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We report first principles investigation of electronic structure, topological bands and electron-phonon inter-
actions in metallic biphenylene sheets. Biphenylene is a recently synthesized sp2-bonded carbon allotrope.
We find coupling of electrons at the Fermi surface to very high frequency carbon derived phonons, analogous
to superconducting MgB2. This leads to low temperature weak coupling superconductivity due to an unusual
combination of exceptionally large logarithmically averaged phonon frequency ωlog=1369 K and moderate
electron-phonon coupling. The electronic structure shows a two band Fermi surface dominated by C pz orbitals
and a pair of type-II tilted Dirac cones along the Γ-Y line at the Brillouin zone boundary. Berry curvature and
edge state calculations show that monolayer biphenylene is a two dimensional Z2 topological material. Thus
monolayer biphenylene is predicted to be a topological superconductor based on C p orbitals and high frequency
phonons.

I. INTRODUCTION

Carbon is exceptional in the diversity of its allotropes aris-
ing from its combination of strong directional covalent bond-
ing and competition between different hybridization schemes,
particularly sp, sp2 and sp3 bonding1. The strong bond-
ing leading to highly dispersive energy bands and generally
high stability of the allotropes has provided exciting plat-
forms for realizing novel physics. These include graphite2,
diamond3, carbon nanotubes4, fullerenes5, graphene6, and
others1. Graphene in particular provides a platform for a
wide variety of novel behaviors associated with its Dirac
cones at the Fermi level6,7. These include ballistic charge
transport8, the quantum spin Hall effect9, Klein tunneling10,
exceptional carrier mobilities11, Majorana zero modes12, and
other phenomena13. This motivates searches for and investiga-
tion of other Dirac materials14–18, especially materials based
on carbon and analogues of them.

Carbon based superconductivity provides the possibility of
exceptionally high critical temperatures due to the possibility
of coupling to high frequency phonons with strong electron-
phonon matrix elements arising from the strong bonding and
light mass of carbon, as well as the possibility of novel fea-
tures associated with topological aspects of the electronic
structure of some carbon allotropes especially graphene. This
was anticipated in the discovery of electron-phonon supercon-
ductivity MgB2, which is closely related to graphene. MgB2

has an exceptionally high ambient pressure critical temper-
ature of Tc=39 K19, based on coupling to high frequency
modes as well as two gap superconductivity20,21. In fact,

the unique carbon-like characteristics of MgB2, specifically
high energy scales has enabled elucidation of two gap super-
conducting physics22. Additionally, similar and higher crit-
ical temperatures have been discovered in doped fullerenes,
which in addition provide a platform for investigating super-
conductivity in proximity to metal insulator transitions and
magnetism23. Finally, graphene itself has been shown to be
an exciting superconductor when modified through doping or
through twisting24–32. Superconductivity with Tc ∼ 5.9 K
is found Li-decorated monolayer graphene33. Superconduc-
tivity has also been observed in Ca-decorated graphene34,35.
First principles theory shows that these are well explained as
electron-phonon superconductors28,36,37.

These results raise the question of whether an intrinsic a
2D sp2-bonded carbon allotrope with topological Dirac cones
and superconductivity without requiring doping, twisting or
strain can be found. This would offer the potential for a highly
stable, readily realizable platform for investigating topologi-
cal superconductivity. Here we investigate biphenylene as a
candidate and find that it is in fact a topological superconduc-
tor, with features related to those of MgB2, particularly the
coupling to high frequency phonons, but in a weak coupling
regime.

