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One of the fundamental questions about high temperature cuprate superconductors is the size
of the Fermi surface (FS) underlying the superconducting state. By analyzing the single particle
spectral function for the Fermi Hubbard model as a function of repulsion U and chemical potential µ,
we find that the Fermi surface in the normal state undergoes a transition from a large Fermi surface
matching the Luttinger volume as expected in a Fermi liquid, to a Fermi surface that encloses fewer
electrons that we dub the “Luttinger Breaking” (LB) phase, as the Mott insulator is approached.
This transition into a non-Fermi liquid phase that violates the Luttinger count, occurs at a critical
density in the absence of any other broken symmetry. We obtain the Fermi surface contour from
the spectral weight Ak(ω = 0) and from an analysis of the singularities of the Green’s function
ReGk(E = 0), calculated using determinantal quantum Monte Carlo and analytic continuation
methods. We discuss our numerical results in connection with experiments on Hall measurements,
scanning tunneling spectroscopy, and angle resolved photoemission spectroscopy.

I. INTRODUCTION

A question of fundamental importance for strongly cor-
related metals near a Mott transition is: What is the size
of the Fermi surface (FS)? Does it count all the electrons
or only the carriers relative to the Mott filling? In other
words, is the Fermi surface large or small [1]? And fur-
thermore, if the FS deviates from the Luttinger volume,
is it due to reconstruction of the FS due to competing
order or due to topological order?

We are motivated by three sets of experiments on the
cuprates: the Hall coefficient which gives information on
the density and type of carriers [2, 3], scanning tunneling
spectroscopy [4–6] that gives information about broken
charge density and pair density order, and angle resolved
photoemission spectroscopy [7–10] that gives information
about the momentum resolved density of states. The
Hall number nH in YBa2Cu3Oy (YBCO) shows a dis-
tinct change at a critical doping pHc from nH ≈ 1 + p
at high doping p of holes to nH ≈ p for low doping.
[2] The next question is whether the change in behav-
ior of the Hall coefficient occurs due to broken sym-
metry in the charge, spin, or pairing channels. Scan-
ning tunneling spectroscopy experiments indicate that
charge order is observed in YBCO below a critical doping
pCDWc < pHc [4–6, 11], which suggests that the mecha-
nism causing the change of the Hall coefficient and the
mechanism driving charge order are distinct phenomena.

Here we sharpen the question for the celebrated Hub-
bard model rather than focusing on analysis of ex-
periments; the latter being undoubtedly more compli-
cated. Early quantum Monte Carlo (QMC) calcula-
tions of the spectral function related antiferromagnetic
fluctuations to pseudogap formation and quasi parti-
cle weight transfer [12–15]. More recent work focused
on systems with particle-hole asymmetry, introduced by
next-near neighbor hopping. Cluster Dynamical Mean-
Field (CDMFT) studies have shown that the quasi-

particles show momentum-dependent renormalizations
due to proximity to the Mott transition, even in the ab-
sence of long-ranged antiferromagnetic correlations [16–
21].

In this paper, our aim is to extract the underlying FS
as a function of doping, with particular emphasis on the
region close to the Mott transition [22]. We focus on
the particle-hole symmetric Hubbard model with only
nearest-neighbor hopping. Our main result is that the FS
volume follows the Luttinger volume for high densities,
but starts deviating below a critical density nc, as the
Mott density is approached [Fig. 1]. In other words, the
Luttinger breaking FS does not change abruptly from a
volume that counts (1 + p) holes to p holes, but evolves
continuously below nc. A similar evolution occurs on the
hole- doped side as well, by particle-hole symmetry for
the case studied here with zero next neighbor hopping.
We also discuss the behavior of Re G [Eq. 4] which shows
sign changes as the Mott insulator is approached [23, 24].

This evolution from a large FS to a small FS is ob-
served in Hall coefficient of single layer cuprates such
as Ti2Ba2CuO6+δ and Bi2Sr2CuO6+δ and is cited as
evidence for a “hidden” order that may be responsi-
ble for the pairing mechanism of high-Tc superconduc-
tors [3, 25]. Such ideas have also been discussed in the
literature previously [15, 16, 24, 26, 27]. The significance
of the quantum Monte Carlo simulation results presented
here are the new insights obtained from the momentum
space contour of the spectral function at ω = 0 for a
model instead of a material that allows us to interpret
features in the spectral function solely to Mott physics.
Furthermore, the availability of QMC data on larger lat-
tices allow us to obtain the spectral function on the FS
contour on a finer mesh of k-points to observe the viola-
tion of the Luttinger count close to the Mott transition.
The use of four different approaches to obtain the Fermi
surface volume strengthen our findings.

