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We report the results of a Hartree-Fock study applied to interacting electrons moving in two
different bipartite lattices: the dice and the Lieb lattices, at half-filling. Both lattices develop
ferrimagnetic order in the phase diagram U -λ, where U is the Hubbard onsite repulsion and λ
the Rashba spin-orbit coupling strength. Our main result is the observation of an unexpected
multitude of topological phases for both lattices. All these phases are ferrimagnetic, but they differ
among themselves in their set of six Chern numbers (six numbers because the unit cells have three
atoms). The Chern numbers |C| observed in our study range from 0 to 3, showing that large Chern
numbers can be obtained by the effect of electronic correlations, adding to the recently discussed
methodologies to increase |C| based on extending the hopping range in tight-binding models, using
sudden quenches, or photonic crystals, all without including electronic interactions.

I. INTRODUCTION

In the seminal paper of Haldane, a tight-binding model
on a honeycomb lattice with a staggered flux was shown
to induce the integer quantum Hall effect [1], without the
need for external magnetic fields. Subsequent generaliza-
tions led to the concept of topological insulators [2–4],
widely studied at present. A commonly used methodol-
ogy employed in this area of research is to search for mod-
els that display quasi-two-dimensional flat bands with
a nonzero Chern number, in the presence of external
magnetic fields. This Chern number equals the num-
ber |C| of chiral modes at the edges if open boundary
conditions are used. The bulk is insulating, while the
edge is conducting via those chiral modes. The sign of
C reflects on the sense of edge mode circulation, clock-
wise or anticlockwise. There are other symmetry pro-
tected insulators with robust edge states, such as in
quantum spin Hall insulators [5] and topological super-
conductors with Majorana fermions at the edges [6], all
promising candidates for quantum computation because
the symmetry-protected edge states are not affected from
back-scattering.

A generalization of the honeycomb model of Haldane
leads to the dice lattice via the addition of an extra site
at the center of each hexagon. This lattice has an entire
flat band of localized states [7, 8] (see also Refs.[9–11]).
As early as the 90’s and early 00’s the dice lattice was
studied in the context of Josephson Junction Arrays and
bosonic systems, already predicting three flat bands in a
magnetic field [12], subsequently confirmed via transport
measurements using superconducting wire networks [13].
The Lieb lattice [14] is also receiving renewed attention
due to its flat band and potential connection to supercon-
ductivity via the novel concept of quantum geometry [15].

The dice lattice has two types of sites: some with coor-
dination three and others with coordination six, as shown
in Fig. 1(a). The unit cell contains three sites, leading
to three bands, each one doubly degenerate due to spin.

The noninteracting tight-binding model on a dice lattice
including Rashba spin-orbit coupling and in the presence
of magnetic fields to break the degeneracy (thus having a
total of six bands) leads to a half-filled ground state with
|C| = 2 [8], larger than the |C| = 1 of the Haldane model
(see also Ref.[16]). Physical realizations of this lattice
are possible. For example, bulk oxides with the generic
formula A4B

′
B2O12, such as Ba4CoRe2O12 [17], contain

trilayers that seen from above resemble a dice lattice.

In a previous publication by our group we studied rib-
bons of dice lattice [18], equivalent to a dimensional re-
duction from two to one of the original dice lattice into
a quasi-one-dimensional system. Qualitatively, ribbons
were shown to behave very similarly to planar dice lat-
tices [18]. This paves the way towards the introduction
of electronic correlations, which is a much simpler task
in one-dimensional systems than in planes due to the
availability of many-body techniques that are particu-
larly efficient in one dimension. However, carrying out
density matrix renormalization group (DMRG) [19] or
Lanczos diagonalization [20] studies of interacting elec-
trons in dice ribbons is still a considerable computational
challenge. For this reason, in this publication, as an inter-
mediate step towards the full introduction of correlations
and quantum fluctuations, we employ the self-consistent
Hartree Fock approximation to directly study dice planes
instead of ribbons.

