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Abstract 

We investigate theoretically the giant nonlinear optical susceptibilities based on 

intersubband transitions in the n-type BaSnO3 quantum well heterostructures. Validity of 

the effective mass theory, used to compute susceptibility is demonstrated using first 

principles calculations. We predict 𝜒(2) values up to 200 nm/V and 𝜒(3) values up to 8000 

nm2/V2, both over a much broader spectral range. 𝜒(2) is estimated from the THz region to 

the boundary with visible light, a range four times broader than current semiconductor 

quantum wells. This opens a possibility to make tunable nonlinear optical devices operating 

in the important range from THz to visible light.  

 

Integrated photonics is an emerging technology combining optical and electronic 

properties of materials. It overcomes the limitations of traditional electronic devices, since 

photons can be operated at broadband with smaller loss and higher modulation speed than 

electrons. Hence, photonic devices have many potentially revolutionary applications. 

Specifically, silicon photonic devices, thanks to their excellent optical properties and 

natural compatibility with the CMOS processing infrastructure, have been subject to active 

study in recent years. These include optical modulators [1, 2], reservoir computing on a 

silicon photonic chip [3], inter-chip interconnects [2], quantum information processing [4, 

5], and optical neuromorphic computing chips [6-8]. The use of optical nonlinearity e.g., 

second harmonic generation (SHG) and Pockels effect in BaTiO3 on Si [9-13], or LiNbO3 

on Si [14-18] offers a promising path towards on-chip low power electro-optic 

functionality [19] for example, in edge computing. 

In general, the intrinsic optical nonlinearity in most bulk materials is quite small. Typical 

magnitudes of the second-order optical susceptibility 𝜒(2)  and the third-order 𝜒(3) are 10-
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12 m/V and 10-22 m2/V2, respectively.  To enhance the optical nonlinearity, artificially 

engineered semiconductor-heterostructure quantum wells (QWs) have been proposed [20-

26], demonstrating infrared intersubband transitions and large dipole matrix elements [27].  

As both  𝜒(2)  and 𝜒(3)  are proportional to the dipole matrix elements of a QW, these 

heterostructures can be designed to have extremely high optical nonlinearity [28]. For 

example, AlInAs/GaInAs QWs have been reported with 𝜒(2) ~10-8 m/V, and 𝜒(3) ~10-14 

m2/V2 [22]. Such 𝜒(2) value can be further enhanced in an In0.53Ga0.47As/Al0.48In0.52As QW 

combined with plasmonic metasurfaces [19]. Though the use of QW-based materials 

reduces the nonlinear optical conversion efficiency compared with bulk materials, the giant 

nonlinearity offers appealing advantages, e.g. highly compact and integrable nonlinear 

optical components, etc. And several groups reported the efficiency up to ~ 10% level [29]. 

One of the major limitations of semiconductor heterostructures, however, is that the depth 

of the confining potential depends on the conduction band offset, which is relatively small 

between most semiconductors [30]. The low QW confining depth results in fewer bound 

energy levels with narrower spacing, which limits the spectral range and tunability.  

Intersubband transitions have been recently observed in metal-oxide-based QWs, e.g. ZnO 

and SrTiO3, where the confinement can be very strong due to large (on the order of eV) 

conduction band offsets [31-39]. This would significantly increase the available spectral 

range. Owing to the development of epitaxial growth techniques for perovskite oxides on 

Si [40-43], it is now possible to integrate perovskite-oxide-based (PO-based) QWs with Si 

to make integrated silicon photonic devices [38]. For example, the LaAlO3/SrTiO3 system 

(LAO/STO) supports multiple QWs [36, 37] and indeed, has been directly integrated on a 

Si wafer [38]. Despite this remarkable success, one clear shortcoming of the LAO/STO 

system is the relatively large effective mass in La-doped STO (m*~ 0.999m0) [44, 45], 

compared with GaInAs m* = 0.043m0 or AlInAs m* = 0.07m0 [22]. The larger effective 

mass results in a smaller energy spacing between the quantized energy levels, negating the 

advantages of a large well depth.  

In this paper, we demonstrate that the PO-based QWs with the right choice of a metal oxide 

can significantly exceed the current semiconductor QWs nonlinearity and tunability. To 

this end, we propose stannate-based QWs. We use La-doped BaSnO3 (BSO) as an example, 
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where the large curvature of the Sn 5s-based conduction band (CB) bottom results in a very 

small effective mass. For bulk perovskite BSO we calculate the electron effective mass of 

m*=0.17m0, in good agreement with other first-principles calculations [46] and 

experimental value of 0.19m0 [47]. This choice maintains the advantage of a large CB 

offset (~ 1.74 eV), while alleviating the high effective mass limitation of the LAO/STO 

system.  

