symmetries, see
Appendix A 2.) Therefore, when kz 6= π, our model in
Eq. (24) in space group P6/mmm applies also to space
group P63/mmc. Since the low-energy physics in Na3Bi
occurs near Γ, this model also describes the low-energy
physics in Na3Bi and in fact the k.p model in Eq. (22) is
identical to that in Ref. [11].

From the perspective of topology, the HOFAs exist in
kz planes where the filling anomaly η is non-zero. Eq. (9)
implies that η depends on the charge of atoms. Our four-
band Hamiltonians in Eq. (22) and Eq. (24) have four or-
bitals coming from a single atom in the unit cell, while,
because Na3Bi is in a non-symmorphic space group, it
necessarily has multiple symmetry-related Na atoms in
the unit cell [11]. Thus, our model does not map in
real space to a Hamiltonian in the non-symmorphic space
group. However, whether HOFAs terminate at the Dirac
points does not depend on η, but only ∆η, i.e., the differ-
ence in η across the Dirac point, and ∆η does not depend
on the atomic positions, only on the co-reps of the bands
that cross to form the Dirac point. Thus, from our model,
we predict that Na3Bi has HOFAs that terminate at the
Dirac point, but we cannot predict whether they cross
the kz = 0 or kz = π plane.

The possible 2D stable topological indices at kz = 0
are the same for both space groups (they both have a 2D
strong topological insulator index and a mirror Chern
number). In both cases, a band inversion at Γ that cre-
ates a pair of Dirac points along the kz axis will change
the 2D stable topological index of the kz = 0 plane [29],
which is captured by our Cm (mirror Chern) index in
Eq. (15). Since the low-energy physics in Na3Bi is ex-
actly due to such a band inversion, we expect the 2D
topological indices in the kz = 0 plane to agree between
the two models.

We note that a non-trivial bulk invariant [36] has also
been computed for Na3Bi in Ref. [67], but the corner
states were not computed.

B. Absence of higher order Fermi arc

We now describe a model of a Dirac semimetal
with C6 symmetry which does not exhibit HOFAs.
We work in the four-band basis |D+

5
2

,+ 5
2 〉, |P

−
3
2

,+ 1
2 〉,

|P−3
2

,− 1
2 〉, |D

+
5
2

,− 5
2 〉, where |D+

5
2

, jz〉 denotes d-orbitals

with (J, jz) = (5
2 , jz), jz = ± 1

2 ,±
3
2 ,±

5
2 . In this basis the

symmetry generators of space group P6/mmm are

C6z =


e−i5π/6 0 0 0

0 e−iπ/6 0 0
0 0 eiπ/6 0
0 0 0 ei5π/6

 (25)
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C2x =

 0 0 0 −i
0 0 i 0
0 i 0 0
−i 0 0 0

 (26)

I =

1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1

 (27)

and time-reversal symmetry is implemented by

T =

0 0 0 −1
0 0 1 0
0 −1 0 0
1 0 0 0

K (28)

where K represents the complex conjugation operator.
To third order, the coefficients of the k.p Hamiltonian in
Eq. (17) are

M(k) = m+M1k
2
z +M2k+k−

A(k) = Ak2
−kz

B(k) = B1kx(k2
x − 3k2

y) + iB2ky(k2
y − 3k2

x) (29)

where k± = kx ± iky.

The Dirac point along ∆ results from a crossing be-
tween the co-irreps E 1

2
and E 5

2
. According to Eq. (9),

this crossing changes the filling anomaly by ∆η(6) = 0
mod 6, which implies there is no HOFA that terminates
at the Dirac point. Thus, there are two possibilities: (i)
no HOFA for any kz; (ii) HOFAs for every kz. To deter-
mine which possibility occurs, we need a real space em-
bedding. To this end, we construct a tight binding model
to explicitly present an example of (i), i.e., a Dirac point
without HOFAs.

This k.p Hamiltonian can be extended (non-uniquely)
to the whole BZ by a tight-binding model with real space
hopping terms:

Va1 = M̃2Γ3 + iB̃1Γ5, Va1+2a2 = iB̃2Γ4,

Va1+a3 = ÃΓ1, Va3 = M̃1Γ3 (30)

and the onsite term mΓ3. Other hopping terms are re-
lated to these terms by C6z and C2x symmetries. Pa-
rameters with a tilde are real and are proportional to the
corresponding k.p parameters in Eq. (29).

The tight-binding Hamiltonian in momentum space is

of the form of Eq. (17), with coefficients:

M(k) = m+ 2M̃1 cos kz + 4M̃2 cos
kx
2

cos

√
3ky
2

+ 2M̃2 cos kx

A(k) = 2Ã sin kz

(
cos kx − cos

kx
2

cos

√
3ky
2

− i
√

3 sin
kx
2

sin

√
3ky
2

)
B(k) = 4B̃1 sin

kx
2

cos

√
3ky
2
− 2B̃1 sin kx

− 4iB̃2 cos
3x

2
sin

√
3ky
2

+ 2iB̃2 sin
√

3ky (31)

Similar to the previous model, the term M(k) de-
termines whether and where there is a Dirac point: if
|m+6M̃2| < |2M̃1| there is a pair of Dirac points along ∆,

while if |m−3M̃2| < |2M̃1|, there is a pair of Dirac points

along P . We consider M̃2 = −1, m = 4, M̃1 = −2.5, so
that again there is exactly a pair of Dirac points along ∆,
related by inversion symmetry. In Figure 3(c), we plot
the rod spectrum, which shows the absence of HOFAs.
Figure 3(d) shows that the filling anomaly at kz = π/4
(a representative kz-slice between the Dirac point and
kz = 0) is 0 mod 6, which is consistent with the absence
of HOFAs in Figure 3(c).