In the present effort, we also study the Lieb lattice,
Fig. 1(b). Besides being bipartite like the dice lattice,
we will show it shares many similar properties in the
phase diagram with the dice lattice. Lieb lattices have
been realized in optical lattices [21, 22] and photonic crys-
tals [23, 24]. The study of Lieb lattices including intrinsic
SOC and U has been discussed in [25].

Most early theoretical work in this context have re-
ported Chern numbers |C| equal to 0, 1, or 2 in absolute
value. However, having even larger Chern numbers can
provide practical improvements in potential applications.
Because of the correspondence between |C| and the num-
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ber of dissipationless edge modes, the performance of de-
vices can be improved by reducing the contact resistance
in the quantum anomalous Hall effect. Recent efforts
have found procedures to increase the Chern number. For
example, (1) by considering hoppings at longer distances
than those already contained in the original tight-binding
Haldane model with |C| = 1, a multiplication of Dirac
points can be achieved [26]. A general procedure to con-
struct Chern insulators with arbitrary |C| = n, with n
an integer, employing extended hopping interactions was
presented in Ref. [27]. Chern numbers as large as |C| = 5
were reported [28]. (2) In the context of photonic crys-
tals using multimode one-way waveguides, |C| as large as
4 has been reached using ab initio calculations [29]. (3)
Employing periodic quenching, and a two-band model as
example, it was shown that Chern numbers as large as 7
can be obtained [30]. (4) Sudden quenches can also mod-
ify Chern numbers. For example a system with C = 2,
with two edge states, after a sudden quench to the non-
topological regime with C = 0, can have an intermediate
phase with C = 1 due to different decay rates of the inner
and outer edge modes [31]. In partial summary, having a
large C is potentially beneficial for applications, and pro-
cedures to reach such goal have been recently proposed,
as the partial list provided above shows.

All these previous efforts have neglected electronic-
electronic correlations primarily because already a rich
variety of topological phases can be obtained at the level
of non-interacting electrons. Moreover, these models
can be solved exactly. However, the neglect of electron-
electron interactions is always an approximation [32]. In
addition, correlation effects may induce novel phases, dif-
ficult to anticipate from the noninteracting limit. Con-
sequently, it is widely believed that the next big chal-
lenge in quantum materials is the mixture of topological
and correlation effects. Will they compete or cooperate?
What new phases will emerge adding correlation effects?
The main technical difficulty in this context is that elec-
tronic correlations substantially increase the difficulty in
solving the Hamiltonian that now contains both Hubbard
U interactions and spin-orbit coupling λ.

In this publication, we study the dice and Lieb lattices
in the presence of onsite Hubbard U repulsion, within
the Hartree Fock (HF) approximation. We present the
results for these two lattices in the same publication be-
cause of their many similarities: both have unit cells
with 3 sites (2 of those sites equivalent by symmetry)
and both develop nonzero Chern numbers in the nonin-
teracting U = 0 limit when in the presence of spin-orbit
Rashba interactions of coupling strength λ and an exter-
nal magnetic field. By solving the self-consistent equa-
tions numerically we find two main results: (1) Both lat-
tices develop ferrimagnetic order. This confirms previous
studies by our group carried out by Lanczos on 2×2 unit
cells (i.e. 12 sites) and DMRG on 2×8 ribbons (48 sites),
where ferrimagnetic order was found. Moreover, the fer-
rimagnetic order develops immediately turning on U , in
qualitative agreement also with the small cluster studies

FIG. 1. (a) Geometry of the dice lattice. Here we show a
4×4 cluster with 4 unit cells along each lattice unit vectors
ê1 and ê2 (in orange). The blue (red) sites have coordination
3 (6). (b) Geometry of a 4×4 Lieb cluster with 4 unit cells
along each lattice vectors âx and ây (in orange), respectively.
The blue (red) sites have coordination 2 (4). Each unit cell
contains 3 sites, marked as 1, 2, 3. In both (a) and (b), the

cyan arrows labelled D̂αβ indicate the Rashba SOC directions
on bonds αβ.