We calculate the FS contour by using determinantal
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quantum Monte Carlo methods to obtain the imaginary
time Green function, Gk(τ), as a function of the inter-
action strength, carrier concentration, and temperature.
Analytic continuation of G yields the spectral function
Ak(ω) [28–33] whose contour at ω = 0 then yields the
FS.

We also analyze the behavior of the Green’s function,
ReGk(E) and find that it changes sign at zero chemical
potential in two distinct ways: (i) For densities away from
unity, the sign change occurs through a pole, as expected
for a system with well-defined quasi particles [16]; (ii) As
the Mott density is approached, the sign change occurs
through a zero. Such a behavior was first pointed out by
Dzyaloshinskii [23] as occurring in a Mott insulator. In
this paper, we find remarkably that the breakdown of the
Luttinger count happens in the metallic state approach-
ing the Mott insulator. We show that proximity to a
Mott insulator naturally fractionalizes the spectral func-
tion into an incoherent lump and a sharper quasi particle
piece, and furthermore the contour in momentum space
at zero energy violates the Luttinger count. Notably, the
reorganization of states is found to occur in the absence
of any competing order, indicating the emergence of a
“Luttinger Breaking” (LB) non-Fermi liquid phase.

II. MODELS AND METHODS

The Fermi Hubbard model is the paradigmatic model
for Mott insulators, strongly correlated metals, and high
temperature superconductors. In its particle-hole sym-
metric form, the Hamiltonian is given by

H = −t
∑
〈i,j〉,σ

(
ĉ†i,σ ĉj,σ + h.c.

)
+ U

∑
i

(
n̂i↑ −

1

2

)(
n̂i↓ −

1

2

)
− µN̂

(1)

defined so that when the chemical potential µ = 0, the
average density is unity ensuring that the system is half-
filled. Here t is the tunneling amplitude for a fermion
to hop from one site to a neighbor without changing the
spin, σ =↑, ↓, and U is the on-site Coulomb repulsion.
The spatial index i labels a site on a 2D square lattice,

and ĉi,σ and ĉ†i,σ are fermionic annihilation and creation
operators respectively. The number operator is defined

as n̂i,σ ≡ ĉ†i,σ ĉi,σ, n̂i = n̂i,↑+n̂i,↓, and the particle density

per site n =
∑
i 〈n̂i〉/Ns, where Ns is the total number of

sites. Relative to the filled band with two electrons per
site, the hole density is 1 + p. Particle-hole symmetry is
exhibited by the transformation of particle creation and
annihilation operators for hole annihilation and creation

operators respectively: c†σi −→ (−1)idσi; cσi −→ (−1)id†
σi.

A finite next nearest neighbor hopping term, t′, which we
do not include in our discussion here, would break par-
ticle hole symmetry in Eq. 1. We calculate thermody-

FIG. 1. Evidence for Luttinger Breaking Fermi Surface: the
Fermi surface volume deviates strongly from the expected
Luttinger volume which is proportional to the charge car-
rier density, below a critical density nc as the Mott insulator
at n = 1 is approached. Determinantal QMC results for the
Hubbard model on a 16 by 16 square lattice for U/t = 10t
and βt = 2 showing nc ≈ 1.2.

namic properties and the single-particle Green function
by implementing the determinantal QMC algorithm.

III. OBTAINING THE FERMI SURFACE
CONTOUR

Luttinger’s theorem asserts that the volume enclosed
by the Fermi surface of an interacting Fermi liquid is
proportional to the number of particles in the system [1].
This allows us to find the reference non-interacting Fermi
surface corresponding to the actual density obtained by
QMC for the specific set of parameters (U, T, µ) (orange
contour in Fig. 2(a)).

It is also useful to compare with the contour obtained
from the momentum distribution function (MDF) (Fig.
4(b)) nk = 1/2 calculated by QMC (shown in white
in Fig. 2(a)). In the thermodynamic limit for a non-
interacting system at T = 0, the MDF has a jump of
size unity Z = 1 at the Fermi wave vector kF (k) when
the system transitions from occupied states below kF to
zero occupancy above. In a Fermi liquid, following Lut-
tinger’s theorem, kF (k) does not change upon includ-
ing electron-electron interactions and 0 < Z ≤ 1. Due
to inter-electron interactions, some of the states below
kF (k) are scattered into states above but nevertheless in
a Fermi liquid, a finite step at kF persists at T = 0. At
finite T , naturally the step gets rounded; however, from
the peak in the gradient of the MDF (Fig. 4(b)) as a
function of k, we can extract the location of the under-
lying FS.

