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Spin qubits are contenders for scalable quantum computation because of their long coherence
times demonstrated in a variety of materials, but individual control by frequency-selective address-
ing using pulsed spin resonance creates severe technical challenges for scaling up to many qubits.
This individual resonance control strategy requires each spin to have a distinguishable frequency,
imposing a maximum number of spins that can be individually driven before qubit crosstalk becomes
unavoidable. Here we describe a complete strategy for controlling a large array of spins in quantum
dots dressed by an on-resonance global field, namely a field that is constantly driving the spin qubits,
to dynamically decouple from the effects of background magnetic field fluctuations. This approach
— previously implemented for the control of single electron spins bound to electrons in impurities —
is here harmonized with all other operations necessary for universal quantum computing with spins
in quantum dots. We define the logical states as the dressed qubit states and discuss initialization
and readout utilizing Pauli spin blockade, as well as single- and two-qubit control in the new basis.
Finally, we critically analyze the limitations imposed by qubit variability and potential strategies to

improve performance.

I. INTRODUCTION

Electron spins in semiconductors are a quintessential
example of desirable qubits, with long coherence times
and excellent controllability based on either magnetic or
electric dipole spin resonance with microwaves [IH7]. In
devices with a few qubits, individual spins can be ad-
dressed by selectively driving their unique transition fre-
quencies. However, this approach is limited because the
spread of resonance frequencies is determined by material
characteristics, which sets a maximum range and there-
fore a maximal number of spins one can drive before be-
ing plagued by qubit crosstalk. The issue of frequency
crowding has been studied for transmon qubits [8] and
can be alleviated in spin qubits using engineered narrow-
band microwave pulses. With an increase in number of
spin qubits, however, this would become increasingly dif-
ficult and require long and complex engineered pulses.

Pursuing full scale quantum computing has its chal-
lenges. There have been many proposals for scaling up
different types of qubits [OHI5], with some [ITHI5] that
recognize the potential of using an off-resonance global
field. This field may, for example, be generated by
a three-dimensional cavity resonator that subjects the
whole chip to the oscillatory magnetic field [I5] [16]. The
aim of the off-resonance global field is that qubits de-
fined in the idle state will be spins that are not resonant
with the field. To perform qubit operations the spins are
brought into resonance with the global field. This can
be done in different ways depending on the type of qubit
and architecture, for example by controlling the electri-
cal Stark shift for tuning of the qubit resonance frequency
[17).

Here, we explore in detail the use of an on-resonance
global field, in which qubits are considered idle when they
are being constantly driven by the global field, called
dressed qubit states [I8-23]. Microwave dressing of qubit
states increases coherence times due to the constant de-
coupling from background environmental fluctuations in

the system [22]. Specifically, we analyze the qubit dress-
ing strategies available for spins in semiconductor quan-
tum dots and harmonize all the other operations (initial-
ization, readout and two-qubit gates) with the always-
on field. We study single-qubit operations discussing
two strategies that we call frequency-shift keying and
frequency modulation. Two-qubit gates leveraging the
Heisenberg spin-spin interaction are also explored, show-
ing the evolution from the SWAP gate to the CPHASE
gate as the system parameters are changed. Through-
out the whole quantum computation, the dressing field
is always on, meaning the protocol should include initial-
ization and readout in the dressed basis. Limitations of
each process are discussed, including how variability in
qubit frequencies can affect the globally driven system.

II. OVERVIEW OF SPIN ARRAY
ARCHITECTURES

Selective control of individual spin qubits becomes lim-
iting if the control mechanism uses pulsed microwave
electron spin resonance (ESR) and addresses each spin
by their unique Larmor frequency. The Larmor frequency
of a spin in a semiconductor device is determined by the
microscopic environment that surrounds the spin. For
example, in the case of electron spin qubits in purified sil-
icon 28Si, in which the reduced presence of nuclear spins
leads to small Overhauser fields, the spin-orbit interac-
tion is the leading mechanism that results in the spread
of qubit frequencies [24H26]. In GaAs, on the other hand,
the Overhauser field has an important role in setting the
spin qubit frequency [27]. For ESR with frequency se-
lection to work in a large array of spins, each qubit fre-
quency should be separated by several times the Rabi
frequency in order to avoid errors that can degrade the
quality of fault tolerant operations. Some strategies may
remedy these errors through the use of pulse shaping [2§],
or by engineering the difference in Larmor frequencies
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FIG. 1. Comparing three methods of controlling spin qubits in the context of scalable quantum systems. (a) A
two-dimensional array of spin qubits with microwave-pulsed (pink arrow) single qubit control mechanism. A key describing
the array of qubits is given at the bottom of the figure. The light blue spin demonstrates unintentional interactions with the
microwave field. (b) The four closest spins have their frequencies plotted as a function of time where the color map of the line
shows the generalized Rabi frequency resulting from the microwave control pulse. Three ESR control pulses (marked in pink)
are applied to three spins, the marked line on the time axis indicates the snippet of time that (a) is showing. For a global
microwave control field (¢) a two-dimensional array of qubits is shown, now with the qubit control achieved via switching the
voltage bias on a gate electrode to enable a Stark shift, shown by the purple square pulse. The frequencies of four qubits (d)
with the frequency (Stark) shift switched on when qubit addressing takes place. On-resonance dressed spins (e) with control
mediated by pulsing a gate with four tracked frequencies (f), where the qubit addressing is achieved by a gate-voltage-enabled
Stark shift to take the spin out of resonance with the global microwave field.

with a magnetic field gradient introduced by a micro-
magnet [29, B0], but ultimately there will be difficulty
in individual addressing for scaled up systems. A more
scalable pathway, as discussed next, is to locally control
the spin-orbit coupling by applying electric fields with
gate electrodes in order to dynamically control the value
of the spin resonance frequency.