mentioned above. The flat bands in the non-interacting
limit [7], without external fields, split in the presence of
the Hubbard interaction. This HF analysis confirms the
previous conjecture [18] that using ribbons to study prop-
erties of planes is qualitatively, and often quantitatively,
correct. (2) More importantly, we here report unexpect-
edly rich phase diagrams varying U and λ, unveiling a
plethora of phases with a variety of Chern numbers, some
as large as |C|=3. Thus, not only by increasing the range
of hoppings or by quenched-dynamic setups is that |C|
can be increased, but our results suggest the presence of
strong correlation U can lead to similar effects, at least
within the HF approximation.

The organization of the paper is as follows. In Sec. II,
the Model and Method are described, including the
Fourier transform of the Hamiltonian which amounts to
a 6×6 matrix at each fixed momentum. In this section,
the HF approximation is also explained, as well as the
technique to iteratively find the order parameters self-
consistently. In Sec. III the results are discussed, sepa-
rated into dice and Lieb lattices subsections, both con-
taining phase diagrams with the many topological phases
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we found. Finally, Sec. IV contains the Conclusions.

II. MODEL AND METHOD

A. Non-Interacting Electrons with Spin-Orbit
Coupling

The non-interacting Hamiltonian comprises of the
tight-binding kinetic energy term and the Rashba spin-
orbit coupling term. These Hamiltonians have been stud-
ied before in Refs. [8, 18] for the dice lattice and in
Ref. [33] for the Lieb lattice. The non-interacting Hamil-
tonian for the dice and Lieb lattices is defined as

HDice(Lieb) = −t
∑
r,r′,
α,β,σ

(
c†r,α,σcr′,β,σ + h.c.

)
− ε
∑
r

nr,2

−λ
∑
r,r′,

α,β,σ,σ′

(
ic†r,α,σ(D̂αβ .~τ)σσ′cr′,β,σ′ + h.c.

)
(1)

where r, r′ are the unit cell indexes, α and β are the
site indexes within the unit cell r and r′, respectively
(with α, β = 1, 2, 3), and σ =↑, ↓ is the z-axis spin
projection of the electron at site α within the unit cell r.
λ is the Rashba spin-orbit coupling strength that is uni-
form for all the bonds, while ε is the onsite energy that
affects only the red sites of Fig. 1. ~τ = τxx̂+ τy ŷ+ τz ẑ is

the Pauli matrix vector, D̂αβ is the unit vector in-plane
and perpendicular to the bond formed by (r, α) and
(r′, β). Both Rashba and hopping occur only between

nearest-neighbor sites. Note that the D̂αβ for the dice
lattice in Fig. 1 follows the D3d symmetry group [8].

Via the Fourier transform c†k,α,σ = 1√
N1N2

∑
r e

ik.rc†r,α,σ
the non-interacting Hamiltonian of the dice lattice in mo-
mentum space [8, 18] becomes:

HDice(k) =
0 0 −tγ∗k −iλγ∗k+ 0 0
0 0 −iλγ∗k− −tγ∗k 0 0
−tγk iλγk− −ε 0 −tγ∗k iλγ∗k+

iλγk+ −tγk 0 −ε iλγ∗k− −tγ∗k
0 0 −tγk −iλγk− 0 0
0 0 −iλγk+ −tγk 0 0

 (2)

where γk=1 + eik1 + eik2 , and γk±=1 + ei(k1±2π/3) +
ei(k2±4π/3), with ki = k.êi. These two compo-
nents are along the lattice vectors ê1 and ê2.
The annihilation operator basis used here is

(ck,1,↑ , ck,1,↓ , ck,2,↑ , ck,2,↓ , ck,3,↑ , ck,3,↓ ).
N1 and N2 are the number of unit cells along the lattice
vectors ê1 and ê2, respectively.