To demonstrate the potential of BSO in heterostructures with highly nonlinear and field-

tunable optical properties, we compute nonlinear optical response of stannate-based QWs 

using effective mass theory (EMT). The optimization of large-scale (> 10 nm) 

heterostructures requires fast and accurate calculations of the electronic structure, which is 

done more efficiently with a mesoscopic model. The validity of this approach is established 

using a multiscale simulation (details can be found in the Supplemental Material Sec. I 

[48]), combining atomic-level, first principles density functional theory (DFT) and a 

maximally localized Wannier function (WF) [49] tight-binding (TB) calculations [50] with 

a mesoscopic level Poisson-Schrödinger (PS) solver [34, 39, 51].  

To explore 𝜒(2) and 𝜒(3) of the BSO QW heterostructures, we consider asymmetric double 

QWs (DQWs) and triple QWs (TQWs), since nonlinear susceptibility vanishes in 

symmetric single wells. Our DQW includes four- and seven-unit-cell thick BSO wells, 

separated by a one-unit-cell thick BaO barrier (Fig. 1), while the TQW includes three-, 

four-, and six-unit-cell thick BSO wells, separated by two one-unit-cell thick BaO barriers 

(Fig. 2). Both the DQW and the TQW are placed between thick BaO barrier layers. The 

calculation details for the BSO/BaO DQW and TQW are discussed in the Supplemental 

Material Sec. II, VII and VIII [48].  

EMT [52] connects the mesoscopic and microscopic level simulations and has been widely 

used to describe semiconductor heterostructures [53, 54]. Its applicability depends on 

meeting the Luttinger criterion that the characteristic length of the potential spatial 

variation is much larger than the material’s lattice constant [52]. Though this assumption 

may not be strictly true in our case, given that our inter-well barriers are one-unit-cell thick, 

we find overall good agreement between the mesoscopic and microscopic models, 
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validating the approximation. In EMT, a QW is modeled as a 1D, external, scalar potential 

𝑈(𝑧) (z is along the direction of confinement) imposed on the crystal periodic potential. 

𝑈(𝑧) comes from the conduction band profile across the heterostructure. If the Luttinger 

criteria is satisfied, and 𝑈(𝑧) varies much more slowly than the atomic potential, one can 

separate the slow envelope function (EF) 𝐹𝑛(𝑧), from the rapidly varying wave function 

and focus on the EF only [52, 55].  

It is instructive to compare the EFs in the oxide heterostructure from both, the microscopic 

and mesoscopic perspectives. Our mesoscopic model uses a PS solver [51] that includes 

the effect of La doping (see Supplemental Material Sec. V [48]). Figs. 1 and 2 show the 

potential profile (including the effect of doping electrons) and wave functions (solid red 

lines) of the DQW and TQW structures computed with the PS solver. The microscopic 

simulation results are based on the wave functions computed using DFT and the WF TB 

model. DFT implemented using the plane-wave basis (PWB) expansion of the wave 

functions offers a “global picture” [49] and gives the electronic structure in the momentum 

space. To visualize the QW EFs in real space using these “global” wave functions, we plot 

the charge density distribution computed using DFT within a narrow energy window 

around the QW bands. In Figs. 3 and 4, we show the charge density corresponding to the 

first and second excited state of the DQW and TQW, respectively. The brightness of the 

blue color is proportional to the magnitude of EFs. The overall shape of the charge density 

agrees rather well with the EFs computed with the PS solver.  

To further explore the validity of the EMT, we use maximally-localized WFs [49, 57, 58] 

to construct a TB model and capture the real space information of the EFs so that we can 

directly compare the shape of the WFs with the charge distribution calculated within DFT, 

as well as wave functions from the PS solver, where the EFs are described at the 

mesoscopic level. Using the WF basis, we construct the projector operator for the Sn atom 

s-orbitals.  Acting with it on the QW state wave functions that can be described by both 

TB model and in the PWB as 𝜓 = ∑ 𝑐(𝒌 − 𝑮)𝑒𝑖(𝒌−𝑮)∙𝒓
𝑮

 (details in the Supplemental 

Material Sec. IV [48]), we can extract the projected magnitudes of the EFs of the WF TB 

model at each Sn site. The ground state and up to the third-excited QW states EFs are 

shown in Figs. 1(b) and 2(b) with blue hollow dots. In Figs. 1(c) and 2(c), we show the s-
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like WFs localized at each Sn site for the first and second excited states of the DQW and 