In Appendix E, we describe more details about both
models, including the parameters used to plot the band
structures, the bulk and surface BZs, the bulk and surface
spectra, and the band co-representations, which verify
the presence/absence of HOFAs with symmetry indica-
tors.

VI. DISCUSSION

Dirac fermions protected by inversion, time-reversal,
and four-fold rotation symmetry have been shown to ex-
hibit HOFAs [21, 22], which are mid-gap states localized
at the corners where two surfaces meet that connect the
projection of the bulk Dirac points. The HOFAs can
be viewed as a topological bulk-hinge correspondence for
Dirac fermions. In this manuscript, we derived condi-
tions under which HOFAs exist for any Dirac fermion
protected by inversion, time-reversal, and an n-fold rota-
tion symmetry, where n = 3, 4, 6. We further computed
symmetry indicators to determine the presence/absence
of HOFAs, using an algorithm we introduced in Ref. [37].

We found that all linear Dirac points exhibit HOFAs
that terminate on them. However, a six-fold rotation
symmetry can also protect a Dirac point that has a lin-
ear dispersion along the rotation axis and a quadratic
dispersion in the other directions; this Dirac point does
not exhibit HOFAs.

Our results define a topological charge for each Dirac
point based on the change in the filling anomaly, ∆η, of
2D planes in momentum space on either side of the Dirac
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point. We found that in the case of a four-fold rotation,
∆η(4) = 2 mod 4, corresponding to a single type of Dirac
point; in the case of a six-fold rotation, ∆η(6) = 0,±2
mod 6, corresponding to three types of Dirac points; and
finally in the case of a three-fold rotation, ∆η(3) = ±2
mod 6, corresponding to two types of Dirac points.

We built explicit tight-binding models in the case of a
six-fold rotation symmetry to exemplify Dirac semimet-
als with and without HOFAs.

Our formulas also apply to Dirac points protected by
screw symmetries if they are not on the boundary of the
BZ. The bulk-hinge correspondence of Dirac points at

the BZ boundary is a subject for future work.
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Appendix A: Symmetry of Dirac points

In this Appendix, we discuss the symmetries that can
protect Dirac points. In A 1, we derive that only rotation
symmetries of order 3, 4, or 6 can protect Dirac points.
In A 2, we derive that screw symmetries of the same or-
der can also protect Dirac points; only two of these are
consistent with inversion symmetry. In A 3, we derive the
centrosymmetric space groups that contain the rotation
and screw symmetries that can protect Dirac points. We
briefly discuss other symmetries that can protect Dirac
points on the boundary of the BZ in Appendix A 4.

1. Dirac points stabilized by rotation symmetry

Dirac points not at a TRIM are protected by the com-
bination of T I symmetry and an n-fold rotation. These
symmetries generate the groups 2/m′, 3̄′, 4/m′, and 6/m′

for n = 2, 3, 4, 6, which are the only rotations that oc-
cur in crystals. We only consider the case with spin-
orbit coupling, where T I is an antiunitary symmetry
that squares to −1 and commutes with all rotations;
thus, it requires all bands to be doubly degenerate. Since
for n = 2, there is only one two-dimensional co-irrep, a
two-fold rotation symmetry cannot protect a Dirac point
(because the Dirac point requires two different co-irreps
to cross). For n = 3 and n = 4, there are two two-
dimensional co-irreps and hence there are two choices
of crossings. For n = 6, there are three two-dimensional
co-irreps and, consequently, there are six choices of cross-
ings. We enumerate the co-irreps of 3̄′, 4/m′, and 6/m′

in Table I, where the notation follows Ref. [59].
A Dirac material may also have additional mirror sym-

metries. Mirror symmetries that leave the rotation axis
invariant enlarge its little co-group to one of the following
magnetic point groups: 3̄′m, 4/m′mm, or 6/m′mm. In
each of these groups, the number of two-dimensional co-
irreps with SOC is the same as the number without the
additional mirror symmetries [65]. Thus, adding the mir-
ror symmetry does not change the types of Dirac cross-
ings. We do not consider mirror symmetries that in-
vert the high-symmetry line because they will not leave
generic points along the high-symmetry line invariant.

2. Screw symmetries

In this subsection, we show that screw symmetries can
also protect Dirac points.