Similarly, the non-interacting Hamiltonian of the

Lieb lattice, under the Fourier transform c†k,α,σ =

1√
NxNy

∑
r e

ik.rc†r,α,σ [33] becomes:

HLieb(k) = (3)
0 0 −tδ∗kx+ λδ∗kx− 0 0
0 0 −λδ∗kx− −tδ∗kx+ 0 0

−tδkx+ −λδkx− −ε 0 −tδky+ iλδky−
λδkx− −tδkx+ 0 −ε iλδky− −tδky+

0 0 −tδ∗ky+ −iλδ∗ky− 0 0

0 0 −iλδ∗ky− −tδ∗ky+ 0 0


where δki±=1±eiki , while kx and ky are the components
of the momentum along the lattice vectors âx and ây, re-
spectively. The basis used here is as in the dice lattice, i.e.

(ck,1,↑ , ck,1,↓ , ck,2,↑ , ck,2,↓ , ck,3,↑ , ck,3,↓ ).
Nx and Ny are the number of unit cells along the lattice
vectors âx and ây, respectively.

B. Interacting Electrons in the Hartree-Fock
Approximation

To study the interaction effects, we added the on-
site Hubbard repulsion term (HU = U

∑
r,α nr,α,↑nr,α,↓).

This model cannot be solved exactly and in this study of
interacting dice and Lieb lattices we used the standard
Hartree-Fock (HF) decomposition in real space described
as follows:

HU ≈
U
∑
r,α

[〈nr,α,↑〉nr,α,↓ + 〈nr,α,↓〉nr,α,↑ − 〈nr,α,↑〉〈nr,α,↓〉

−{〈S+
r,α〉S−r,α + 〈S−r,α〉S+

r,α − 〈S+
r,α〉〈S−r,α〉}

]
(4)

where 〈nr,α,σ〉 and 〈S±r,α〉 are the charge and magnetic
order parameters, respectively, for site α within the unit-
cell r and spin projection σ.

We simplified our HF results using that each unit cell in
real space is a copy of all the rest, under the development
of translationally invariant ferrimagnetic order, as found
in Ref. [18]. Thus, 〈nr,α,σ〉 = 〈nα,σ〉 and 〈S±r,α〉 = 〈S±α 〉.
Under this condition, the interaction term in Eq. 4 in
momentum space becomes:

HU,Quantum ≈

U


〈n1,↓〉 −〈S−1 〉 0 0 0 0
−〈S+

1 〉 〈n1,↑〉 0 0 0 0
0 0 〈n2,↓〉 −〈S−2 〉 0 0
0 0 −〈S+

2 〉 〈n2,↑〉 0 0
0 0 0 0 〈n3,↓〉 −〈S−3 〉
0 0 0 0 −〈S+

3 〉 〈n3,↑〉

 (5)

(HU,Classical)α,α ≈ U
[
〈S+
α 〉〈S−α 〉 − 〈nα,↑〉〈nα,↓〉

]
(6)

where HU,Quantum describes the quantum portion of
the HF Hamiltonian and HU,Classical its classical com-
ponent. Note that the basis for the interaction ma-
trix in Eqs. 5 and 6 is the same basis used for the
non-interacting Hamiltonians in Eqs. 2 and 4, i.e.
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(ck,1,↑, ck,1,↓, ck,2,↑, ck,2,↓, ck,3,↑, ck,3,↓). More com-
plicated orders, such as a spiral, would require the diag-
onalization of much larger matrices, but here a 6×6 is
sufficient to generate eigenvalues and eigenvectors.

Also, the presence of inversion symmetry with respect
to the coordination-6 sites of the dice lattice and C4 sym-
metry in the Lieb lattice helps us in reducing the number
of order parameters. Under these symmetries the order
parameters of the two blue sites within the unit cell must
be the same.