For scalable quantum computing, we need arrays of
qubits such as the one schematically shown in Fig. [I[a).
Each spin may be either off-resonance or on-resonance
with a electromagnetic driving wave, which will mean
that it is either simply precessing (off-resonance) or nu-
tating resonantly (on-resonance), in which case the spin
may rotate between |1) and |[}). The dynamical state of
each spin (driven or undriven) is represented by the color
of a sphere, where dark blue shows an undriven spin and
beige represents a driven spin. These colors represent
the generalized Rabi frequency for off-resonant driving
QR (Or, Av) = \/QF + Av?, where Qg is the Rabi fre-
quency and Awv the detuning of the qubit Larmor fre-
quency from the microwave frequency. The cuboids rep-
resent gate electrodes, with gray representing those that
are used only for forming quantum dots but are not ac-
tivating any targeted shift in the spin resonance. Purple
means the gate has been biased to a state that purposely
shifts the spin frequency of an electron by locally con-

trolling its spin-orbit coupling. The pink arrow shows
a microwave control pulse that is targeting control on a
single qubit, but simultaneously acts on all qubits of the
array. The diagram shows the qubit array for a single
time instance during the control operation. The target
qubit is the beige qubit, showing resonance control.

The main difficulty in this strategy for a spin qubit ar-
chitecture is frequency crowding — the statistical disper-
sion of the qubit frequencies is limited, such that eventu-
ally the separation between two qubit frequencies become
smaller than the ESR linewidth. The light-blue spin has
a Larmor frequency close to the target qubit resulting
in unwanted rotations, corresponding to qubit crosstalk.
This is more clear in Fig b) which shows a full time
trace as a function of frequency of four spins, with each
spin frequency represented by a solid line, and the ar-
rows show which trace corresponds to which qubit. We
represent the condition for a spin to be considered on res-
onance as a color map that shows the amplitude of QF™
if we assume that the initial state was either |1) or |]).
This amplitude is maximum when the microwave pulse
frequency (marked in pink) matches the qubit frequency,
and decays as we detune the spin in a range set by the
Rabi frequency. The control pulses of the two leftmost
qubits are performed with no crosstalk, but the two right-
most qubits are similar in frequency so that when one



qubit is targeted, there is significant off-resonant driv-
ing on the neighbouring resonance. The line indicated
on the time axis shows the time instance that Fig a)
represents.

To improve upon this method, the idea of an off-
resonance global field has been studied in the litera-
ture [TIHI5]. There, the global field is always on and the
qubits are considered to be in the idle state when they
are out of resonance with the magnetic field. To per-
form qubit operations, the spins are individually brought
into resonance with the field by some method that locally
controls the qubit frequency. This can be performed, for
example, by electrically controlling the frequency shift
caused by the hyperfine or spin-orbit interactions. Us-
ing a gate electrode [I5, BI], each spin frequency can
be addressed by locally controlling the g-factor [I4], the
overlap between the electron wavefunction with a nuclear
spin [32], or a combination of the two [I7].

Single qubit control using an off-resonance global field
is shown schematically in Fig. c). In the figure, the
electric control is represented by a gate electrode (grey
square) that can be switched ON (purple) using a volt-
age pulse to change the Stark shift of a single qubit, thus
changing its g-factor. The change in g-factor is chosen
to bring the qubit into resonance with the global field,
allowing for rotations to occur. This method removes
the issue of having individual resonance frequencies for
each qubit, reducing crosstalk effects (represented in the
figure where only a single qubit is being driven). Fig-
ure. d) shows three rotations performed on qubits in
an off-resonance global field. When each of the rotations
are performed, the individual qubits are brought into res-
onance, matching the always-on global field frequency.

This method has some limitations. Firstly, it relies on
the ability to have all spins out of resonance with the
global field initially, and to be brought back to resonance
on demand. The first condition is achieved by guarantee-
ing that the microwave frequency fumyw and the frequency
of each of the individual spins v is separated by well more
than the Rabi frequency, fiw — v > Qr. This alone can
be easily achieved by a proper choice of external mag-
netic field By, which controls the distribution of values
of v. However, the electric controllability of the individ-
ual v needs then to be sufficient to bring each of the spins
back into resonance. Electrons at a Si/SiO5 interface, for
instance, have a typical Stark shift dv/dV in the range of
+10MHz/V for magnetic fields near By =1T. The range
of applicable voltage pulses is typically in the hundreds
of millivolts, set by the quantum dot charge and orbital
transitions, and is preferably kept to a minimum to avoid
disturbances in the electrostatic landscape caused by ag-
itating charged defects. Only the qubits with the largest
Stark shift will, therefore, have enough range to be oper-
ated in this manner.