From QMC we directly calculate the Green function in
imaginary time τ and from that using an analytic con-
tinuation procedure we obtain the spectral function:
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FIG. 2. Spectral Functions of Hubbard model: a) Fermi surface contours for a square lattice Brillouin zone calculated by 4
different methods for the Hubbard model at U = 10t as a function of density. (i) Luttinger’s Theorem applied to a free system
(orange); (ii) Momentum distribution function (MDF) contour formed by nk = 1/2(white); (iii) Spectral weight at the Fermi
energy Ak(ω = 0) (black); and (iv) the zero of the real part of the retarded Green’s function Gret

k (E = 0) (green). Lattice
size 16 × 16 sites and βt = 2. b) Spectral function Ak(ω) averaged over k-states on the Fermi surface contour. The total
spectral weight is normalized

∫∞
−∞Ak(ω)dω = 1. For comparison the non-interacting metal spectral function is shown at the

same temperature, and on the same lattice size (dashed) and contrasted with the interacting metal for n = 1.41. “Interacting
Metal” is distinguished from the “Luttinger Breaking” (LB) regime by the agreement of the MDF and spectral contours. The
Mott insulator occurs at n=1. c) The real part of the Greens function is calculated using Eq. 4 for the spectral functions shown
in b. A pole-like sign change of the Green’s function at E = 0 indicates the presence of a quasi particle on the Fermi surface,
consistent with the behavior in a Fermi liquid. The behavior changes dramatically in the Luttinger Breaking regime with sign
changes at finite energy. In the Mott insulator at n = 1 the Green function changes sign at zero energy via a zero, instead of a
pole.

Gk(τ) =

∫ ∞
−∞

dω

[
e−ωτ

1 + e−βω

]
Ak(ω) (2)

The spectral function Ak(ω) = −(1/π)ImGretk (ω) gives
information about the probability of finding an electron
in state (k, ω). In the non-interacting and thermody-
namic limits the only k-states that have spectral weight
at ω = 0 are the states on the Fermi surface. For the
interacting system, we use this property to find the size
of the Fermi surface by examining the k-states that are
found at zero bias energy.

We implement an iterative maximum entropy method
to calculate the spectral function that most accurately
reproduces the input Green’s function within error

bars [29]. The Fermi surface is constructed by finding
the energy that maximizes the function

f(E) =

∫
E=−2t(cos kx+cos ky)

Ak(ω = 0) dk (3)

where E corresponds to a tight binding contour in the
Brillouin zone. In essence, we determine the tight binding
contour that most closely fits the peaks of the spectral
function, Ak(ω = 0) at the energy Ef = −2t(cos kk +
cos ky)) thereby locating the approximate Fermi surface.
Note that the choice to approximate the Fermi surface
with a tight binding contour (black curve in Fig. 2(a)) is
justified by the Hubbard-I approximation (Section V).
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A related quantity, the real part of the Green’s func-
tion, defined by,

Re Gk(E) =
∑
ω 6=E

δωAk(ω)

ω − E
(4)

provides a second indicator of the Fermi surface contour
as the sign change across Re Gk(E = 0) marks the Fermi
surface boundary (shown in green) [23, 34]; here P de-
notes the principal part of the integral. We construct the
Fermi surface by finding the contour over the Brillouin
zone where the Green’s function changes sign, or when
Gretk (E = 0) = 0. When the sign change is pole-like, in-
stead of zero-like, a quasi particle is present on the Fermi
surface for momentum k. Note that while Ak(ω = 0)
uses only information at ω = 0 to map the Fermi surface
contour, Re Gk(E = 0) uses information over the entire
spectral range of Ak(ω) to map the contour.

IV. RESULTS

For dopings greater than p & 0.2 each of these methods
of finding the FS show stark agreement. Such a validity
of Luttinger volume is found even for large U for suffi-
ciently large doping. However, when the doping is less
than p . 0.2, we observe a departure of the FS contours
obtained from these four methods. The size of the white
and orange surfaces, corresponding to the nk = 1/2 con-
tour and the Luttinger surface respectively, count the to-
tal electronic density. The spectral weight and retarded
Green’s function boundaries, black and green contours

FIG. 3. a) Fermi surface contours for a square lattice Bril-
louin zone calculated by 4 different methods for the Hubbard
model at U = 10t as a function of density. (i) Luttinger’s
theorem applied to a free system (orange); Momentum distri-
bution function (MDF) contour formed by nk = 1/2(white);
(iii) Spectral weight at the Fermi energy Ak(ω = 0) (black);
and (iv) singularity of retarded Green’s function Gret

k (E = 0)
(green). Lattice size 16 × 16 sites and βt = 2.

respectively, on the other hand, recede to include fewer
states. In other words, the spectral function methods
indicate that the Fermi surface is reconfigured from a
large Fermi surface enclosing n = 1 + p fermions to a
smaller one as quantified in Fig. 1, below a critical den-
sity of nc ≈ 1.2. As observed in Fig. 2 (a), the black
and green contours transform from being close to a di-
amond shaped Fermi surface to a small circular Fermi
surface centered around the Γ point; the deviation occurs
for densities n . 1.2. The critical doping at which the
FS volume deviates from the Luttinger count is above
the doping for the Lifshitz transition at which the FS
changes character from hole-like to electron-like as the
Fermi surface decreases in size, as also seen from Fig. 1,
and in agreement with other numerical studies [19]. Our
results on the smooth evolution of the FS from obeying
the Luttinger count to a LB Fermi surface are consistent
with the measurements of the Hall number in single layer
cuprates such as Ti2Ba2CuO6+δ and Bi2Sr2CuO6+δ.[3]