TQW, respectively. In the WF plot, red is positive, blue is negative and the size of the WFs 

represents the magnitude of EFs. WF magnitudes modulated by EFs agree well with the 

charge density distributions in Fig. 3 and 4. In Fig. 1(a), the energy differences between 

the levels computed with the PS solver and DFT are listed on the left and right side of the 

figure, respectively. For the DQW the energy differences computed with different methods 

are very similar (the agreement is more accurate for the lower energy states). The EF 

magnitudes (blue circles) derived using the maximally localized WFs agree well with the 

value of the PS wave function on the corresponding atomic plane. For the TQW, the energy 

differences and shapes of the EFs between mesoscopic and microscopic simulations are in 

qualitative agreement. It is important to note that the energy separation of the QW states 

and the shape of the EFs are very sensitive to the exact QW potential profile when using 

the PS solver. The rapid variation of the local electrostatic potential across the QW and the 

well-known band gap underestimation problem of the semi-local DFT present a bit of a 

challenge for the simulation.  These, however, can be dealt with using standard techniques 

(details can be found in the Supplemental Material Sec. III [48]). Overall, the mesoscopic 

and microscopic simulations agree with each other, establishing the validity of EMT for 

BSO/BaO QWs.  

With this knowledge of the confined states, we are ready to explore the optical nonlinearity 

of the QWs. There are multiple ways to calculate the non-linear susceptibility using ab 

initio methods e.g., time-dependent DFT [59]. Also, Sipe et al. [60, 61] and Segall et al. 

[62] have developed analytical expressions for the frequency dependent SHG susceptibility 

using perturbation theory. However, as these methods are designed for bulk crystals with 

relatively few atoms in the unit cell, they are not well suited for the large heterostructures 

like the DQW in Fig. 2(a) or TQW depicted in Fig 3(a). To compute the nonlinear 

susceptibility of our BSO/BaO QWs, we will leave aside the intraband transitions and focus 

only on the QW-induced sub-bands. Our spectrum then, using the EMT, consists of the 

bound QW states En,z and 2D free electron bands in the directions normal to the 

confinement direction:  

                                             𝐸𝑛 = 𝐸𝑛,𝑧 +
ℏ2

2𝑚∗
𝑘∥

2.                 (1) 
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As shown in Figs. S5 and S9, the QW electronic structure indeed has non-dispersive (flat) 

bands along the z-direction and approximately parabolic bands in the direction normal to 

the well stacking in good agreement with the EMT spectrum of Eq. (1). Refs. [60-62] 

determine 𝜒(2)  of undoped materials by integrating 𝜒(2)(𝒌)  over the Brillouin zone 

𝜒(2)~∫d𝒌 𝜒(2)(𝒌).  𝜒(2)(𝒌) depends on the band structure and is sampled over special 

points in the Brillouin zone.  However, in a lightly doped QW, we can omit the  𝒌 

dependence of 𝜒(2)(𝒌) [63]. This is possible because the 𝑘∥
⃗⃗  ⃗ energy dispersion of the QW 

bands (shown in Figs. S5, S9) of Eq. (1) follow the same parabolic pattern, and the energy 

difference 𝜔𝑛𝑙 = (𝐸𝑛 − 𝐸𝑙) ℏ⁄  between the bands is independent of the momentum for 

vertical transitions [63] for low doping density. Hence, 𝜒𝑖𝑗𝑘
(2)

 can be written as: 

𝜒𝑖𝑗𝑘
(2)

(2𝜔,𝜔,𝜔) =
𝑁𝑒

𝜖0ℏ2
∑ (𝜌𝑙𝑙

(0)
− 𝜌𝑚𝑚

(0)
) × (𝜇𝑙𝑛

𝑖 𝜇𝑛𝑚
𝑗

𝜇𝑚𝑙
𝑘 ) ×𝑙𝑚𝑛

{
1

(𝜔𝑛𝑙−2𝜔−𝑖𝛾𝑛𝑙)(𝜔𝑚𝑙−𝜔−𝑖𝛾𝑚𝑙)
+

1

(𝜔𝑛𝑚+2𝜔+𝑖𝛾𝑛𝑙)(𝜔𝑚𝑙−𝜔−𝑖𝛾𝑚𝑙)
}            (2), 

where 𝑁𝑒  is the average doping density, 𝜇  the dipole matrix and 𝜌  the density matrix. 