In momentum space, a screw symmetry can be repre-
sented as the product of a k-independent unitary matrix
and a k-dependent phase [68]. Specifically, a screw sym-
metry that rotates by an angle 2π/n and translates by
a fractionn p/n of a lattice vector can be represented by

the matrix C̃n,p = e−ikz
p
nUn in momentum space, where

n = 2, 3, 4, 6; p is an integer satisfying 1 ≤ p ≤ n − 1;
and Un is a unitary matrix where Unn = −1 is equivalent
to a 2π rotation. The screw symmetry constrains the
Hamiltonian by [69]

C̃n,pH(k)C̃−1
n,p = UnH(k)U−1

n = H(Rnk), (A1)

where Rn is the vector representation of the n-fold ro-
tation symmetry. Notice the translation by p/n has
dropped out of this constraint. Thus, in momentum
space, a screw symmetry acts effectively as a rotation
symmetry. It follows that screw symmetries can protect
a Dirac crossing if n = 3, 4, 6.

If I symmetry is present, then the translation p
must satisfy 2p = n because the combined operation
C̃−1
n,pIC̃n,pI : (x, y, z) → (x, y, z − 2p/n) must give a

https://doi.org/10.1103/PhysRevLett.120.266401
https://doi.org/10.1103/PhysRevX.6.021008
https://doi.org/10.1103/PhysRevX.6.021008
www.physics.rutgers.edu/pythtb
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FIG. 4. In this schematic diagram, we take space group P63/m (with T 2 = −1) as an example of a case with screw symmetry.
(a) Hexagonal unit cell of space group P63/m. (b) A fixed kz slice with kz 6= 0, π forms an effective 2D system described by
the magnetic layer group p6/m′. The atoms project to z = 0 in the unit cell of this 2D system. The interlayer hopping term

t′ = t1e
ikz/2 + t2e

−ikz/2 becomes an in-plane hopping term. (c) Terminating the 2D models with boundaries that preserve
C6 symmetry, yields the spectrum of the rod states for the 3D model. Red lines indicate possible HOFAs that could appear
between two Dirac points (whose projection onto the hinges is labelled by crosses).

lattice translation, which implies −2p/n ∈ Z. Since
1 ≤ p ≤ n − 1, the only solution is 2p = n. There-
fore, with the combination of time-reversal and inversion
symmetry, only C̃4,2 and C̃6,3 can protect Dirac points
that are not at the TRIM points.

For these reasons, in 3D crystal systems with a screw
symmetry C̃n,p = e−ikz

p
nUn, the effective 2D system with

fixed kz 6= π, is described by the unitary part Un. There-
fore, when kz 6= π the filling anomaly formulas Eq. (6)

and Eq. (9) also apply to C̃4,2 and C̃6,3. An example is
shown in Figure 4. Here the dimensional reduction of
a 3D model with the space group P63/m is an effective
2D model, described by the magnetic layer group p6/m′.
Then the rod geometry should preserve six-fold rotation
symmetry.

Such dimensional reduction can break down if there
are other symmetries whose commutation relation with
the screw symmetry C̃n,p is different from the commu-
tation relation with its rotational part Un. In the sim-
plest case where the only symmetries are the screw rota-
tion, inversion, and time-reversal symmetry, such break
down appears at high symmetry points with kz = π be-
cause, as Refs. [28, 32] show, the screw symmetry anti-
commutes with inversion symmetry at kz = π, while ro-
tation symmetry commutes with inversion symmetry at
kz = π. This anti-commutation relation gives rise to the
four- and higher-dimensional co-irreps at the boundary
of BZ. Those Dirac points are beyond the scope of this
manuscript. We provide some known examples in Ap-
pendix A 4 for completeness.

3. Space groups with Dirac points

We have shown that in the presence of T and I,
where (T I)2 = −1, Dirac points not at TRIM points

are stabilized by Cn, n = 3, 4, 6, or C̃4,2 or C̃6,3. The
space groups containing these symmetries must have a

point group containing I and Cn, n = 3, 4, 6. There
are in total 8 point groups (58 space groups) that have
the required symmetries. We list the point groups here
(with corresponding space group numbers in parenthe-
sis): 4/m (no. 83-88), 4/mmm (no. 123-142), 3̄ (no. 147,
no. 148), 3̄m (no. 162-167), 6/m (no. 175, no. 176),
6/mmm (no. 191-194), m3̄ (no. 200-206), m3̄m (no. 221-
230).

Notice that since a Dirac point requires only the com-
bination T I, rather than T and I separately, there will
also be Dirac points in magnetic space groups that have
T I symmetry and one of the necessary rotation/screw
symmetries. The minimal magnetic space groups are sub-
groups of the space groups we consider in the main text.
Thus, our classification of Dirac points by the change in
filling anomaly also applies to those magnetic groups.

4. Dirac points on the BZ boundary

There are other Dirac points in non-symmorphic space
groups that fall outside of our paradigm. These Dirac
points are all at the boundary of the BZ. The reason why
the boundary of the BZ is special is because in the interior
of the BZ, the representation of the little group is always
the same as the representation of a point group, which is
a subgroup of the factor group, but on the boundaries of
the BZ, the representations of the non-symmorphic sym-
metry operations will be the projective representations
of the point group, which differ from the ordinary repre-
sentation at momenta that are in the interior of the BZ
[53]. We now briefly describe some examples.

Screw symmetries (combined with T I symmetry) can
protect a single Dirac point at a boundary TRIM, as we
discussed in Appendix A 2. These Dirac points are linear
in kz, since they are created by band folding [10]. The
bands that cross to form the Dirac point have different
eigenvalues of the screw symmetry.
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FIG. 5. The projected 2D unit cell and Wyckoff positions of
(a) p4/m′ and p4/m1′ and (b) p3̄, p6/m′, p3̄1′, and p6/m1′.