The quasi particle weight, shown in Fig. 4 (a), shows
the fraction of the spectral function, Akf

(ω), around zero
energy, defined by QW =

∫ ε
−εAkf

(ω)dω. As a refer-
ence we use the U = 0 spectral function of the finite
size broadened non-interacting metal from a delta func-
tion to a Lorentzian distribution of width 2ε in Fig. 2
(b) (lowest panel) to account for the resolution in the
analytic continuation procedure. The interacting system
shows the development of incoherent side bands or Mott
bands around the peaked spectral function at ω = 0.
The Fermi surface restructuring is already visible below
n ≈ 1.2 and the deviation of the actual Fermi contour
from the Luttinger contour only gets more pronounced
as the incoherent weight increases upon approaching the
Mott transition at n = 1.

It is important to note that there is no evidence of long
range anti-ferromagnetic order at the temperatures and
parameters we are analyzing the Fermi surface. As pre-
viously noted [15] the spectral functions obtained by the
Hubbard-I approximation [35], that neglects spin corre-
lations, are remarkably similar to the QMC ones at half-
filling in these range of parameters. The spin structure
factor at (π, π), shown in Fig. 4 (c), shows a small peak
at n = 1 which gets quickly suppressed as the density
moves away from this commensurate value. The absence
of long range order in the presence of a reconfiguration of
the Fermi surface is a strong indication of some hidden
order[25] or topological order in the absence of a Landau
symmetry breaking.

V. HUBBARD-I APPROXIMATION

The Luttinger breaking phase can be qualitatively un-
derstood by analyzing the Hubbard-I approximation[15,
35] which transforms Eq. 1 via
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FIG. 4. a) Behavior of (i) the occupation of the nk = (0, 0) state, (ii) the quasi particle weight around the chemical potential,
(iii) the compressibility n2κ = dn/dµ, and, (iv) The FS volume (also shown in Fig. 1), all plotted as a function of density. b)
Momentum distribution function n(k) as a function of density for multiple values of n. c) Structure factor across the Brillouin
zone for multiple values of n obtained from the spin-spin correlations showing the absence of long range magnetic ordering.
Lattice size 16 × 16, U = 10t, βt = 2.

ci,σ = ci,σni,−σ + ci,σ(1− ni,−σ) (5)

≡ (di,σ + h†
i,σ) (6)

We have split up the particle annihilation operator into
a doublon annihilation and a holon creation operator.
The Hamiltonian [Eq. 1] becomes

HHub−I = − t
2

∑
〈i,j〉,σ

(
d̂†
i,σd̂j,σ + ĥi,σĥ

†
j,σ

)
− t

2

∑
〈i,j〉,σ

(
d̂†
i,σĥ

†
j,σ + h.c.

)
−U

∑
i,σ

(
ĥi,σĥ

†
i,σ

) (7)

In this picture, the single particle occupied sites are
treated as the background vacuum from which doublons
and holons are created and propagate. The Hubbard-I
approximation assumes spin interactions are negligible.
We need to account for this by halving the hopping term
(t −→ t/2) because Pauli exclusion limits the possible av-
enues for a doublon to hop to a singly occupied site by
half. The new operators have anticommutation relations

{d̂i,σ, d̂†
j,σ′} = δi,j

(
δσ,σ′(1− ĥ†

i,σĥi,σ) + δσ,−σ′ d̂i,σd̂
†
j,σ′

)
(8)

{ĥi,σ, ĥ†
j,σ′} = δi,j

(
δσ,σ′(1− d̂†

i,σd̂i,σ) + δσ,−σ′ ĥi,σĥ
†
j,σ′

)
(9)

Which we approximate as having anticommutators of
regular quasi particles in the limit U � t due to the

suppression of hopping: 〈d̂†
i,σd̂i,σ〉 = 〈ĥ†

i,σĥi,σ〉 ≈ 0. The
Fourier transform of the Hubbard-I Hamiltonian is

HHub−I =
∑
k,σ

(
εk
2
d̂†
k,σd̂k,σ +

εk − U
2

ĥk,σĥ
†
k,σ

)
+
∑
k,σ

εk
2

(
d̂†
k,σĥ

†
−k,σ + h.c.