Details of calculating 𝜒𝑖𝑗𝑘
(2)

 and 𝜒𝑘𝑗𝑖ℎ
(3)

 are provided in the Supplemental Material Sec. VI 

[48]. We include a damping term, 𝛾𝑛𝑙, describing excited electrons in other non-QW bands, 

intraband motion, etc., resulting in an effective dephasing effect in the intersubband 

transition [64, 60-62]. 

The selection rule for the intersubband transitions in QWs [32, 65, 66] dictates that the 

intersubband transitions can only be excited by light polarized along the z direction with 

non-zero electric field component Ez. Therefore, in the following discussion, we focus on 

𝜒𝑧𝑧𝑧
(2)

 and 𝜒𝑧𝑧𝑧𝑧
(3)

. In Figs. 5(a) and 5(c), we show |𝜒𝑧𝑧𝑧
(2)

(2𝜔,𝜔,𝜔)| and |𝜒𝑧𝑧𝑧𝑧
(3)

(3𝜔,𝜔,𝜔,𝜔)|, 

for our QWs, respectively. Here, 𝜔 is the incident pump frequency and, 2𝜔 and 3𝜔 are the 

output frequencies. In Fig. 5(a), the spectrum of our DQW is shown in blue, and the 

spectrum of our TQW is shown in green. The red spectrum in Fig. 5(a) is that of an 

additional DQW with three- and six-unit-cell thick BSO wells. For comparison with 

semiconductor QWs, the magnitude of the reported 𝜒𝑧𝑧𝑧
(2)

 from Ref. [19] and 𝜒𝑧𝑧𝑧𝑧
(3)

 from Ref. 

[22] are indicated with the black dashed lines in Figs. 5(a) and 5(c), respectively. To model 
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doped QWs with only the ground state occupied, we use average doping densities of 𝑁𝑒 =

1019 cm−3 [67] for the DQW and 𝑁𝑒 = 5 × 1018 cm−3 for the TQW. We set 𝛾𝑛𝑙 = 10 

meV for the damping term (compare with 𝛾𝑛𝑙 = 7.5 − 8.5 meV in Ref. [19]). To maximize 

the SHG and THG susceptibility, the QW energy levels should be equally spaced. When 

this is achieved, |𝜒𝑧𝑧𝑧
(2)

(2𝜔,𝜔, 𝜔)|  and |𝜒𝑧𝑧𝑧𝑧
(3) (3𝜔,𝜔,𝜔,𝜔)|  are resonantly enhanced. 

Therefore, good control of the width of the BSO and BaO layers is necessary to tune the 

intersubband transitions.  Since the lattice parameters of BSO and BaO are fixed, the tuning 

of the QW width is discrete up to half-unit-cell, meaning the energy gap changes with the 

width discretely instead of continuously. However, a continuous control of the gaps can be 

achieved via the Stark effect, by applying an external bias across the entire structure along 

the z-direction [22, 39]. 

As shown in Fig. 1 and Fig. 2, both the micro- and mesoscopic simulations suggest that the 

energy differences between the QW bands are not equal. Therefore, as indicated by the 

solid blue line in Fig. 5(a), the unequal band spacing forms the off-resonant condition and 

splits |𝜒𝑧𝑧𝑧
(2)

(2𝜔,𝜔,𝜔)| spectrum into two peaks near 0.25 eV. Even so, the intrinsic 𝜒𝑧𝑧𝑧
(2)

 

is comparable with that reported in Ref. [19]. However, if we apply an external bias to tune 

the scalar potential profile 𝑈(𝑧) of QW and correspondingly shift the energy gaps, we 

observe giant 𝜒𝑧𝑧𝑧
(2)

 up to 200 nm/V and 100 nm/V under negative and positive bias, 

respectively (blue, dashed peaks). We call the center pump frequency of 𝜒𝑧𝑧𝑧
(2)

 peak the 

“operating frequency” (OF). A schematic of the electron excitation and relaxation 

processes during SHG with 0.55 eV OF is shown with the red arrows in the top panel of 

Fig. 5(b) and with 0.25 eV OF with the black arrows. Because PO-based QWs are much 

deeper than those made of semiconductors and therefore hold more quantum levels, 

multiple OFs are possible. The series of spectra represented by blue lines in Fig. 5(a) 

demonstrate that by shifting the external bias, we can shift the OFs of the QW while 

maintaining giant nonlinear susceptibility. Thus, one can use external bias to tune the OF, 

allowing to turn the SHG or THG on or off, and to enhance the susceptibility. The red 

spectrum in Fig. 5(a) is a different DQW, with thinner BSO wells than the DQW described 

in Fig. 1, showing that varying the well and barrier widths offers another way to tune the 
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susceptibility and OFs. Also shown in Fig. 5(a) is the spectrum of TQW 𝜒𝑧𝑧𝑧
(2)

 (in green), 

indicating the versatility of TQW, which can produce both THG and SHG. There is a large 

gap between the two OF peaks of the TQW (SHG processes sketched with red and black 

arrows in the bottom panel of Fig. 5(b)). The reported OF in semiconductor QWs is usually 

~150 meV and the output is in the range of infrared radiation (~300 meV) [19, 22]. Fig. 