Two-fold screw symmetries can also protect Dirac
points that are not at TRIMs but are located at the
boundary of the BZ. One example is shown in Ref. [16].
Although Ref. [16] is focusing on the double Dirac point
at a boundary TRIM, there are also Dirac points on
a boundary high symmetry line protected by two non-
symmorphic symmetries in space group P4/ncc (No.
130).

Glide symmetries can also protect Dirac points that
are not at TRIMs but are located at the boundary of the
BZ [28].

There can also exist quadratic Dirac points at TRIMs,
such as in Fm3̄m. These also fall outside our paradigm.
In space group Fm3̄m, there can exist a single Dirac
point at Γ in the BZ. This Dirac point is quadratic in
all directions. The four bands forming the degeneracy
comprise a single irrep of the point group.

Appendix B: Unit cells and Wyckoff positions

The projected 2D unit cells and the maximal Wyckoff
positions of the magnetic layer groups p4/m′, p6/m′, p3̄′

and p4/m1′, p6/m1′, p3̄1′ are shown in Figure 5. The
general Wyckoff positions are not shown because they
do not contribute to the filling anomaly or the stable
topological index [30, 37, 64]. We now summarize the
maximal Wyckoff positions and corresponding site sym-
metry groups when one of these 2D groups describes a
momentum-space slice of a 3D rod, as depicted in Fig-
ure 1.

For p4/m′ (Figure 5(a)), there are three maximal
Wyckoff positions: 1a, 1b and 2c. The magnetic site
symmetry group of 1a and 1b is 4/m′; the magnetic site
symmetry group of 2c is 2/m′ (generated by C2 and T I).

For p6/m′ (Figure 5(b)), there are three maximal
Wyckoff positions: 1a, 2b and 3c. The magnetic site sym-
metry group of 1a is 6/m′; The magnetic site symmetry
group of 2b is 6̄′ (generated by C6T I); The magnetic site
symmetry group of 3c is 2/m′.

For p3̄′ (Figure 5(b)), there are three maximal Wyckoff
positions: 1a, 2b and 3c. The magnetic site symmetry
group of 1a is 3̄′; The magnetic site symmetry group of
2b is 3 (generated by C3); The magnetic site symmetry
group of 3c is 1̄′ (generated by T I).

For p4/m1′ (Figure 5(a)), there are three maximal
Wyckoff positions: 1a, 1b and 2c. The magnetic site

symmetry group of 1a and 1b is 4/m1′; the magnetic site
symmetry group of 2c is 2/m1′ (generated by C2, I and
T ).

For p6/m1′ (Figure 5(b)), there are three maximal
Wyckoff positions: 1a, 2b and 3c. The magnetic site
symmetry group of 1a is 6/m1′; The magnetic site sym-
metry group of 2b is 6̄1′ (generated by C6I and T ); The
magnetic site symmetry group of 3c is 2/m1′.

For p3̄1′ (Figure 5(b)), there are three maximal Wyck-
off positions: 1a, 2b and 3c. The magnetic site symmetry
group of 1a is 3̄1′; The magnetic site symmetry group of
2b is 31′ (generated by C3 and T ); The magnetic site
symmetry group of 3c is 1̄1′ (generated by I and T ).

We have listed the minimal magnetic layer groups that
we consider in the main text. The character tables for
site-symmetry groups utilized are in Tables I and III.

Adding mirror symmetries may change the Wyckoff
positions, but the symmetry indicators for the filling
anomaly (Eqs. (6), (9) and (12) and the symmetry in-
dices for the stable topological phases (Eqs. (14), (15)
and (16)) that we derived from the groups without mirror
symmetries still apply. This is because the minimal mag-
netic layer groups are subgroups of the groups with mir-
ror symmetries and, importantly, the irreps of the mini-
mal groups are the same as the irreps of the groups with
mirror symmetry [32]. Further, we can always project
the Wyckoff positions invariant under mirror symmetries
to Wyckoff positions in the groups without mirror sym-
metries. After this projection, the symmetry indicator
formulas are valid.

Appendix C: Derivation of modulus of η

In this section, we use the representation theory of
magnetic groups to derive the modulus, r, of the filling
anomaly in Eq. (3). Specifically, we prove that when the
symmetry group contains T I but not T or I separately,
the modulus of η in Eq. (3) is r, while when T and I
symmetries are both present, the modulus of η is 2r. If
the crystal has four-fold rotation symmetry, r = 4, while
if it has three- or six-fold rotation symmetry, r = 6.

We take the two dimensional finite lattice to be a reg-
ular polygon that preserves the rotation and inversion
symmetries, i.e., a square when n = 4 and a hexagon
when n = 3 or 6. The argument can be generalized
to other symmetric lattices. We denote the (magnetic)
point group of the finite lattice by G and then explain
how G completely determines the modulus of the filling
anomaly.