) (10)

= Ψ†
σ

(
εk
2

εk
2

εk
2

εk
2 − U

)
Ψσ (11)

where ε(k) = −2t(cos kx + cos ky), and Ψ†
σ =

(d̂†
k,σ, ĥ−k,σ). Diagonalizing the Bogoliubov de-Gennes

Hamiltonian gives the dispersion: two bands each with a
band width of approximately t and separated by a gap
U .

E±(k) =
1

2

(
ε(k)− U ±

√
ε(k)2 + U2

)
(12)

The associated Brillouin zones for each band possess
the same number of states: two spin flavors for every
momentum state. Which is double the number of de-
grees of freedom from the traditional Hubbard model,
but this is resolved by the redundancy in our implemen-

tation: d̂†
i↑d̂i,↑ = d̂†

i↓d̂i,↓, and likewise for holons. The im-
plication of this large U approximation is that the doped
Fermi surface constructed on the Brillouin zone in this
limit (Fig. 2(a)) is the Fermi surface of upper band quasi
particles across the Brillouin zone of upper band quasi
particles.
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FIG. 5. The Fermi surface area (FSA) of the well estab-
lished Hubbard-I approximation compared to our DQMC re-
sults show similar features. The FSA of the doped Hubbard-
I model is calculated for the doublon Brilluoin zone, and
n = 1 + d where d is the doublon density.

The energy bands derived above are explicitly for the
half-filled limit. To solve for the energy bands of the
doped Hubbard-I model requires analysis of the Greens
functions of the doublon and holon operators.[36]

E±n (k) ≈ 1

2

(
ε(k)− U ±

√
U2 + ε(k)2 − 2(1− n)ε(k)U

)
(13)

The Fermi surface area is taken to be the number of filled
states in the upper band which is a function of n(µ) and
µ. Fig. 5 shows the comparison of our results and the
Hubbard-I approximation. Attempts to increase the pre-
cision of this approximation by adding spin interactions
[15] show a similar dependence on the doping at n ≈ 1.

The compressibility κ serves as a diagnostic of
Hubbard-I physics as it is a measure of the number of
conducting quasi particles, which is proportional to the
number of states on the Fermi surface. The Mott insu-
lator, where κ(T = 0) = 0, contain no conducting quasi
particles since the chemical potential is in the Hubbard-I
band gap. We obtain the compressibility using the fluc-
tuation dissipation theorem:

κn2 =
1

Ns

d〈N̂〉
dµ

=
β

Ns

(
〈N̂2〉 − 〈N̂〉2

)
(14)

where the number fluctuations 〈N̂2〉 is given in terms of

correlation functions
〈∑

i,j n̂in̂j

〉
and calculated directly

using QMC techniques.
A Mott insulator to metal transition is driven by tun-

ing the chemical potential at fixed interaction strength,
as seen by the strong suppression of the compressibility
in Fig. 6(b).

Upon doping the Mott insulator, the system tran-
sitions to a strongly-interacting metal with suppressed
compressibility as shown in Fig. 6(b). The background

single particle occupied sites are frozen and do not con-
tribute to the compressibility, while the excess doubly
occupied sites (doublons) are free to propagate.

According to the Hubbard-I approximation, the num-
ber of particles on the Fermi surface (∝ κ) in the tight
binding model for an electron density n is about twice
that of the number of quasi particles on the Fermi sur-
face in the upper Hubbard-I band for an electron density
n/2 + 1 Which we verify is qualitatively correct in Fig.
6(c).

VI. LOWER TEMPERATURES

Does the Luttinger breaking phase survive to lower
temperatures? The Hubbard-I approximation implies we
should see this effect at zero temperature. In Fig. 7 we
show the Fermi surface for n = 1.03 and n = 1.07, as
well as for the temperatures β = 2 and β = 3/t. We find
the LB phase is present at both densities and survives to
lower temperatures.

Our results are explained by the fractionalization of
the spectral function which can only increase at lower
temperatures. Furthermore, it is striking that even at
temperatures as high as β = 2/t one is able to see the LB
phase. While lower temperatures do need to be examined
to get a more refined picture of this phase, the presence of
the LB phase above and below the exchange temperature
of T = 4t2/U is a clear sign that it is not arising from
magnetic ordering.

VII. DISCUSSION AND OUTLOOK

We have presented QMC simulation results coupled
with analytic continuation to obtain spectral functions
of the Hubbard model in two dimensions. We have ob-
tained the Fermi surface contour by analyzing the spec-
tral function at the chemical potential µ. As the system
approaches half filling, most of the spectral weight resides
in a broad incoherent lump.

With increase in electron or hole density, we see sharp
spectral features at µ but the volume enclosed by the
zero energy contour at µ falls short of the Luttinger count
and does not enclose all the electrons. This “Luttinger
Breaking” (LB) region in density is consistent with the
strange metal region discussed in cuprates [3] and persists
to about 18% in our simulations. Our results suggest
that if secondary ordering in the spin, charge, or pairing
channel is suppressed, the proximity to a Mott insulator
alone drives the formation of such a LB phase.