This leads us to the method proposed in this pa-
per: an on-resonance global field where the qubits are
tuned so that they are constantly being driven. This
creates dressed qubits [18-22] B3] which are defined in

terms of the combination of the spin and the modes
of the electromagnetic field. In the rotating frame, the
driving field creates an energy splitting between the su-
perposition states |z,) = (1/v2)(|{) + [1)) and |2,) =
(1/v/2)(J4) = |1)), and we use these to define the logical
states |z,) = |0) and |Z,) = [1). The dressed states are
represented by the beige coloured spins in Fig. (e). In
Fig. f) we represent one method by which single qubit
operations could be performed in three different spins
with an on-resonance global field. To perform qubit con-
trol a similar technique is used as for the off-resonance
global control technique; the g-factor is shifted to remove
the qubit from resonance, which allows for nutation be-
tween the dressed states [22]. This approach combines
the scalable addressability of the global field with the
added advantage of decoupling from non-Markovian noise
which affects spins [34]. Moreover, we will demonstrate
that the range of control for the qubit frequencies v can
be made less stringent using this approach.

III. DEFINITION OF THE QUBIT

In this section, the derivation of the dressed spin
Hamiltonian is shown for the case of single- and two-
qubit interactions. The basic concept of dressing with a
single spin has been discussed in the literature [22], so we
will be brief on this aspect.

Considering a single spin qubit with a static magnetic
field By along z and driving magnetic field By along x,
the Hamiltonian is as follows

Hip = %[Boaz + By cos (27 frwt) 0], (1)

where pp is the Bohr magneton, g the electron spin g-
factor, fuw the driving magnetic field frequency, ¢ the
time, and o; the Pauli matrices, where j = z,y, 2. Fol-
lowing this, we move to the familiar rotating frame rep-
resentation in which the frame rotates with the angular
velocity of the microwave field, not the qubits,

h
Hrot = §(AV0'Z + QRUx)v (2)

where h is the Planck constant, Av the detuning from
the spin Larmor frequency v (Av = gupBo/h — fuw =
V— fmw), and Qg the Rabi frequency. It should be noted
that throughout this text the frequencies denoted f are
that of instruments, v the Larmor frequencies, and Qg
the Rabi frequencies.

The rotating frame Hamiltonian describes the tradi-
tional spin qubit with the quantisation axis along [1). A
Bloch sphere representation of this is shown in Fig. a)
by the blue sphere, where the logical states, |0) and |1)
are represented by [1) and |} ), respectively. On the equa-
tor are the superposition states |[+) = (1/v2)([}) + 1)),
=) = @/V2)([1) = I, |1 = (1/v2)(|4) + ilt) and
i) = (1/v2)(|4) —il1).
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FIG. 2. The process of dressing spin qubits. The Bloch
sphere representation of a bare spin qubit in the rotating
frame (blue) and a dressed spin (beige). The gray arrows
show the transformation from bare to dressed via the
Hadamard transformation. This transformation changes the
two-qubit singlet and triplet states (b), showing |S) is
invariant under the transformation and the triplet states
remaining in the triplet family. This means that the Pauli
spin blockade remains. The blockade in a double quantum
dot system is demonstrated for (blue) a rotating frame bare
spin triplet |T4), and (beige) a dressed spin triplet |T4 ,).

To transform into the dressed picture, a constant
amplitude B; field is applied. As discussed be-
fore, this creates an energy separation between |+)
and |—) states, which in the rotating frame sets a
new quantisation axis along x. To find the dressed
basis Hamiltonian, H,,; is transformed wusing the

Rotating basis Dressed basis
Bloch axis State | Bloch axis State
x I+ z |2p)
Yy |4) -y o)
z 1) €z |z,)

TABLE I. The Bloch axis direction and states of the rotating
frame and dressed frame states. Each row is equivalent.

Hadamard unitary Umadamard) [09]. Writing H, =

U(Hadamard) Hiyot U(THadamard)’ we get

h
H, = §(QRUZ + Avoy). (3)

The bare spin qubit H,.. is transformed into the dressed
spin qubit H,, as shown in the Bloch sphere in Figs. a)
with the gray arrows. Table [] shows the Bloch sphere
axes and qubit state representation in the rotating basis
and dressed basis, introducing |z,) ,|y,) , |2,). The logi-
cal states are now encoded as |z,) = |0) and |Z,) = |1).
The dressed Hamiltonian H, tells us that the energy dif-
ference between the logical states is determined by the
Rabi frequency Qg, and the detuning of the driving field
from the qubit frequency Av determines the qubit rota-
tions.

It is important to understand that, in the dressed basis,
if the spin is pointing along the equator it will precess due
to the Rabi frequency. Figure (b) shows a plot of the
logical state evolving in both the rotating bare spin and
dressed spin basis with the global field on-resonance. The
Bloch spheres to the right of the plot show the direction
of the Rabi frequency amplitude in the rotating frame, as
well as the laboratory frame By magnetic field oscillations
for both the rotating bare spin and dressed cases.