The modulus of filling anomaly is the least number of
electrons that can be added to the boundary of the finite
crystal without breaking symmetry. To preserve symme-
try, the electrons must be added to a Wyckoff position
of the (magnetic) point group G. We define a Wyckoff
position of a point group to be a set of points whose site-
symmetry groups are conjugate; here the site-symmetry
group of a particular site is defined to be the subgroup
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of the point group that leaves that site invariant. For
the group Cn, the Wyckoff positions of the point group
include the 1a position at the rotation center, whose site-
symmetry group is G, and one non-maximal general po-
sition, whose site-symmetry group is the identity. For
the group Cnv, which has additional mirror planes, there
is an additional Wyckoff position in each mirror plane,
whose site-symmetry group is generated by the mirror
symmetry (for example, in C2v, there is a 2b position
containing (x, 0) and (−x, 0), invariant under my and a
2c position containing (0, y) and (0,−y), invariant under
mx.)

Since the modulus of the filling anomaly is the least
number of electrons that can be added to the bound-
ary of the finite crystal while preserving symmetry, those
electrons can be added to any Wyckoff position except
the 1a position (because the 1a position is not at the
boundary.) Let q be the Wyckoff position of smallest
multiplicity besides the 1a position. Then the modulus
of η is determined by the product of the multiplicity of q
and the dimension of the smallest (co-)irrep of the (mag-
netic) site-symmetry group of q. We now describe how
to find the dimension of this (co-)irrep.

When T symmetry is present, the smallest co-irrep
is always two-dimensional as required by the Kramers
degeneracy. The Wyckoff positions and representative
coordinates for p3̄′, p4/m′, and p6/m′ are 6b (x, y, z),
4b (x, y, 0), and 6b (x, y, 0), respectively. Therefore, the
modulus of filling anomaly is 12, 8, and 12 respectively.

When T I symmetry is present, but not T , the Wyckoff
positions are the same as the T symmetric cases. There-
fore, the choice of q is the same. But the smallest co-
irrep is always one-dimensional because there is not an
anti-unitary symmetry that squares to −1 in the site-
symmetry group. Specifically, for p3̄′ there is no anti-
unitary symmetry that leaves q invariant; for p4/m′ and
p6/m′, C2T I is an anti-unitary symmetry that leaves q
invariant, but it squares to +1. Thus, in this case, for
n = 3, 4, 6 the modulus of filling anomaly is 6, 4, 6 re-
spectively.

Appendix D: EBR analysis

The analysis of elementary band representations in this
work is based on the (magnetic) topological quantum
chemistry theory established in Refs. [30, 34, 65]. For
a pedagogical review, we refer the readers to Ref. [64].
We now summarize the essential points.

Let A be the integer “EBR matrix” of the symmetry
group under consideration: each column of A is labelled
by an EBR and each row a particular irrep of the little
group of a particular high-symmetry point. The entries in
the matrix indicate the number of times each momentum
space irrep appears in the EBR [64, 70, 71]. A group of
topologically trivial bands can be expressed as a linear
combination of EBRs [30] with integer coefficients ni.
The irreps that appear at high-symmetry points in the

band structure satisfy

v = An, (D1)

where vj is the number of times the jth irrep appears in
the band structure.

Let the Smith normal form of A be given by

A = U−1DV −1, (D2)

where D is a diagonal positive integer matrix with diag-
onal entries (d1, . . . , dM , 0, . . . 0), i.e., the first M entries
are positive and the remaining entries are zero, and U, V
are integer matrices invertible over the integers. The sta-
ble topological classification is given by

Zd1 × · · · × ZdM . (D3)

Notice that if dm = 1 for some 1 ≤ m ≤ M , then the
mth component of the classification is trivial (because Z1

has only one element.) Therefore, the classification is
determined by those dm > 1.

We now describe how to determine the topological in-
dex of a group of bands whose symmetry co-reps at high
symmetry points are given by v; we say that v has a
nontrivial stable index if no integer solution to Eq. (D1)
exists and has a trivial stable index otherwise. The mth

component of the stable topological index (Eq. (D3)) of
the group of bands labelled by v is given by [64, 70–73]:

index = (Uv)m mod dm (D4)

where 1 ≤ m ≤ M , and dm > 1. If the index of a
given band representation vanishes and the system is in
the trivial phase (i.e. in the atomic limit), then the va-
lence bands admit a Wannier representation. The num-
ber of Wannier functions that have Wannier centers at
the maximal Wyckoff position w can be determined by
the following formula as discussed in Ref. [37]:

ew =
∑
i∈w

dim(ρi) [V DpUv]i

mod gcd{

(∑
i∈w

dim(ρi)Vij

)
|j>M}. (D5)

The sum over i ∈ w means the sum over EBRs that are
induced from a representation ρi of the site symmetry
group of the Wyckoff position w. Dp is the pseudo-
inverse of D, which is a diagonal matrix with diago-
nal entries (d−1

1 , ..., d−1
M , 0, ..., 0). gcd means the greatest

common divisor. This formula also applies to the fragile
phase where at least one component of n is a negative
integer [26, 37].