To find the values of these order parameters, we per-
formed self-consistent iterations derived from minimizing
the Hamiltonian energy with respect to the mean-field
parameters, while tuning the chemical potential accord-
ingly to remain at the desired electronic density. In prac-
tice, we started with several random initial configurations
(or seeds) for each order parameter (at fixed U/t and λ/t)
and inspected the lowest energy achieved after the itera-
tive process. Then, we compared the ground-state ener-
gies from each of these converged results, and considered
those with the lowest energy (sometimes the results of
different iterative processes lead to different energies due
to trapping in metastable states, thus the importance of
using a variety of initial random order parameter sets).

More specifically, to reach the self-consistent solution
in the Hartree-Fock order parameters, we used the simple
mixing as described below:

|On+1
in 〉 = (1− α)|Onin〉+ α|Onout〉, (7)

where |Onin〉 is the input array of order parameters for the
n-th iteration and |Onout〉 is calculated using the eigen-
spectrum of the Hartree-Fock Hamiltonian for the given
density of electrons [34]. The chemical potential is tuned
to reach the targetted electronic density, in this case half-
filling, for a fixed very low temperature of T = 0.0001t.
We used α = 0.5 in the previous equation. The conver-
gence error criterium of our HF results was 10−6.

Finally, in the Appendix we show evidence that us-
ing the full Hartree-Fock approximation, as opposed to
only Hartree, in the cases of the dice and Lieb lattices is
qualitatively important. Not only the energies are better
with HF, but in addition, the Chern numbers are different
than those obtained when only using Hartree, indicating
that the Fock terms are relevant.

III. RESULTS

In this section, we will discuss the Hartree-Fock results
for the two-dimensional (2D) dice and Lieb lattices. Sur-
prisingly, we observed many different topological phases
and present them in our phase diagrams for both re-
spective lattices, see Figs. 4 and 9. Each state in these
phase diagrams is characterized by the set of Chern num-
bers (C1, C2, C3, C4, C5, C6) calculated for each of the six
bands, from the bottom up increasing energy, arising
from the 6×6 diagonalization of the matrices shown in
the previous section after convergence, all at half-filling.

FIG. 2. Average spin moments vs U/t at λ = 0.3t and
ε = 0.6t via Hartree-Fock at half-filling on a 60×60 unit-
cell system used for the self-consistency. |〈S1〉| and |〈S2〉|
are the magnitude of the spins at sites 1 and 2, respectively
and |2〈S1〉 + 〈S2〉| is the net spin moment of the unit cell.
〈S1〉.〈S2〉 shows the dot product of the spins at sites 1 and
2. The absolute values just denote the fact that depending
on initial seeds the overall order parameter can be positive or
negative with equal chance, as in any ferro or ferri system,
but the smoothness of the results shows that convergence was
properly achieved even using different seeds at each point.

We also observed that all topological phase transitions in
our systems occur through a band touching point, as ex-
pected for topological phase transitions. Namely, varying
a parameter such as U or λ, first a gap exists among all
phases, then at one point a gapped region between two
bands becomes gapless when those two bands touch, and
then the gap reopens again, with a concomitant change in
the Chern numbers of the two bands involved. Concrete
examples are shown below.

A. Dice Lattice Results

We start by considering a 60×60 unit cell dice lattice
system, with 60 unit cells along each lattice vectors ê1

and ê2, see Fig. 1(a) for reference. We study the ground
state properties of the dice Hamiltonian on this lattice
in the presence of interactions at half-filling, via Hartree-
Fock. When U/t = 0, degenerate flat bands are present
at E = 0 in this lattice even for λ/t nonzero [8, 18] (the
same occurs for the Lieb lattice shown below). For any
finite U , these flat bands split into two non-degenerate
bands around E = 0, even in the absence of external
fields. Also, with the inclusion of U/t long-range fer-
rimagnetic order develops in the system. Our previous
DMRG+Lanczos study showed the presence of this fer-
rimagnetic order for N × 2 ribbons of dice lattice [18].