To describe a universal gate set for dressed spins, the
Hilbert space is expanded to include two-qubit interac-
tions. Here, we denote the singlet states with an S and
the triplet states with a T. When referring to dressed
triplet states, the state will be followed by p (this is not
done for singlets because they are invariant under the
dressing transformation).

The system we will describe involves a double quantum
dot with the charge occupation in the left and right dots
indicated by (N1, N2) where N7 and Ny are integers. In
general, we are interested in either the situation where
there are two electrons in the quantum dots or when the
number of electrons is such that they form closed shells,
with only two active spins not being inert. For simplicity,
we omit the number of electrons in closed shells. If both
active electrons are occupying the same quantum dot, we
assume them to form a singlet state in the lowest orbital,
following the Pauli exclusion principle, and that state
is denoted [S(0,2)). For the (1,1) charge configuration,
considering the rotating bare spin case, the other four

levels are [11), 1), [11), [H).

The magnetic field vector in quantum dots (assumed



to be the same) is represented in the lab frame as B =
[B1 cos (27 fmwt), 0, Bo], and the Pauli matrices acting on
the left (right) dot are given as &'y (2), and the g-factor in
the left (right) dot is g1(2). The Hamiltonian describing
the (1,1) occupied states in the rotating frame is

h
H11)rot = 5(Aylazl+AV2022+QR10w1+QR2U$2)7 (4)

where the detuning from the Larmor frequency of qubit
1(2) is denoted Awvy(zy and the Rabi frequency of qubit
1(2) Qgri2)- The Pauli matrix acting on qubit 1(2)
is 0j1(2)- Then, the Hamiltonian can be transformed
into the dressed basis {|T+ ,),|2,2p) , |Zp2p) , | T— )} us-
ing the transformation Hadamard ® Hadamard,

h
Huy,, = §(QR1021 +OR20.2 + Avio,1 + Arn0oy2). (5)

Singlet states are rotationally invariant, allowing the
J

Pauli spin blockade to be preserved in the dressed, basis
which is useful for initialization, readout and exchange
interactions. Figure[2|c) illustrates the blockade of [T )
in the rotating bare spin picture (blue) and T ,) (beige)
in the dressed picture, and how the singlets remain in-
variant, while the triplets rearrange within the triplet
manifold, shown with the colored lines.

In the dressed picture, we have the usual singlet sub-

space {|S(1,1)),[5(0,2))},

h (0 2t
Hoo2)—a,1) = 3 (th _2C€) . (6)

The tunnel coupling between the dots is given by
t. and the chemical potential bias between the two
quantum dots e. Combining the singlet interac-
tions with the basis {|T4 ), [2,2)) , |Zp2p) | T— )} gives
the final 5 by 5 Hamiltonian in the dressed basis
{‘S(Ov 2)> ’ |T+7P> ’ ‘ZPEP> ) |2PZP> ’ |T*,P>}

—2¢ 0 V2t —V/2t, 0
h 0 Qr1 + Qro Avy JANZY 0
Hp = 5 \/itc AVQ QRI — QRQ 0 Ayl . (7)
—V/2t, Avy —Qr1 + OQr2 Ay
0 0 Ayl AVQ _QRl — QR2

(

and in  the  dressed  singlet-triplet basis  {[S(0,2)),|T+,),[S(1,1)),|To ) |T= )}
|
—2e 0 2t 0 0
0 Qr1 + Oro —Avi+Avs Avi+Avsy 0
h o —Avi+Avs V2 O \iiﬂ Avy—Avy
Hysxs =5 | Se — = 5 rR1— Qr2  SHE2 (8)
0 Aul\q}AVQ QRl . QRQ 0 Aul\q/LEAVQ
0 0 A”ljf”? A”I\J/%A”"‘ —Or1 — Qr2

IV. INITIALIZATION AND READOUT

The experimental process of preparing different two-
qubit states is modelled following the dynamics governed
by the Hamiltonian H,5x5. Beginning in the |S(0,2))
ground state, € is adjusted to load an electron into the
second dot to prepare the spatially separated spin states
(IT+,5)+1To,p),|T— p) and [S(1,1))). The rate at which ¢
changes determines which state is prepared; this is anal-
ogous to the initialization method in the rotating bare
spin basis [36].

The behavior of each eigenenergy in the dressed five-
level system is investigated as a function of €. This is
shown in Fig. a,b,c)7 where the different colors repre-
sent the percentage of each state. For each initialization,
the chemical potential bias e is ramped at a constant

(

rate from a positive bias [which favors a (0,2) ground
state] to a negative one, see Fig. [3(d). The values used
in the simulation are t. = 1 GHz, Qr; = Qrs = 10 MHz
and ramping range from ¢ = 50 — 1500 GHz. To start
with, the case where ¢ is ramped to transfer |S(0,2)) into
[S(1,1)) is considered. In an idealized case, one can set
Avy; = Avy = 0 so that there is no coupling term between
the singlet and |T_ ,), demonstrated in Fig. [3(a) with an
absence of an anticrossing between |S(1,1)) and |T_ ,)
energy lines, allowing for a perfectly diabatic transition
from [S(0, 2)) to |S(1,1)) (shown by the black arrow).