In the following subsections, we present the EBR ma-
trix A and Smith decomposition of the magnetic groups
that we use in the main text. The EBR matrices are de-
rived from the Bilbao Crystallographic Server [65]. Plug-
ging the matricesD, U and V into Eq. (D4) and Eq. (D5),
we determine the symmetry indicator formulas for the
stable topological indices in Eqs. (14), (15), (16), and
the filling anomalies in Eqs. (6), (9) and (12).
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1. p4/m′

The basis for band co-representations (columns) and
the basis for coefficients of EBRs (rows) are(

EΓ
1
2
, EΓ

3
2
, EX1

2
, EM1

2
, EM3

2

)
, (D6)

and (
E1a

1
2
, E1a

3
2
, E1b

1
2
, E1b

3
2
, E2c

1
2

)
. (D7)

In these bases, the EBR matrix is

A =


1 0 1 0 1
0 1 0 1 1
1 1 1 1 2
1 0 0 1 1
0 1 1 0 1

 (D8)

The Smith normal form matrices are

D =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 0 0
0 0 0 0 0

 (D9)

U =


0 0 0 1 0
0 1 0 0 0
1 0 0 −1 0
−1 −1 1 0 0
−1 −1 0 1 1

 (D10)

V =


1 0 0 −1 −1
0 1 0 −1 −1
0 0 1 1 0
0 0 0 1 0
0 0 0 0 1

 (D11)

Since all the non-zero elements in the diagonal matrix
D (Eq. (D9)) are 1, there is no symmetry indicated stable
topological index per Eq. (D3). Plugging these matrices
into Eq. (D5), we get Eq. (4) and Eq. (5) in Sec. II C.

2. p6/m′

The basis for band co-representations (columns) and
the basis for coefficients of EBRs (rows) are(

EΓ
3
2
, EΓ

1
2
, EX5

2
, EK3

2
, EK1

2

)
, (D12)

and (
E1a

3
2
, E1a

1
2
, E1a

5
2
, E2b

3
2
, E2b

1
2
⊕ E2b

5
2

)
. (D13)

In these bases, the EBR matrix is

A =


1 0 0 1 0
0 1 0 0 1
0 0 1 0 1
1 0 0 0 1
0 1 1 1 1

 (D14)

The Smith normal form matrices are

D =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 0

 (D15)

U =


0 0 0 1 0
0 1 0 0 0
0 0 1 0 0
1 0 0 −1 0
−1 −1 −1 1 1

 (D16)

V =


1 0 0 0 −1
0 1 0 0 −1
0 0 1 0 −1
0 0 0 1 1
0 0 0 0 1

 (D17)

Since all the non-zero elements in the diagonal matrix
D (Eq. (D15)) are 1, there is no symmetry indicated
stable topological index per Eq. (D3). Plugging these
matrices into Eq. (D5), we get Eq. (7) and Eq. (8) in
Sec. II C.

3. p3̄′

The basis for band co-representations (columns) and
the basis for coefficients of EBRs (rows) are(

EΓ
1
2
, EΓ

3
2
, EK1

2
, EK3

2
, EK

′
1
2
, EK

′
3
2

)
, (D18)

and (
E1a

1
2
, E1a

3
2
, 1E2b

1
2
, 2E2b

1
2
, E2b

3
2

)
. (D19)

In these bases, the EBR matrix is

A =


1 0 1 1 0
0 1 0 0 1
1 0 1 0 1
0 1 0 1 0
1 0 0 1 1
0 1 1 0 0

 (D20)

The Smith normal form matrices are

D =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 0
0 0 0 0 0

 (D21)
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U =


0 1 0 −1 1 0
0 1 0 0 0 0
1 0 0 0 −1 0
0 −1 0 1 0 0
−1 −1 1 1 0 0
−1 −1 0 0 1 1

 (D22)

V =


1 0 0 0 −2
0 1 0 0 −1
0 0 1 0 1
0 0 0 1 1
0 0 0 0 1

 (D23)

Since all the non-zero elements in the diagonal matrix
D (Eq. (D21)) are 1, there is no symmetry indicated
stable topological index per Eq. (D3). Plugging these
matrices into Eq. (D5), we get Eq. (12) and Eq. (11) in
Sec. II C.

4. p4/m1′

The basis for band co-representations (columns) and
the basis for coefficients of EBRs (rows) are(

EΓ
1
2 g
, EΓ

1
2u
, EΓ

3
2 g
, EΓ

3
2u
, EXg , E

X
u , E

M
1
2 g
, EM1

2u
, EM3

2 g
, EM3

2u

)
,

(D24)
and(

E1a
1
2 g
, E1a

1
2u
, E1a

3
2 g
, E1a

3
2u
, E1b

1
2 g
, E1b

1
2u
, E1b

3
2 g
, E1b

3
2u
, E2c

g , E
2c
u

)
.