5

However, to confirm that this type of order dominates
also in the present 2D case, i.e. not just in ribbons, a
comprehensive study of the magnetic properties was car-
ried out via HF.

In Fig. 2, we show that the ordering of the local spins
are indeed ferrimagnetic using HF. Firstly, the magnitude
of the spin at site 2 (|〈S2〉|), i.e. the red sites, is always
smaller as compared to the magnitude of the spin at site
1 (|〈S1〉|), i.e. the blue sites. In addition, the product of
the two spins 〈S1〉 and 〈S2〉 is always negative. Moreover,
at any finite U/t both 〈S1〉 and 〈S2〉 are collinear: we
verified that 〈S1〉.〈S2〉/|〈S1〉||〈S2〉| = −1. With all this
information, we can safely conclude that the ordering
of the spins in our 2D dice lattice is ferrimagnetic, as
conjectured in Ref. [18] studying small clusters.

At finite U/t, we have not observed any further mag-
netic transition in Fig. 2 and the magnetic ordering is
consistently ferrimagnetic for the entire range of U/t.
However, there is an abrupt change in the magnetic or-
dering when moving from U/t = 0 to U/t = 0.1, the first
point studied after U/t = 0 in our grid of points, where
there is a sudden jump in the magnitude of 〈S1〉. This
is because the flat band at U/t = 0 consists of states
from coordination-3 sites and even a small value of U/t
breaks the global degeneracy that causes the E = 0 flat
band, leading to a jump in |〈S1〉|. In other words, the
sudden split of the flat band separates that original band
into two, each with a different orientation of the ferri or-
der parameter. To confirm these results, we performed
Lanczos on a 2×2 system, see Fig. 3, where we observed
the same features being captured in the average local mo-
ments 〈S2

1〉. Here we also show that, as expected by mere

FIG. 3. Average local moments 〈S2
α〉 and spin-spin correlation

〈S1.S2〉 vs U/t at λ = 0.3t and ε = 0.6t, obtained via Lanczos
at half-filling on a 2×2 unit-cell system. The results for site 1
merely confirm that by symmetry sites 1 and 3 must behave
identically. This is why only green is observed in the figure,
while blue is hidden behind.

FIG. 4. U/t vs λ/t phase diagram for the 60×60 dice lattice,
calculated using the Hartree-Fock approximation. ε = 0.6t is
used here. The different colors refer to different sets of Chern
numbers (C1, C2, C3, C4, C5, C6), according to the color con-
vention indicated at the top. Note that all phases are ferri-
magnetic including the (0, 0, 0, 0, 0, 0) phase 1. 12 different
topological phases were identified.

symmetry even with the quantum fluctuations incorpo-
rated, 〈S2

1〉 and 〈S2
3〉 are identical to one another.

In Fig. 4, we display the U/t versus λ/t topological
phase diagram for a 60×60 unit cells dice lattice sys-
tem, at ε = 0.6t. To establish this phase diagram, we
computed the first order Chern number of all the 6 non-
degenerate bands that arise from the HF approximation,
at half-filling, using the method introduced in Ref. [35],
involving individual plaquettes in the discretized grid in
momentum space of the lattice used. Unlike in the case of
the Lieb lattice, where the poles of the Berry curvature lie
at the boundary of the first Brillouin zone, as described
later in the text, in the dice lattice they lie well within
the first Brillouin zone. Hence, the calculation of Chern
numbers here is quite straightforward.

It is intersting to note that for ε = 0 the Hamiltonian in
equation 1 is invariant, for half-filling, under the particle-
hole transformation shown below:

cr,α,σ → νσe
iπαc†r,α,σ̄ (8)

where νσ = 1(−1) for σ =↑ (↓). The presence of ε 6= 0
breaks the particle-hole symmetry which leads to asym-
metry in the Chern numbers i.e. Ci 6= −C6−i, as noticed
in many phases in the phase diagram.