A topological framework [23, 37, 38] for understand-
ing the transition from a FL obeying the Luttinger count
to the LB phase that violates this count, is obtained by
expressing the Luttinger volume as the winding number
of the single-particle Green’s function at finite tempera-
tures. Further, the winding number can be connected
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FIG. 6. a) Compressibility, κn2, is calculated on a 6 × 6 lattice as a function of interaction potential (U) and chemical potential
(µ) at βt = 2. The compressibility is a measure of the number of conducting quasi particles which is proportional to the number
of particles on the Fermi surface. b) Compressibility is examined for lattice sizes from 6 × 6 to 16 × 16 with a fixed interaction
strength (U = 10t) and varying density/ chemical potential (µ) for βt = 2. Closed symbols are data extracted from numerical
derivatives dn/dµ and open symbols from fluctuation dissipation theorem. c) Compressibility of a strongly interacting system
and a non-interacting system shows distinct evidence for Hubbard-I physics.

with the distribution of quasi particles and the Lut-
tinger volume, and it can be shown non-perturbatively
that for a strongly interacting Hamiltonian that preserves
particle-hole symmetry both types of behavior, pole and
zero, of the Green function at zero energy are observed.

It has been suggested that doped quantum spin liq-
uids are perhaps a promising platform observing non-
Fermi liquid phases. Sachdev, Senthil and collaborators
have proposed the possibility of a non-Fermi liquid phase
(dubbed FL∗) with a Fermi surface composed of fraction-
alized spinons with a volume (n − 1) mod 2. [39] They
claim that quantum fluctuations of the antiferromagnetic
order parameter generate emergent gauge fields that lead
to a new state of matter with topological order [40–42].
Further diagnostics on the entanglement properties of
these non-Fermi Liquid phases are required to under-
stand the connection between our discovery of the LB
phase that encloses a shrinking volume below a critical
density as the Mott insulator is approached and the pro-
posed FL* phases that encloses a Luttinger volume of
(n− 1).

Going forward, further simulations are necessary to
study an extended Hubbard model with nearest neighbor
hopping to describe the more realistic parameters for the
cuprates. Here our aim was to show the emergence of the
Luttinger Breaking phase in the very simplest case with
only nearest neighbor hopping. It would also be interest-
ing to push the calculations to lower temperatures to see
the emergence of the superconducting phase from the LB

phase and contrast that with the superconducting phase
that emerges from the FL phase above this critical value.
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Appendix: Sources of Error

We discuss below sources of errors in the DQMC simu-
lations and in the maximum entropy procedure to extract
the spectral function.

1. Finite size effects

We have obtained data for different system sizes, rang-
ing from 6 × 6 to 20 × 20. Fig. 6(b) clearly shows that
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FIG. 7. On the left, we show the function Ak(ω = 0) plotted
over the reduced Brillouin zone for smaller temperatures than
examined in the bulk of this manuscript. Compare these fig-
ures with their equal density, high-T counterparts found on
the right. The black curve is the maximal non-interacting
contour of the function Ak(ω = 0) and the orange contour
is the non-interacting Fermi surface that obeys Luttinger’s
theorem. The bottom left figure is simulated at smaller U/t,
however the phenomenon of the Luttinger breaking phase per-
sists. We note that the effect persists at temperatures lower
than the critical exchange temperature of β = U/4t2.

finite size effects are smaller than error bars for the com-
pressibility for βt = 2 and U/t = 10. Finite-size effects
in transport data from quantum Monte Carlo simulations
were shown to be most relevant for particular densities
with closed-shell configurations and small U/t, [43] not
the cases considered here.

In Fig. 8 we show the locations of the k-points for
different size lattices and it becomes quickly evident that
a finer mesh is essential to see the structure of the spectral
functions near the Fermi surface.

We use a technique of combining multiple complimen-
tary cluster sizes to increase the number of unique mo-
mentum states from which we can resolve features of the
Brillouin zone. The technique works best for system sizes
where L1/2 shares no common factors with L2/2, where
L2 is the number of lattice sites. Instead of overlapping,
one Brilluoin zone fills in the gaps of the other and the
resolution increases. We do not change any other param-
eters except system size and check that the size does not
have a significant effect on any thermodynamic proper-
ties. We combine data from L1 =16 and L2 = 14. A
demonstration of the effect of combining data has on the
resolution is shown in Fig 8. Lastly, we use a spline inter-
polation function to construct A(k,ω=0) as a function for
all k in the Brillouin zone in the thermodynamic limit.

FIG. 8. The effect of cluster size on the resolution of the
Brillouin zone and efforts to improve resolution.