(D25)
In these bases, the EBR matrix is

A =



1 0 0 0 1 0 0 0 1 0
0 1 0 0 0 1 0 0 0 1
0 0 1 0 0 0 1 0 1 0
0 0 0 1 0 0 0 1 0 1
1 0 1 0 0 1 0 1 1 1
0 1 0 1 1 0 1 0 1 1
1 0 0 0 0 0 1 0 0 1
0 1 0 0 0 0 0 1 1 0
0 0 1 0 1 0 0 0 0 1
0 0 0 1 0 1 0 0 1 0


(D26)

The Smith normal form matrices are

D =



1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 4 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0


(D27)

U =



0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 −1 0 1 0 −1 0 0
1 1 1 0 0 0 −1 −1 −1 0
0 0 1 −1 0 1 0 −1 −1 0
1 0 −1 2 0 −2 −1 2 1 0
−1 −1 −1 −1 1 1 0 0 0 0
−1 −1 −1 −1 0 0 1 1 1 1


(D28)

V =



1 0 0 0 0 0 0 1 −1 −1
0 1 0 0 0 0 −1 −2 −1 −1
0 0 1 0 0 0 −1 −1 −1 −1
0 0 0 1 0 0 0 0 −1 −1
0 0 0 0 1 0 0 1 1 0
0 0 0 0 0 1 −1 −2 1 0
0 0 0 0 0 0 0 −1 1 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 1 2 0 1
0 0 0 0 0 0 0 0 0 1


(D29)

The diagonal entry of 4 in the matrix D (Eq. (D27))
shows there is one symmetry indicated stable topolog-
ical index per Eq. (D4). Plugging these matrices into
Eq. (D4), we get Eq. (14) in Sec. III. It is a mirror Chern
number, determined by symmetries mod 4.

5. p6/m1′

The basis for band co-representations (columns) and
the basis for coefficients of EBRs (rows) are(
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2
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)
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(D30)
and(
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2
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)
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(D31)
In these bases, the EBR matrix is

A =



1 0 0 0 0 0 1 0 0 1 0
0 1 0 0 0 0 1 0 0 0 1
0 0 1 0 0 0 0 1 0 1 0
0 0 0 1 0 0 0 0 1 0 1
0 0 0 0 1 0 0 0 1 1 0
0 0 0 0 0 1 0 1 0 0 1
1 0 1 0 1 0 1 1 1 1 2
0 1 0 1 0 1 1 1 1 2 1
1 1 0 0 0 0 0 1 1 1 1
0 0 1 0 0 1 1 0 1 1 1
0 0 0 1 1 0 1 1 0 1 1


(D32)
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The Smith normal form matrices are

D =



1 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 6 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0


(D33)

U =



1 0 1 0 0 1 0 0 0 −1 0
0 1 1 0 0 1 0 0 0 −1 0
0 0 1 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0
1 1 1 0 0 1 0 0 −1 −1 0
1 −1 0 0 2 −2 −2 0 1 2 0
1 −2 −1 0 3 −4 −3 0 2 4 0
−1 −1 −1 −1 −1 −1 1 1 0 0 0
−1 −1 −1 −1 −1 −1 0 0 1 1 1


(D34)

V =



1 0 0 0 0 0 0 −5 19 −1 −1
0 1 0 0 0 0 0 −4 16 −1 −1
0 0 1 0 0 0 0 −4 15 −1 −1
0 0 0 1 0 0 0 −2 8 −1 −1
0 0 0 0 1 0 0 −3 11 −1 −1
0 0 0 0 0 1 0 −3 12 −1 −1
0 0 0 0 0 0 1 0 0 1 0
0 0 0 0 0 0 0 2 −8 1 0
0 0 0 0 0 0 0 1 −4 1 0
0 0 0 0 0 0 0 2 −7 0 1
0 0 0 0 0 0 0 1 −4 0 1


(D35)

The diagonal entry 6 in the matrix D (Eq. (D33))
shows there is one symmetry indicated stable topolog-
ical index per Eq. (D4). Plugging these matrices into
Eq. (D4), we get Eq. (15) in Sec. III. It is the mirror
Chern number, determined by symmetries mod 6.

6. p3̄1′

The basis for band co-representations (columns) and
the basis for coefficients of EBRs (rows) are(
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)
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and (
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. (D37)

In these bases, the EBR matrix is

A =



1 0 0 0 1 0 2 0
0 1 0 0 1 0 0 2
0 0 1 0 0 1 1 0
0 0 0 1 0 1 0 1
1 0 1 0 1 1 1 2
0 1 0 1 1 1 2 1
1 1 0 0 1 1 2 2
0 0 1 1 1 1 1 1


(D38)

The Smith normal form matrices are

D =



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 2 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0


(D39)

U =



0 0 0 1 0 −1 1 0
−1 0 0 0 0 0 1 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
1 1 0 0 0 0 −1 0
0 −1 0 −1 0 1 0 0
−1 −1 −1 −1 1 1 0 0
−1 −1 −1 −1 0 0 1 1


(D40)

V =



1 0 0 0 0 0 −1 −2
0 1 0 0 0 0 −1 −2
0 0 1 0 0 −1 −1 −1
0 0 0 1 0 0 −1 −1
0 0 0 0 1 0 1 0
0 0 0 0 0 0 1 0
0 0 0 0 0 1 0 1
0 0 0 0 0 0 0 1


(D41)

The diagonal entry 2 in the matrix D (Eq. (D39))
shows there is one symmetry indicated stable topolog-
ical index per Eq. (D4). Plugging these matrices into
Eq. (D4), we get Eq. (16) in Sec. III. It is the mod 2
strong topological insulator index.

Appendix E: Bulk and surface band structures and
parameter choices for tight-binding models

In this section, we present more information about the
two models that we presented in Sec. V.