As illustration, in Fig. 5, we are showing representative
bands for some of the phases that appear in our phase
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FIG. 5. Panels (a), (b), (c) and (d) represent the bands at
λ = 0.3t for the phases (2,−2, 0, 0, 2,−2), (2,−2, 0,−1, 3,−2),
(2,−2, 0, 1, 1,−2) and (2,−3, 1, 1, 1,−2), at U/t = 2.0, U/t =
3.4, U/t = 4.4 and U/t = 5.5, respectively. Panels (e) and
(f) represent the bands at λ/t = 0.8 corresponding to the
phases (0, 0, 0, 0, 0, 0), and (2,−2, 0, 0, 0, 0) at U/t = 1.0, and
U/t = 3.0, respectively. All the plots were obtained using a
60×60 grid in momentum space, and ε = 0.6t. The numbers
next to each band are the Chern numbers of those bands.

diagram. We observed that for small values of the inter-
action strength U/t, there are three different classes of
bands that are isolated in pairs (as expected from con-
tinuity starting at U/t = 0 where there are three bands,
each with degeneracy two). For example, in Figs. 5(a)
and 5(f) involving the phases (2,−2, 0, 0, 2,−2) and
(2,−2, 0, 0, 0, 0), the lower two bands, the middle two
bands, and the upper two bands form classes of their own
and each has a net sum of Chern numbers equal to zero.
Increasing U/t, the middle two bands split further and
now we have two different classes made of three lower and
three upper bands, see Fig. 5(b), 5(c), and 5(d) that rep-
resent the phases (2,−2, 0,−1, 3,−2), (2,−2, 0, 1, 1,−2)
and (2,−3, 1, 1, 1,−2) respectively. Note now the net
sum of Chern numbers of the lower three bands and
upper three bands is zero separately. This last issue is
worth remarking: in the dice lattice at half-filling, our
results predict that the three lower bands have Chern
numbers that always add up to zero in the entire phase
diagram, suggesting that the Anomalous Quantum Hall
Effect (AQHE) will cancel. However, in the Lieb lattice,
as shown below, this situation will only occur in a frac-
tion of the phase diagram.

We observed that to characterize the topological phase
transitions and find the precise locations of the transi-
tions, the magnetic observables, such as the ferri order
parameter, are certainly insufficient. For example, we
did not detect any noticeable modification in the first
and second derivatives of the ferrimagnetic order param-
eters vs U/t. This is in agreement with the transitions
being topological. Thus, we calculated ∆n which is the
minimum gap in energy between the nth and n + 1th

energy bands at fixed SOC λ = 0.3t as example, as in
Fig. 6. Here we show that whenever a topological phase
transition occurs the bands go through a band touching
point, namely ∆n = 0. As example of this behavior, we
will consider the phase transition occuring between the
phases (2,−2, 0, 0, 2,−2) and (2,−2, 0,−1, 3,−2). In this
case, the Chern numbers of the band 4 and band 5 change
from (0, 2) to (−1, 3) which implies that somewhere be-
tween these two phases there should be a value of U/t,
at fixed λ/t, where ∆4 = 0. In Fig. 6, we can see that
U/t ∼ 3.3 corresponds to that touching point, confirming
the topological nature of the transitions.

Similarly, we show in detail two more such tran-
sition points for λ/t = 0.3 at U/t ∼ 3.7, and
U/t ∼ 4.7, where ∆4 = 0 when (2,−2, 0,−1, 3,−2) →
(2,−2, 0, 1, 1,−2) and ∆2 = 0 when (2,−2, 0, 1, 1,−2)→
(2,−3, 1, 1, 1,−2), respectively. Also, we noticed that
for a specific band n while moving from one phase to
another a net change in Chern number of |∆Cn| = 1
or 2 is observed in the dice lattice. For example,
in Fig. 6 while moving from phase (2,−2, 0, 0, 2,−2)
to (2,−2, 0,−1, 3,−2) we observe |∆C4| = |∆C5| =
1. Similarly, from phase (2,−2, 0,−1, 3,−2) to