2. Trotter errors

We calculate thermodynamic properties and the single-
particle Green function by implementing a determinan-
tal QMC algorithm which essentially employs a Trotter-
Suzuki decomposition to break up the non-commuting
hopping and interaction terms in imaginary time τ . [44–
47] This maps the original 2D quantum problem to a
(2+1)D classical problem where the extra dimension is
set by the inverse temperature β = 1/(kBT ). In the
Quantum Monte Carlo implementation used here the in-
teraction term is decoupled through a discrete Hubbard-
Stratonovich transformation, which introduces an auxil-
iary Ising field, [46] that leads to an error O (∆τ2). Ex-
trapolations to ∆τ2 → 0 show that the coefficient of ∆τ2

change in value and sign for different quantities,[43] but
for ∆τ = 1/40 used here the error should be negligible.

3. Maximum entropy procedure

The calculation of the spectral function Ak(ω) is done
by numerically performing the inverse Laplace transfor-
mation in Eq. 7 at a given temperature. There are dif-
ferent available procedures to perform the analytical con-
tinuation in the literature [28, 30, 32, 33] but our purpose
here is not to perform a systematic study of the different
method outstanding issues; instead, we adopt the Maxi-
mum Entropy procedure. [29]

The use of tight-binding contours to approximate the
Fermi surface is justified based on the Hubbard-I approx-
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FIG. 9. Blue: The maximum of the function Ak(ω = 0)
for n = 1.07 along a contour defined by a straight line that
starts at the Gamma point of the Brillouin zone and makes an
angle θ with the kx axis. Orange: The non-interacting Fermi
surface (FS) that closely tracks with the interacting Fermi
surface. The fluctuations in the interacting Fermi surface are
taken to be spurious and due to both finite size effects and
error in the Maximum entropy procedure.

imation and error in the Maximum entropy procedure.
Fig. 9 compares the maximum of the function Ak(ω = 0)
for n = 1.07 along radial lines starting from the Gamma
point and making an angle θ with the kx axis, and the
tight binding contour which maximizes the function f(E)
in Eq. 3. We present the non-interacting contour in fig-
ures like Fig. 2(a) and Fig. 3 because it encloses ap-
proximately the same number of states as the interacting
contour, which has fluctuations due to errors in the maxi-
mum entropy procedure and finite size effects. We choose
not to allow the spurious fluctuations to become a focus.

4. Sign problem

In Determinantal Quantum Monte Carlo (DQMC) the
grand partition function is expressed as a sum over all
Ising spin configurations c ≡ {s} at each space-time lat-
tice point, of a product of determinants.

Z =
(1

2

)LdM

Tr{s} detO↑({s}) · detO↓({s}) (A.1)

where M = β/∆τ , L is the linear size of the system and
d the dimension. The “Boltzmann weight” is given by
the product p(c) = detO↑({s}) · detO↓({s}) which is not
always positive. We can keep track of the sign by writing

p(c) = sign(c) |p(c)|, (A.2)

where sign(c) = ±1, this way the absolute value is
used as the weight in the Monte Carlo procedure and the
sign is included in the measurements. Any expectation

FIG. 10. Average total sign as a function of density for lattice
sizes from 6×6 to 20×20. Temperature is set such that βt = 2,
and the interaction potential is U = 10t.

value 〈A〉 is then given by

〈A〉 =

∑
c p(c)A(c)∑
c p(c)

=

∑
c |p(c)|sign(c)A(c)∑
c |p(c)|sign(c)

≡ 〈sign A〉
〈sign〉

.

(A.3)

At low temperatures, both 〈A sign〉 and 〈sign〉 become
very small, leading to the well known “fermion sign prob-
lem”. [45, 48, 49] The fermion sign problem is also known
to get worse with increasing system size as is shown in
figure 10. We have then restricted our system sizes to
lattices up to 16× 16, where 〈sign〉 > 0.5.

REFERENCES

[1] J. M. Luttinger, Phys. Rev. 119, 1153 (1960).
[2] S. Badoux, W. Tabis, F. Laliberté, G. Grissonnanche,
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Hardy, R. Liang, N. Doiron-Leyraud, L. Taillefer, and
C. Proust, Nature 531, 210–214 (2016).

[3] C. Putzke, S. Benhabib, W. Tabis, J. Ayres, Z. Wang,
L. Malone, S. Licciardello, J. Lu, T. Kondo, T. Takeuchi,
N. E. Hussey, J. R. Cooper, and A. Carrington, “Re-
duced hall carrier density in the overdoped strange
metal regime of cuprate superconductors,” (2020),
arXiv:1909.08102 [cond-mat.supr-con].

[4] J. E. Hoffman, E. W. Hudson, K. M. Lang, V. Madhavan,
H. Eisaki, S. Uchida, and J. C. Davis, Science 295, 466
(2002).