5(a) demonstrates that the OF of the PO-based DQW and TQW ranges from 0 to 600 meV 

and the QWs can emit photons with energy up to 1200 meV, which is near the range of 

visible light.   

In Fig. 5(c) we show the spectrum of |𝜒𝑧𝑧𝑧𝑧
(3) (3𝜔,𝜔,𝜔,𝜔)|. We see that without external 

bias,  𝜒𝑧𝑧𝑧𝑧
(3)

(3𝜔,𝜔, 𝜔, 𝜔) is off-resonance. Applying external bias of Ez = -100 kV/cm, we 

can bring 𝜒𝑧𝑧𝑧𝑧
(3)

(3𝜔,𝜔,𝜔,𝜔) in resonance. Thus,  |𝜒𝑧𝑧𝑧𝑧
(3)

(3𝜔,𝜔,𝜔,𝜔)| is comparable with 

Ref. [22], but with a larger OF of ~200 meV and output photon energy of 600 meV. Of 

course, the external bias we apply in both DQW and TQW cases is much lower than the 

BSO breakdown field (~ 2 MV/cm).  

In conclusion, we propose a solution to address the limitations of both the semiconductor 

and current PO-based QWs. Using BSO for the well layer of the heterostructure yields a 

small effective mass with a very large conducting band offset. The latter results in large 

well depths and enables greater control of the QW properties. The giant nonlinear optical 

susceptibility is estimated up to four times larger than that reported for the semiconductor 

QWs [19]. The nonlinearity exists across a broad spectral range, making BSO QWs 

applicable at frequencies from THz to near-visible light. The strong optical nonlinearity in 

BaO/BSO QWs demonstrates the advantages of PO-based QWs over their semiconductor 

counterparts. In practical implementations, instead of BaO, one can use other barrier 

materials with even larger band gaps, such as Al2O3 [68]. The estimated conduction band 

offset at the BSO/Al2O3 interface is 3.5 eV [69], resulting in a deeper QW and extending 

the OF into the visible light region or even near UV. As suggested by Refs. [19, 32], one 

can design different QW stacking geometries and explore other light-QW coupling 

directions with other tensor components of  𝜒𝑖𝑗𝑘
(2)

 and 𝜒𝑖𝑗𝑘𝑙
(3)

.  
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Figures 

 

 

 
 

Fig. 1 (a) Schematic of DQW and mesoscopic simulation wave function results (red solid line). 

The Fermi level, which is in the conduction band due to the La doping density of 1019 cm-3, is 

labeled with a short red line. There are four bounded quantum levels, whose band gaps are 

labelled by red arrows (PS solver results) and black arrows (DFT results) for comparison. (b) 

Comparison of mesoscopic (red) wave functions and WF (blue) results. (c) WF EFs on each Sn 

site of the first excited state. Details are available in the Supplemental Material Sec VII [48]. 
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Fig. 2 (a) Schematic structure of TQW and mesoscopic simulation wave function results. The 

doping density used for the TQW is 5x1018 cm-3. The Fermi energy is labelled by EF. Energy 

gaps of DFT and PS solver are displayed. (b) Comparison of mesoscopic wave functions and 

WF results. (c) WF EFs on each local Sn site of the second excited state. Plot colors follow 

Fig. 1. 
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Fig. 4 TQW charge density of the second excited state from DFT.  

 

 

 

  

 
 

Fig. 3 DQW charge density of the first excited state from DFT.  
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Fig. 5 SHG and THG spectra of 𝜒𝑧𝑧𝑧
(2)

 and 𝜒𝑧𝑧𝑧𝑧
(3)

 with respect to incident pump frequency. (a) 

Three different SHG spectra colored blue, red and green. Colored arrows indicate the frequency 

values of the 𝜒𝑧𝑧𝑧
(2)

 peak for each spectrum. (b) The top panel shows the SHG processes of the 

DQW, and the bottom panel shows the SHG process of the TQW. Two different SHG processes 

are available in the DQW and TQW.  (c) THG spectra of TQW with and without external bias. 

Inset panel is the schematic format of THG.  

 

 

 

 

 