In this idealization, the transition into |S(1,1)) is de-
pendent on how fast e changes due to the |S(0,2)) —
[S(1,1)) anticrossing, which can be controlled to be large
by tuning t., as well as the difference in Qr; and Qgs.
Ideally, Qg1 = Qg2 to avoid S-T mixing. The inverse



of the tunnel coupling sets the time scale of the fastest
allowable ramp, before a diabatic passage through the
(0,2) — (1,1) transition occurs. As the ramp time is in-
creased, the probability of preparing |S(1, 1)) via an adi-
abatic crossing is increased. The probability of prepar-
ing each state at the end of the ramp sequence against
the ramp time is plotted in Fig. e) with dashed lines.
Since Av; = Avy = 0, the only interacting states are
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FIG. 3. Initialization process in the dressed basis. Energy
diagrams shown as a function of chemical potential bias ¢
for the case of (a) no difference in Zeeman energies,

Avi = Avs = Av = 0 and (b) the driving frequency hitting
the center of the Zeeman energy differences,

Avy = —Av, = Av =2 . The energy axis is extended in (c)
to show [S(0,2)). The colors of the lines show the
percentage of each state. The dark blue shows the |S(0,2)),
blue is [S(1, 1)), yellow is |Ty,,), brown is |Ty ,), and orange
is |T- ,). The black arrows show the path of initialization,
either crossing the anticrossing [in both (a) and (b)] or
avoiding it [only in (b)]. The initialization sequence is shown
in (d) with time on the vertical axis, and detuning on the
horizontal. This shows a positive ¢, starting as |S(0, 2)),
followed by ramping ¢ for a particular ramp time, finally
measuring the state probability at a negative €. This state
probability against the ramp time is plotted for (e)

Avy = Avp = 0 (dashed line) showing [S(1, 1)) initialization
and Avq; = —Auws (solid line) showing |T—- ,) initialization.
Values used: t. = 1 GHz, Qr1 = Qr2 = 10 MHz and
ramping range from ¢ = 50 — 1500 GHz.

the singlet states, so the figure shows the reducing prob-
ability of initializing [S(0,2)) as the ramp time increases,
and the increasing probability of initializing [S(1,1)). A
ramp time of 1 ps is sufficient to initialize [S(1,1)) for
the parameters used here.

Moving on to the initialization of |T_ ,), we look at the
case where Av; = —Avy = 2 MHz and the other variables
remain the same. An anticrossing between [S(1,1)) and
|T_ ,) is now present, as shown in Fig. b). As before,
€ is ramped from a positive energy to a negative one for
different ramp times. The probability of preparing each
state against the ramp time is plotted in Fig. e) with
solid lines. It is obvious that the introduced Av; = —Awsy
condition has allowed for the |T_ ,) to be initialized after
approximately 110 ps. For shorter ramp times, when
the energy gap between the singlet and |T_ ,) is crossed
diabatically, the initialized state develops components of
both [S(1,1)) and |Ty ,) due to the coupling created by
the difference in Larmor frequencies. When the ramp
becomes fast enough (1us), the |S(1,1)) initialization is
recovered.

The importance of the lowest energy anticrossing be-
comes more apparent when the variability between the
different qubit environments is regarded. The values of
the g-factors are different in a pair quantum dots [24],
therefore the values of Avy and Avy will typically be dif-
ferent. Although the external magnetic field can be ro-
tated to an angle that minimizes the difference between a
single pair of g-factors [24], for larger scale systems there
will still be variability. This means that the scenario in-
cluding the lowest energy anticrossing [Fig. b)] is more
realistic.

Readout of a dressed qubit follows a similar method to
initialization. Instead of ramping ¢ from positive to neg-
ative, the reverse is implemented. The ramping is chosen
at a particular rate so that it allows for [S(1,1)) to tunnel
into |S(0,2)), but not the triplet states. This is the same
singlet-triplet readout technique used for rotating bare
spin qubits. Dressed parity readout is also achievable
when considering dephasing in the system, so it follows
similar dynamics to the rotating bare spin case [37].

V. SINGLE QUBIT GATES

For universal quantum computation, controllable ro-
tations of the qubit system about two axes must be at-
tainable. For the dressed qubit, single qubit gates can
be achieved by pulsing the amplitude of Av [22]. In
this section, we look at two different methods of puls-
ing Av: frequency-shift keying and frequency modulation
(FM) resonance. We begin by studying frequency-shift
keying, considering the single qubit subspace in Eq. .
Frequency-shift keying is a frequency modulation scheme
where changes to the frequency are discrete. In other
words, Av is modulated with a square pulse.