Biphenylene is a planar sp2-hybridized carbon allotrope
with intrinsic Dirac cones. Similar to graphene, it is atom-
ically thin. However, the structure is more complex, and is
comprised of approximately square four membered, six mem-
bered, and eight membered carbon rings38. The possibility
of synthesizing biphenylene has been recognized for some
time. This motivated several attempts and synthesis and the
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discovery of interesting related phases with potential practical
applications39–41. Finally, biphenylene was recently experi-
mentally synthesized42, and shown to be a stable metal43–45.
Here we show that besides being a metal, biphenylene is both
a topological metal and superconducting. We find that there
is a pair of type-II Dirac cones derived from C pz orbitals
approximately 0.63 eV above the Fermi energy in monolayer
biphenylene and that the material is an electron-phonon su-
perconductor. It exhibits a nontrivial Z2 topological invariant
exhibiting protected edge states at the boundaries with one-
way propagation.

II. COMPUTATIONAL METHODS

Our first principles calculations were performed in density
functional theory (DFT) with the local density approximation
(LDA) and norm-conserving pseudopotentials46,47. We used a
planewave basis as implemented in the Quantum-ESPRESSO
(QE) package48,49, with planewave basis set cutoffs of 80 Ry
for the wave functions and 320 Ry for the charge density. The
zone sampling in the self-consistent calculations was done
with a Methfessel-Paxton smearing of 0.02 Ry on a 20×16
Monkhorst-Pack grid k-mesh50. The internal atomic positions
are fully relaxed with a threshold of 10 meV/Å for the forces.
We used periodic supercells with a length of 20 Å along the
z-direction, perpendicular to the biphenylene sheets.

The phonon dispersions were calculated within density
functional perturbation theory51 on a 10×8 q-mesh using the
Phonon code in the QE package. The mode-resolved magni-
tudes of the electron phonon coupling (EPC) λqν were calcu-
lated as52,53

λqν =
γqν

πhN(EF)ω2
qν
, (1)

where γqν is the phonon linewidth, ωqν is the phonon fre-
quency, and N (EF) is the electronic density of states at the
Fermi level. The γqν are

γqν =
2πωqν

ΩBZ

∑
k,n,m

|gνkn,k+qm|2δ(εkn − εF)δ(εk+qm − εF),

(2)

where ΩBZ is the volume of the Brillouin zone, the εkn
(εk+qm) are the Kohn-Sham eigenvalues, and gνkn,k+qm are
the EPC matrix elements54. The Eliashberg electron-phonon
spectral function α2F (ω) is then calculated by

α2F (ω) =
1

2πN(EF)

∑
qν

γqν

ωqν
δ(ω − ωqν). (3)

The total EPC λ can be calculated in two ways. These are
integration of the EPC constant λqν in the full Brillouin zone
for all phonon modes or by integrating the Eliashberg spectral
function α2F (ω)55

λ(ω) =
∑
qν

λqν = 2

∫ ω

0

α2F(ω)

ω
dω. (4)

The superconducting transition temperature, Tc, is determined
from the calculated EPC constant λ by the McMillan-Allen-
Dynes formula,

Tc = f1f2
ωlog

1.2
exp

[
− 1.04(1 + λ)

λ− µ∗(1 + 0.62λ)

]
, (5)

where µ∗ is the effective screened Coulomb repulsion con-
stant, ωlog is the logarithmic average frequency,

ωlog = exp

[
2

λ

∫ ∞
0

dω
ω
α2F(ω)logω

]
, (6)

and fi is the correction factor when λ > 1.356. As discussed
below, we find lower values of λ characteristic of weak cou-
pling, and used values of µ∗ = 0.1 and f1f2 = 1.

We analyzed the electronic structure in terms of Wannier or-
bitals in order to examine the electronic structure of nanorib-
bons for edge states. The Wannier tight-binding (TB) Hamil-
tonian was constructed from the first principles Bloch func-
tions by projecting the states onto maximally localized Wan-
nier functions (MLWFs)57 using the Wannier90 package58,59.
In the model, the MLWFs are derived from six C pz orbitals.
The nontrivial boundary-edged states are calculated from the
imaginary part of the surface Green’s function60 as obtained
with the WannierTools package61. Fermi surfaces colored as a
function of an arbitrary scalar quantities in this work are drew
by using the FermiSurfer program62.