[5] T. Hanaguri, C. Lupien, Y. Kohsaka, D. Lee, M. Azuma,
M. Takano, H. Takagi, and J. Davis, Nature 430, 1001
(2004).

[6] W. Wise, M. Boyer, K. Chatterjee, T. Kondo,
T. Takeuchi, H. Ikuta, Y. Wang, and E. Hudson, Na-
ture Physics 4, 696 (2008).

[7] H. Ding, M. R. Norman, T. Yokoya, T. Takeuchi,
M. Randeria, J. C. Campuzano, T. Takahashi,



10

T. Mochiku, and K. Kadowaki, Phys. Rev. Lett. 78,
2628 (1997).

[8] J. C. Campuzano, M. Norman, and M. Randeria,
“Photoemission in the high tc superconductors,” in The
Physics of Superconductors, Vol II: Superconductivity
in Nanostructures, High-Tc and Novel Superconductors,
Organic Superconductors, edited by K.-H. Bennemann
and J. B. Ketterson (Springer, 2002) pp. 167–273.

[9] A. Loeser, Z. Shen, D. Dessau, D. Marshall, C. Park,
P. Fournier, and A. Kapitulnik, Science 273, 325—329
(1996).

[10] M. R. Norman, H. Ding, M. Randeria, J. C. Campuzano,
T. Yokoya, T. Takeuchi, T. Takahashi, T. Mochiku,
K. Kadowaki, P. Guptasarma, and D. G. Hinks, Nature
392, 157–160 (1998).

[11] A. P. Mackenzie, S. R. Julian, D. C. Sinclair, and C. T.
Lin, Phys. Rev. B 53, 5848 (1996).

[12] N. Bulut, D. Scalapino, and S. White, Phys. Rev. B 50,
7215 (1994).

[13] R. Preuss, W. Hanke, and W. von der Linden, Phys.
Rev. Lett. 75, 1344 (1995).

[14] A. Moreo, S. Haas, A. W. Sandvik, and E. Dagotto,
Phys. Rev. B 51, 12045 (1995).

[15] C. Gröber, R. Eder, and W. Hanke, Phys. Rev. B 62,
4336 (2000).

[16] S. Sakai, Y. Motome, and M. Imada, Phys. Rev. Lett.
102, 056404 (2009).

[17] M. Civelli, M. Capone, S. S. Kancharla, O. Parcollet,
and G. Kotliar, Phys. Rev. Lett. 95, 106402 (2005).

[18] E. Gull, M. Ferrero, O. Parcollet, A. Georges, and A. J.
Millis, Phys. Rev. B 82, 155101 (2010).

[19] K.-S. Chen, Z. Y. Meng, T. Pruschke, J. Moreno, and
M. Jarrell, Phys. Rev. B 86, 165136 (2012).

[20] K.-S. Chen, S. Pathak, S.-X. Yang, S.-Q. Su,
D. Galanakis, K. Mikelsons, M. Jarrell, and J. Moreno,
Phys. Rev. B 84, 245107 (2011).

[21] H. Bragança, S. Sakai, M. C. O. Aguiar, and M. Civelli,
Phys. Rev. Lett. 120, 067002 (2018).

[22] B. S. Shastry, Annals of Physics 405, 155 (2019).
[23] I. Dzyaloshinskii, Phys. Rev. B 68, 085113 (2003).
[24] T. D. Stanescu and G. Kotliar, Phys. Rev. B 74, 125110

(2006).
[25] L. Taillefer, Annual Review of Condensed Matter Physics

1, 51 (2010).
[26] Y. Kakehashi and P. Fulde, Phys. Rev. Lett. 94, 156401

(2005).
[27] T. A. Maier, T. Pruschke, and M. Jarrell, Phys. Rev. B

66, 075102 (2002).
[28] J. E. Gubernatis, M. Jarrell, R. N. Silver, and D. S.

Sivia, Phys. Rev. B 44, 6011 (1991).
[29] A. W. Sandvik, Phys. Rev. B 57, 10287 (1998).
[30] M. Jarrell and J. E. Gubernatis, Physics Reports 269,

133 (1996).
[31] K. Bouadim, Y. L. Loh, M. Randeria, and N. Trivedi,

Nature Physics 7, 884–889 (2011).
[32] R. Levy, J. LeBlanc, and E. Gull, Computer Physics

Communication 215, 216403 (2017).
[33] A. W. Sandvik, Phys. Rev. E 94, 063308 (2016).
[34] K. B. Dave, P. W. Phillips, and C. L. Kane, Phys. Rev.

Lett. 110, 090403 (2013).
[35] J. Hubbard, Proceedings of the Royal Society A 276, 238

(1963).
[36] E. Pavarini, E. Koch, R. Scalettar, and R. Martin, eds.,

The Physics of Correlated Insulators, Metals, and Su-

perconductors, Schriften des Forschungszentrums Jülich.
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