To see how two-axes control arises from frequency-
shift keying, the qubit state should be described from
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FIG. 4. Bloch sphere representation of single qubit control
of the dressed qubit. The precession about the x — y plane
according to (a) the Rabi frequency and the difference
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(b) the frequency-shift keying method for single qubit
control.The purple lines show the keying pulses of Av for x
and y control. The Bloch spheres to the right of the plot
show the vX and VY rotations of the dressed qubit
following the black line, where the initial state of the qubit
is along |z,). The pink arrow shows the direction of Qr.
The FM resonance method (c) in the rotating frame. The
purple lines show v/X and V'Y gate pulses on Av. The
Bloch spheres are in the rotating frame and show the vX
and VY dressed qubit control where the initial state of the
qubit is along |z,).

a frame that is nutating at a frequency slightly higher
or lower than the Rabi frequency. The Bloch spheres in
Fig. a) demonstrate this transformation; the top plot
and Bloch sphere shows the Rabi frequency and the sec-
ond plot and Bloch sphere shows the difference between
the Rabi and frame nutation frequencies chosen. This
transformation adds a time dependence to Av, such that
the square pulses can be timed to be at specific relative

phases with respect to each other, leading to a vX or
V'Y gate. The gate pulses are shown by the purple lines
in Fig. b), as well as the Bloch spheres showing the
dressed spin performing /2 gates. Note that tracking
phases and modulating synchronously the microwave and
the qubit frequencies does not demand fast control since
these modulations occur in the easily accessible radio-
frequency range.

Returning to the rotating frame, we discuss FM reso-
nance. In this case, Av is modulated using a sinusoidal
shape. The frequency with which the modulation should
take place is 2r, causing a resonance with regard to the
dressed qubit quantisation set by the driving field. With
a sine modulation, rotations occur about the x axis as
shown in the top plot in Fig. [d{c). A phase can be added
to the modulation so that the amplitude of Av follows
a cosine wave, performing a rotation about y as shown
in the bottom plot in Fig. [fc). One constraint of using
this method is that when Av > Qg the dressed qubit ro-
tates at a faster rate than Qg, breaking the rotating wave
approximation and becoming sensitive to Bloch-Siegert
shifts [38 [39]. To avoid this, the amplitude of the modu-
lation should satisfy Av < Qg resulting in a pulse time
that is long compared to 1/Qg. Otherwise, the control
pulse needs to be especially engineered to account for the
Bloch-Siegert oscillations.

Both control methods can lead to high fidelity single
qubit gates. The choice of method depends on the con-
trollability of Av for the particular qubit system, and
how the amplitude of this control compares with the Rabi
frequency.

Since we are in the dressed picture, there is a con-
stant echoing of background noise due to the constant
on-resonance field. In the regime where Av > Qp, the
resonance effects become weak and noise reduction ad-
vantage of the dressed qubit is degraded. The ideal
condition for single qubit operations is therefore where
Av < Qgr. Thus, a sinusoidal modulation of Av is the
preferred control method in most scenarios. While the
frequency-shift keying method is fast, it is only operable
in the non-ideal case of Av > Qg.

VI. TWO-QUBIT GATES

It is important to understand the origin of two-qubit
gates for universal quantum computing in the dressed
picture. The intrinsic gates discussed here are the SWAP
and CPHASE gate, both implemented by controllable ex-
change coupling between spins. In the rotating bare spin
case, these gates have been discussed in detail [40], but
there is no treatment of these gates for dressed qubits.
Here, we focus on how the gradual change in the pulse
ramp times leads to a shift from the SWAP to CPHASE
gates by observing the evolution from Heisenberg ex-
change to Ising coupling. Following a similar analysis as
in Ref. [40] (see the Appendix[A]for details), the Hamilto-
nian of the dressed qubit in the {|2,Z,) , |Z,2,)} subspace
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FIG. 5. Two-qubit gate operations in the dressed basis. The
comparison of eigenbasis from the Hamiltonian in Eq. [J]
when the system parameters are adjusted. (a) The transition
of the SWAP regime into the CPHASE regime determined
by the eigenbasis along the vertical axis. The horizontal axis
is the detuning frequency difference (Avi — Avy) over the
Rabi frequency of both qubits {2g. Three curves are plotted,
each for a different t., where t. = 0.04,0.4 and 4 GHz from
left to right. A S-T Bloch sphere representation of the (b)
SWAP gate and (c) the CPHASE gate, where the bold
arrow shows the axis of rotation.

is described in terms of a Schrieffer-Wolff transformation
as

2 2
h <—A(tc) et
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(9)

t2U

Alte) = gz — -

(10)
Here we have introduced U as the cost in energy for
both electrons to be in the same dot (Hubbard U). The
Schrieffer-Wolff approximation requires t. < U =+ €, and
we have assumed Qg1 = Qro = Or.

Denoting the relative frequencies as Av; — Ay, a
plot of the polar angle # that defines the rotation axis
on the singlet-triplet Bloch sphere as a function of
(Avi — Awp)/Qg is shown in Fig. [ffa). The differ-
ence in detuning frequencies over the Rabi frequency ra-
tio is chosen because, in order for the dressed qubit to
keep its echoing advantages, the detunings should not
be larger than (g, meaning the ratio should be small
(typically less than 0.1). The Figure shows that when

the ratio (Avy — Avy)/Qg is small, A(t.) is the dominat-
ing term in the Hamiltonian, resulting in the eigenbasis
{IS(1,1)),|To )}, when 6 = 0. It follows that oscillations
between |2,Z,) and |Z,z,) occur, allowing for a SWAP
gate. A singlet-triplet Bloch sphere in Fig. (b) shows
the rotation axis along |S) — |Ty,,) in this case (preces-
sion). For larger (Avy — Avy)/QRg, the eigenbasis shifts
to {|2,2,) ,|Zp2p)} (nutation). For sufficiently large dif-
ferences in qubit frequencies, 8 = /2 giving a CPHASE
gate, shown in Fig. [5c). It should be noted that when ¢
is increased or decreased, the region where the crossover
between the two regimes occurs shifts to a higher or lower
(Avy — Awy) /QR, respectively.