III. RESULTS AND DISCUSSION

A. Atomic structure and electronic properties

FIG. 1. Structure of monolayer biphenylene in a top view. The unit
cell, bond lengths, and angles are as indicated by the solid black
lines.

Layered biphenylene forms in the centrosymmetric or-
thorhombic space group Pmmm (No. 47). The monolayer
is illustrated in Fig. 1. There are two crystallographically dis-
tinct C positions: C1, site symmetry 4z and C2, site symmetry
2p. The optimized lattice constants are a=3.75 Å and b=4.51
Å. These compare well with a prior calculation (a=3.76 Å and
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b=4.52 Å)38. Importantly, the structure is clearly anisotropic
between the a and b directions. This leads to the expectation
of anisotropic physical properties. The structure is based on
three types of C rings: tetragons hexagons and octagons, with
C-C bond lengths ranging from 1.40 Å to 1.45 Å, similar to
the value of 1.42 Å in graphene. All the C atoms are threefold
coordinated as expected for sp2 hybridization, but the the an-
gles vary with values of 90◦, 110◦, 125◦, and 145◦. We find
that relaxations starting with imposed buckling of the sheets
invariably returned to the planar unbuckled 2D structure. This
shows that monolayer biphenylene has a truly planar structure.

FIG. 2. (a) Calculated orbital-resolved band structures of a bipheny-
lene monolayer. The red and blue circles highlight the π and σ
bands arising from pz and sp2-hybrid orbitals, respectively. The
high-symmetry points, Γ, X, Y, and S are (0,0), (1/2,0), (0,1/2), and
(1/2,1/2), respectively. The Fermi level is set to zero. (b) Band struc-
ture of monolayer biphenylene around the Fermi level, showing the
Dirac cone marked by a green circle. (c) Calculated electronic den-
sity of states in the energy region of the band structure of (b).

FIG. 3. (a) The 2D Fermi surface formed by the two bands that cross
the Fermi level, colored to indicate relative Fermi velocity. The red,
green, and blue regions have high, middle, and low Fermi velocity
νF , respectively. (b) Three-dimensional visualization of the type-II
Dirac cones.

The calculated band structure and corresponding electronic
density of states are shown in Fig. 2. The band structure is
metallic with two bands crossing the Fermi level. This is in
accord with prior calculations38,63 and experimental dV/dI
spectra42. As shown in the orbital-resolved band structure of
Fig. 2a, the px,y orbitals hybridize with the s orbitals to form
18 strong covalent in-plane σ bonds. The unhybridized pz or-
bitals form six relatively weak out-of-plane π bonds. The third
and fourth π bands contribute to the Fermi surface. Thus the
Fermi surface is derived from π orbitals. As seen, the valence

and the conduction bands touch along the Γ-Y line with linear
dispersion to form intrinsic type-II Dirac cones approximately
0.63 eV above the Fermi level (Figs. 2b and 3b). Also, as seen
in Fig. 3a, the valence band contributes elliptical hole pockets
around Y, while the conduction band forms elliptical electron
pockets around the S points. Thus the Fermi surface has two
Fermi pockets. These Fermi surfaces are compensating with
equal areas corresponding to the even electron count, but have
different average velocities.

The Fermi surfaces colored to indicate relative Fermi veloc-
ity are shown in Fig. 3a. The ratio between the maximum and
minimum velocity is approximately 4.2. This reflects the very
different slopes of the bands comprising the Fermi surface as
seen in the band structure, for example the high velocity of
the lower band coming from Γ and crossing the Fermi level
along Γ-Y, as compared to the relatively weak dispersion of
the band crossing the Fermi level along X-S. Thus the hole
pocket around Y has higher Fermi velocity than the electron
pocket around S, leading to the expectation that the electrical
transport will be dominated by hole carriers, while the den-
sity of states will be dominated by the electron carriers. This
is opposite to the iron based superconductors and many other
superconductors where hole Fermi surfaces are heavier than
the electron Fermi surfaces in terms of Fermi velocities64 We
note that, similar to graphene, spin orbit is expected to have an
extremely small effect as a consequence of the small atomic
number of carbon65,66.