For both models, the parameters are chosen to satisfy
|m+6M̃2| < |2M̃1|, so that there is one Dirac point along
the high symmetry line ∆(ΓA) (and a pair of Dirac points
inside the first BZ). The parameters for the first model

as shown in Sec. V A are M̃2 = −1, m = 4, M̃1 = −2.5,
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FIG. 6. Bulk and surface band structures for models of Dirac
points in P6/mmm. (a) The bulk BZ. (b) The surface BZ.
This is a side surface with the normal a1 = (1, 0, 0). The
L and M points of the bulk BZ are projected to R̄ and X̄
respectively. (c) Bulk spectrum of the first model Eq.( 24).
(e) Bulk spectrum of the second model. (f) Surface spectrum
of the second model Eq. (31).

Ã = 1, B̃ = 5. The parameters for the second model as
shown in Sec. V B are: M̃2 = −1, m = 4, M̃1 = −2.5,
Ã = 5, B̃1 = 1, B̃2 = 1.

The two models both preserve space group P6/mmm.
The unit cell of this space group is shown in Figure 2(a).
The bulk BZ is shown in Figure 6(a). The bulk spectrum
for the two models are shown in Figures 6(c) and (e)
respectively.

We terminate the 3D lattice in the a1 = (1, 0, 0) di-
rection, but keep the remaining directions infinite. The
corresponding surface BZ is shown in Figure 2(b). The
surface spectrum for the two models are shown in Fig-
ures 6(d) and (f) respectively. These surface states im-
pact the rod band structure because they project into

the rod spectrum when the crystal is terminated in the
a1 and a2 directions as Figure 2(b) shows. The compu-
tation of bulk and surface spectra are implemented with
Python package PythTB [74].

The high symmetry points (HSPs) that we are in-
terested in are Γ = (0, 0, 0), A = (0, 0, π), K =

(4π/3, 0, 0), H = (4π/3, 0, π), M = (π,−π/
√

3, 0), and

L = (π,−π/
√

3, π). The co-representations of the oc-
cupied bands are the labelled by the symmetry co-
representations of the little co-groups at those momenta.
We can use Eq. (15) to determine the stable index, which
is the mirror Chern number Cm, at the two TRIM planes.
The high symmetry lines that can host Dirac points are
∆ = ΓA and P = KH. The co-representations at the
high symmetry lines can be determined by compatibil-
ity condition with the symmetry co-representations at
the HSP. We can use Eq. (9) to determine the filling
anomalies at the high symmetry lines. Finally, notice
there is a Dirac point at one of the high symmetry lines
for each model. The co-irreps of the crossing bands can
be seen from the Tables VI and VII, which show that
the occupied bands have different co-reps at Γ and A.
Therefore, there must be a Dirac point at some momenta
±DP = (0, 0,±k0) on the high symmetry line ∆.

The symmetry co-representations of the occupied
bands at HSPs in the first model is shown in Table VI.
From the symmetry indicators for the stable 2D topolog-
ical index and the filling anomaly, we conclude that: the
stable index at kz = 0 plane is Cm = 1 mod 6 (ν = 1
mod 2) per Eq. (15); the stable index at kz = π plane is
Cm = 0 mod 6 per Eq. (15); the filling anomaly between
Γ−DP is η = 2 mod 6 per Eq. (9); the filling anomaly
between DP −A is η = 0 mod 6 per Eq. (9).

The symmetry co-representations of the occupied
bands at HSPs in the second model is shown in Table VII.
From the symmetry indicators for the stable 2D topolog-
ical index and the filling anomaly, we conclude that: the
stable index at kz = 0 plane is Cm = 3 mod 6 (ν = 1
mod 2) per Eq. (15); the stable index at kz = π plane is
Cm = 0 mod 6 per Eq. (15); the filling anomaly between
Γ−DP is η = 0 mod 6 per Eq. (9); the filling anomaly
between DP −A is also η = 0 mod 6 per Eq. (9).

The symmetry indicators we calculate here agree with
the numerical computation of the rod spectrum of the
two models as we plot in Figure 3. The change in filling
anomalies and the change in stable topological indices
also agree with Table V.
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HSP E 1
2
g E 1

2
u E 3

2
g E 3

2
u E 5

2
g E 5

2
u E 1

2
E 3

2
E 5

2

Γ 1 1
A 1 1

HSP E 1
2

E 3
2

E 5
2

E 1
2
E 3

2

K 1 1
H 1 1

HSP E 1
2
g E 1

2
u E 1

2

M 1 1
L 1 1

TABLE VI. The symmetry co-representations of the occupied
bands at HSPs in the first model. The last three columns are
the co-reps at the nearby momentum k = HSP± δkz.

HSP E 1
2
g E 1

2
u E 3

2
g E 3

2
u E 5

2
g E 5

2
u E 1

2
E 3

2
E 5

2

Γ 1 1
A 1 1

HSP E 1
2

E 3
2

E 5
2

E 1
2
E 3

2

K 1 1
H 1 1

HSP E 1
2
g E 1

2
u E 1

2

M 1 1
L 1 1

TABLE VII. The symmetry co-representations of the occu-
pied bands at HSPs in the second model. The last three
columns are the co-reps at the nearby momentum k = HSP±
δkz.
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