The tunnel rates between spin qubits in quantum dots
are typically tunable in the range 0.01-100 GHz, with
larger values of t. shifting the crossover point in Fig. a)
to a larger value of frequency differences. In other words,
the transition from a SWAP gate to a CPHASE gate oc-
curs at a larger (Avy — Avg) /g ratio. As mentioned be-
fore, the ratio (Avy — Avy)/Qgr should not exceed 0.1 be-
cause the dressed qubit noise resilience is a consequence
of Qr > Av. If a qubits is far detuned from the mi-
crowave frequency then the qubit is no longer dressed.
As a result of the large tunnel coupling, the SWAP gate
is the native two-qubit gate of the dressed qubit, since
this gate lies in the region where (Av; — Awvg) /g < 0.1
for tunnel couplings of the order of 1 GHz.

The particular choice of elementary two-qubit gate can
also be customised depending on the particular applica-
tion. A typical example would be the choice of gates
for quantum error correction (QEC) within the surface
code [10]. The stabiliser measurements in surface codes
utilise the CNOT gate. Many qubit architectures have
the native two-qubit gate as the CPHASE gate, mak-
ing implementing CNOT gates natural. With SWAP be-
ing the native two-qubit gate for the dressed qubit, the
CNOT gate has to be be composed using vSWAP and
single qubit operations, shown in Fig. @(a). Other con-
ditional gates include the CNOTx and CYvy, which flip
the target qubit conditional on the superposition states
(10Y + [1))/v/2 and (]0) + i|1))/+/2, respectively. The
notation for CNOTx is chosen because the gate is a con-
ditional NOT operation on the logical basis, but the con-
dition is that the control qubit state is along x; mean-
while, CYy is chosen because the conditional rotation
is, instead, about Y, and the condition is that the state
is along y. These gates are shown in Fig. @(b,c). It is
clear from the figure that the CNOTx and CYy have
shorter circuit depth, which potentially leads to less er-
rors in its implementation. A necessary condition for
stabiliser measurements is that the syndromes commute
with each other and that they measure orthogonal axes
[41H43]. Since the CNOTx and CYy gates (when decom-
posed) are shorter, it is advantageous to have the z and y
axes stabilized contructing them from CNOTx and CYy
gates.
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If the control is (b) (|0) + [1))/v/2, the target qubit is
rotated by X, and if the control qubit is (c) (|0) +i[1))/v/2,
the target qubit is rotated by Y.

VII. SCALABILITY

The main challenge for the scalability of a dressed
qubit architecture is the ability to simultaneously drive
all spins, which depends on the material-specific range
of qubit frequency variability. We take the example of
electron spins in silicon to discuss scalability.

In that case, the proposed method to shift Av is
through the electrical control of the spin-orbit interac-
tions of the electron. The two mechanisms responsible
for spin-orbit interactions in silicon quantum dots are
Rashba [44] and Dresselhaus [45] effects, originated by
the reduction in crystal symmetry at the interface caused
by the atomic scale disorder. Because of this, small varia-
tions in the structure (e.g. lattice imperfections, surface
roughness) surrounding the quantum dots cause varia-
tions in the spin-orbit interactions, leading to differences
in the g-factors.

The external magnetic field angle can be tuned to align
with the [100] direction of the silicon lattice and reduce
the spin-orbit effects [24]. This minimizes the Dressel-
haus terms, leaving only a Rashba contribution. The
magnetic field angle can also be tuned such that the dif-
ference in Dresselhaus and Rashba terms between dots
cancel each other. However, this is only effective for two-
dot systems since the relative strength of the two terms

is different for each dot. Larger arrays of dots would
mean that each dot sees a different environment such
that cancelling the two effects in all dots simultaneously
is impossible, hence a difference in g-factors is inevitable.
For this proposal, differences in g-factors only become an
issue if the spread of qubit frequencies caused by the g-
factor variability is broader than the dressing field line
width set by the Rabi frequency.

Note that the electrical controllability of the Dressel-
haus term is larger than the Rashba term [25], which
means that the logical gates can be implemented faster
if the Dresselhaus spin-orbit coupling is not completely
suppressed. The ideal angle of the magnetic field for
a range of quantum dots to have good compromise be-
tween large controllability and small variability is left for
future investigation, including an analysis of the micro-
scopic sources of interface disorder.