B. Topological numbers and edge states

FIG. 4. Berry curvature Ωz distributions (a) in the Brillouin zone and
(b) along the high-symmetry lines for single-layer biphenylene.

As may be noted, graphene, which is a Dirac material, has
an intrinsic nontrivial topological band feature9. Especially in
light of this it is important to determine whether 2D bipheny-
lene with its Dirac cones is also topological. Biphenylene has
a structure with inversion symmetry. Therefore we can verify
the nontrivial topological nature of a biphenylene sheet via the
Z2 topological invariant. This number comes directly from the
parities of the occupied bands at time reversal invariant mo-
mentum (TRIM) points67,68. The parities ξ(i) of twelve occu-
pied valence bands for the biphenylene monolayer are given
in Table I. The parity products for the occupied states at the
TRIM points are calculated, by δ(ki) =

∏12
N=1 ξ(i), to be +1,
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FIG. 5. Structural models for ribbons of single-layer biphenylene with (a) armchair-edged and (b) zigzag-edged boundaries. To clearly display
the nanoribbons, we replace some of the repeated periodic cells by dotted lines. Momentum resolved local density of states projected on the
edges of semi-infinite nanoribbons for (c) armchair and (d) zigzag boundaries. The black lines in (c) and (d) indicate the band structure of
monolayer biphenylene.

+1, -1 and +1 for Γ, X, Y, and S, respectively. This yields a
nontrivial topological invariant ν = 1 by (−1)ν =

∏4
i=1 δ(ki).

This result clearly indicates the presence of non-trivial topo-
logical states in biphenylene.

TABLE I. The calculated parity eigenvalues of the twelve occupied
spin-degenerate bands at four TRIM points for monolayer bipheny-
lene.

TRIM Parities Product
Γ + + −− + − + −− + +− +

X − + − + − + + + −− +− +

Y + − + −− + + − + −−− −
S − + − + −− + + + − +− +

To further confirm the topological nature of the Dirac
points, we calculate the Berry curvature69 via

Ωzn(k) = i 〈un(k)| 5k |un(k)〉 , (7)

where uk(k) represents the Bloch wave function of the n-th
band. In Fig. 4, a pair of Dirac points at the boundary of the
Brillouin zone could show the positive and negative Berry cur-
vature distributions. These then would serve as the source and
sink of the Berry curvature in the momentum space, respec-

tively. We calculate the Berry phases69,70 by

γn =

∮
C

Ωzn(k) · dk. (8)

For this purpose, we define a circle on the kz = 0 plane cen-
tered at the Dirac point to calculate the Berry phase71. The
needed radius of the circle is arbitrary as long as it does not
cover another Dirac point. We find that the Berry phase for
the Dirac point is either π or -π, indicating that the crossing
points are indeed pairs of topologically nontrivial points with
opposite Berry phases69.