At present, examples of differences in qubit frequen-
cies Av of spin qubits in Si/SiOs devices are measured
as 9.3 MHz [46], 48.4 MHz [16], and 7.0 MHz [24], with
a magnetic field magnitude of 1 T. In these devices the
external magnetic field along the [110] direction of the
silicon lattice gives the most variability in Av [24] [47].
Significant reduction in frequency variability can be ob-
tained with a magnetic field along [100], which supresses
the Dresselhaus effect due to the interface. Example val-
ues of Av in Si/SiGe are 2.2 GHz [48], 2.9 GHz [49], and
2.0 GHz [50], where the direction of the external mag-
netic field with respect to the silicon lattice is not stated
and the magnitude is 1 T. For the case of Si/SiGe qubits
shown here, micromagnets are used to impose a magnetic
field gradient, intentionally resulting in larger Av values.
For global control schemes these large frequency differ-
ences are not ideal, and micromagnets may need to be
engineered in an arrangement that minimizes the gradi-
ent along the line of qubits.

With the magnetic field along the [100] direction one
would still observe qubit frequency variability [47], al-
beit reduced compared to the [110] field direction. The
tolerance to variability is set by the power-broadened
linewidth obtained with the global field. In purified sil-
icon, the dominant source of frequency variability is the
spread in g-factors among different quantum dots, which
we define as the change in Av per Tesla. From literature,
values can be found from approximately 4 MHz/T [24]
to approximately 12 MHz/T [37]. This means that, at
lower magnetic fields, the resulting spread in qubit fre-
quencies is reduced. From an engineering point of view,
at smaller magnetic fields the microwave resonant fre-
quency is lower, which typically results in better trans-
mission and lower attenuation from the lines, improving
the Rabi frequency or, in other words, creating a larger
linewidth to accommodate the qubit frequencies. Recent
work has demonstrated qubit control at By = 241.55 mT
[5I] where the device used is the same as in Ref. [37],
resulting in a Av spread of 3 MHz with a linewidth of
2 MHz. While a 2 MHz linewidth encapsulates a lot
of qubits, there is work to be done in optimizing the



magnetic field source to ensure qubits are controllable as
well as maximizing the linewidth. Another option is to
explore the angle of the By magnetic field to find the
trade-off between the best g-factor variability and mag-
nitude of the Stark shifts. The goal would be to find an
angle where the Stark shift is large enough to tune out-
of-resonance spins into resonance, while also having a
small enough variability to ensure most qubits are in the
dressing linewidth. Finally, the specific range of tolera-
ble qubit frequencies can be improved if pulse-engineered
methods are used to further decouple a qubit from noise
and create an effective broader band for the driving field
than what is achievable with a continuous wave [52].

VIII. SUMMARY

In this manuscript we have proposed the use of a con-
tinuous on-resonance global field for a large spin qubit
array, suitable for universal quantum computation. The
implementation was compared to the rotating bare multi-
spin qubit system with and without an off-resonance
global field. From this it was clear that the dressed qubit
system has the advantage of controlling a large number of
qubits as well as being robust against noise. With the log-
ical states being encoded as dressed spins, the Pauli spin
blockade remains active due to the rotational symmetry
of singlet states, which allows for both initialization and
readout. The protocol for performing single- and two-
qubit operations has been shown, confirming that dressed
spins are a suitable platform for scaling to large numbers
of qubits. The effects of inhomogeneity between the g-
factors of the qubits was discussed, concluding that the
spread of g-factors should be within the linewidth set by
the driving magnetic field. This constraint can be relaxed
further by employing pulse engineering methods [52].

Finally, the adoption of dressed qubits has a few im-
plications for QEC. Firstly, the echoing properties of the
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always-on field decouple the qubit from time-correlated,
non-Markovian noise. This is important because QEC
codes deal better with Markovian noise. Another im-
plication is that the native two-qubit gate is the SWAP
gate for the dressed qubits; in the context of QEC, the
two-qubit entangling gates have a significant impact. We
have discussed the impact of the native SWAP gate, con-
cluding that the CNOTx and CYy should be utilized in
quantum error correction with dressed spins to reduce
circuit depth.
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Appendix A: Schrieffer-Wolff transformation,
finding the reduced Hamiltonian

Schrieffer-Wolff
demonstrated in [53], assuming ¢
an effective Hamiltonian can be found describ-
ing the {|2,%,),|Z,2,)} subspace. To begin
with, the Hamiltonian describing the whole space
{20%0)  Z020) . T— ) ITs,) . 1S(0,2)), S(2,0))}

transformation  as
< U =% ¢

Using  the

Avi =2t V2t

A1/2 \/itc \/itc
0 0 0

20 0 0 (A1)
0 2U-¢) 0
0 0 2(U +¢)

is split into H = Hy + H; + Hs such that Hy includes the diagonal elements, H; the off-diagonal elements between
the subspace of interest and the subspace to be removed, and Hs the off-diagonal elements within these subspaces.
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Setting H' = H, + Hy and denoting Hy with H°, the reduced Hamiltonian can be found from
Hypit = H s + H)yppr + Hyy Hi EZ L (A5)
mm mm/ mm/’ ml+tlim/ 9 l Em _ El E;n _ El

where E are the eigenvalues of Hy, the indices m, m’ refer to the elements from the subspace {|¥sym),|T- ,)}, and

I,I" from the rest of the elements. Following equation the reduced Hamiltonian @D is found,
h{— th + AuffAug th
_ U2—¢2 a0 U2—¢2
Hyw = 5 " e 2u . Saviian |- (A6)
2 T N +
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