Nontrivial topology in a 2D crystal can be also character-
ized via the topologically protected edge states due to the
bulk-edge correspondence72,73. We used a TB model as men-
tioned above to construct a supercells of a one-dimensional
nanoribbons. As discussed in the case of graphene73, two
representative nanoribbons, one with a zigzag configuration
shown in Fig. 5a and one with an armchair configuration
shown in Fig. 5b were constructed by cutting the bipheny-
lene sheet. For the armchair-edged boundary, as shown in
Fig. 5c, the topologically protected edge states originate from
the Dirac points and disappear into the bulk states. This con-
firms the nontrivial topological phase in monolayer bipheny-
lene. In the case of the zigzag-edged ribbon, as indicated in
Fig. 5d, we find an absence of (d−1)-dimensional edge states.
This is consistent with the above topological chirality analysis
where only the Y point hosts odd parity and gives rise to the
topological band.
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FIG. 6. (a-c) Calculated phonon spectra for the biphenylene monolayer highlighting the primary nature of the different modes. C1 and C2
are the C atoms with site symmetry 4z and 2p, respectively. xy shown as red are in-plane vibrations, and z shown as blue are out-of-plane
vibrations. (d) Calculated phonon dispersions for monolayer biphenylene with the size of red circles being proportional to the magnitude
of λqn. (e) Projected phonon density of states. (f) Frequency-dependent Eliashberg spectral function α2F (ω) and cumulative frequency-
dependent EPC function λ(ω).

C. Phonons and electron-phonon interactions

Figure 6 shows the phonon dispersions and the pro-
jected phonon density of state (PhDOS) over the whole
frequency range. The results are in accord with prior
calculations38,63,74,75. The absence of unstable modes in the
Brillouin zone confirms the dynamic stability of monolayer
biphenylene with a planar structure. The highest phonon fre-
quency is approximately 209 meV, which is slightly larger
than in the case of graphene71. There are six atoms per unit
cell in biphenylene leading to eighteen phonon branches in the
dispersion: three acoustic and fifteen optical branches. The
acoustic branches are an out-of-plane (ZA), an in-plane trans-
verse (TA) and an in-plane longitudinal (LA) branch. These
cross several low-frequency optical branches. The ZA mode
around the Γ point has a parabolic dispersion characteristic of
a planar material, while the LA and TA modes show linear
dispersions near the Γ point.

We used in-house post-processing programs to determine
atomic characters and directions76,77 based on |eαν (j,q)|2,
where e is the polarization vector of the j-th atom and the
ν-th band at q along the α direction. The phonon dispersions
colored according to the contributions of different C sites and
vibrational directions are shown in Figs. 6a, 6b and 6c. The
out-of-plane C vibrations mainly contribute to the lower en-
ergy phonons. The high-energy phonons, above 100 meV, are
almost entirely from the in-plane vibrations. This is similar to
graphene.

We now turn to superconductivity, which we discuss based
on the calculated electron-phonon Eliashberg spectral func-
tion α2F (ω). As seen in Fig. 6d, phonons from 119 to 130
meV, dominated by the in-plane vibrations that modulate C-C
bond lengths, make the main contributions to the EPC based
on the calculated α2F (ω). There are also significant con-
tributions from even higher frequency modes as seen in the
peak in the spectral function around 150 meV. This is differ-
ent from the behavior of most other 2D superconductors, such
as Cu2Si78, borophene79, B2O80 and Cu-BHT81. In those ma-
terials out-of-plane vibrations dominate the EPC.

The integrated EPC λtot(q), given by λtot(q) =

FIG. 7. The integrated EPC λtot(q) distributions (a) in the Brillouin
zone and (b) along the high-symmetry directions.

∑
ν λν(q), is plotted in Fig. 7. According to the Eq. 1,

when ω2
qν is zero, λqν goes to infinity. To make it sense,

we set the λqν of the three acoustic branches at the Γ point
to the nearest neighbor. As seen, optical phonons around the
Γ point contribute strongly to the EPC. This is seen particu-
larly along the Γ-S line. The overall EPC constant λ is ap-
proximately 0.3. This is a very small value for a supercon-
ductor. Nonetheless, superconductivity with a Tc of 0.59 K
is predicted with µ∗=0.1. The relatively high Tc for low λ
is a consequence of the very high frequencies of the phonons
that are coupled. The logarithmic averaged frequency ωlog
for biphenylene sheet is 1369 K. The critical temperature is
larger than that predicted in hole doped graphene30, where λ
= 0.27 and Tc in the order of ∼10−4 K were reported. It is
also much smaller than the values (λ = 0.55 and Tc = 5.1-
7.6 K) in Li-decorated graphene28, (λ = 0.71 and Tc = 6.8-
8.1 K) in Ca-intercalated graphene36, and (λ = 0.42 and Tc =
13 K) in heavily n-doped graphene30. The logarithmic aver-
aged frequency ωlog for biphenylene sheet is comparable to
the value of ωlog=1316 K in hole doped graphene graphene30.
This implies an analogy between the superconductivity of
hole doped graphene and intrinsic undoped biphenylene. Fi-
nally, it should be noted that due to the weak coupling implied
by the low λ, the predicted value of Tc is highly sensitive to
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the choice of µ∗ although the prediction that the material is
superconducting is robust in the usual range of µ∗ from 0.10
to 0.15.

FIG. 8. Distribution of the EPC strength λk of single-layer bipheny-
lene. The data points correspond to electrons within ±200 meV from
the Fermi energy. Inset: Momentum-resolved EPC parameters λk on
the Fermi surface. The Brillouin zone is indicated by the solid lines.

We further investigated the superconductivity by calcula-
tions using the density functional theory for superconductors
by solving the gap equation with the Superconducting-Toolkit
package82,83:

∆nk = −1

2

∑
n′k′

Kel−el
nkn′k′ +Kel−ph

nkn′k′

Znk

∆n′k′

En′k′

× tanh

(
βEn′k′

2

)
,

(9)

where Kel−el
nkn′k′ , Kel−ph

nkn′k′ , and Znk are the electron-electron
kernel, electron-phonon kernel and renormalization, respec-
tively. As shown in Fig. 8, the calculated λk has a signifi-
cant anisotropy on the Fermi surface with values varying from
0.15 to 0.23. However, only one peak is in the distribution
ρ(λk), which implies that although there are two sheets of
Fermi surface the material should be classified as a single gap
superconductor28. The momentum-resolved EPC parameter
λnk on the Fermi surface is shown in the inset of Fig. 8. Com-
paring with the band structure in Fig. 2b and the Fermi surface
plot in Fig. 3a, one observes that the larger values of λk are on
the Y-centered Fermi pockets dominated by the valence band.
Overall, our calculated EPC λ = 0.19 and Tc = 0.46 K from
the superconducting density functional calculation are in ac-
cord with the values (µ∗ = 0.1, λ = 0.3, Tc = 0.59 K) from the
averaging and McMillan-Allen-Dynes formula.

IV. CONCLUSIONS

In summary, we investigated the electronic structure and
electron-phonon coupling of the recently synthesized sp2 car-
bon allotrope, single-layer biphenylene. We find that the Dirac
cones in biphenylene sheet are of type-II and in pairs with
opposite valued Berry curvature. The topological nature is
confirmed by the presence of edge states and the non-zero

topological Z2 invariant. We also find low temperature weak
coupling single gap superconductivity. This arises from the
combination of a very high logarithmically averaged phonon
frequency, dominated by the in-plane vibrations, with a rela-
tively low EPC constant λ. Thus monolayer biphenylene is
predicted to be a topological superconductor and may there-
fore be a useful platform for studying the interplay of topo-
logical bands and superconductivity in an intrinsic material. It
will therefore be of considerable interest to perform low tem-
perature experimental studies searching for superconductivity
in biphenylene and its monolayers.
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Appendix A

As shown in Fig. 9, the valence band (blue line) and the
conduction band (red line) touch at the Dirac point with a
tilted-over cone in energy-momentum space. In addition, the
two bands along the Γ-Y line have slopes with the same sign,
which is an intuitive criterion for type-II points84.

FIG. 9. The enlarged band structure along the Γ-Y line of the
biphenylene monolayer. The blue and red lines highlight the va-
lence band and conduction band of the biphenylene monolayer, re-
spectively. The gray dot lines are the energy level of the Dirac points.
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