FIG. 6. Band gaps ∆n vs U/t plot for λ/t = 0.3 and ε/t = 0.6
via Hartree-Fock at half-filling on a 60×60 unit-cell system.
We show ∆n = mink [En+1(k)− En(k)], where n is the band
index. Here we can clearly observe the topological transition
points around U/t ∼ 3.3, U/t ∼ 3.7, and U/t ∼ 4.7, respec-
tively.
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FIG. 7. Energy bands vs k1 plots (for the specific val-
ues of k2’s that highlight the band touching region) at the
transition coupling values U/t = 3.3, 3.7 and 4.7, and at
λ/t = 0.3 and ε/t = 0.6. via Hartree-Fock on a 60×60
unit-cell system. Panel (a) represents the transition point
from phase (2,−2, 0, 0, 2,−2) to phase (2,−2, 0, 1, 3,−2),
whereas plot (b) represents the transition point from phase
(2,−2, 0, 1, 3,−2) to phase (2,−2, 0, 1, 1,−2). Lastly, plot (c)
represents the transition point from phase (2,−2, 0, 1, 1,−2)
to phase (2,−3, 1, 1, 1,−2).

(2,−2, 0, 1, 1,−2) we observe |∆C4| = |∆C5| = 2. This
is true for all the phase transitions in our phase diagram
in Fig. 4.

In Fig. 7, we have plotted the bands associated with
the three transition points reported in Fig. 6. At finite
U/t, the symmetry points Γ, K and M are not necessar-
ily the location of the bands touchings, although in prac-
tice they turned out to be. Hence, a complete Brillouin

zone check is in principle required. For that purpose, we
plotted the bands versus the lattice momentum k1, for
different values of k2’s. In Fig. 7(a), we depict the band
touching point at U/t = 3.3. This band touching point
here lies at momentum (k1, k2) = (π, 0) and is present
between bands 4 and band 5. Similarly, in Fig. 7(b) and
7(c), we explicitly show the band touching points for the
transition values U/t = 3.7 and U/t = 4.7, respectively.
For U/t = 3.7, the band touching point lies at the mo-
mentum point (π, π) and occurs between bands 4 and 5,
whereas for U/t = 4.7 the touching lies at momentum
(π, 0) and is present between bands 2 and 3.

B. Lieb Lattice Results

Let us now discuss our HF results for the Lieb lat-
tice [14]. Similar to the dice lattice, here we start by
considering a two-dimensional 64×64 system, with 64
unit cells along each lattice vectors âx and ây (readers
are referred to Fig. 1(b) for the geometry). The non-
interacting properties of the Lieb lattice entail degener-
ate flat bands at half-filling at E = 0 [33], as in the case
of the dice lattice. Also as in the dice lattice, we have ob-
served that after the inclusion of the onsite Hubbard U/t
the flat band immediately splits into two non-degenerate
bands. However, unlike the dice lattice, the splitting of
the Lieb flat band adds unexpected technical complica-
tions because special points in momentum space remain
very close to one another, even after the splitting induced
by U/t and λ/t. Thus, considerably more numerical ef-
fort is required to make sure true gaps are formed in the
Lieb lattice than in the dice lattice.

FIG. 8. Average spins vs U/t, at λ/t = 0.45 and ε/t = 0.5
obtained via Hartree-Fock at half-filling on a 64×64 unit-cell
Lieb lattice system. The U/t = 0 jumps occur for the same
reason as in the dice lattice, namely the splitting of the E = 0
flat band immediately when turning on U/t.
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FIG. 9. U/t vs λ/t phase diagram for a 64×64 Lieb lattice,
calculated using the Hartree-Fock approximation. ε/t = 0.5
was used here. The color convention and its relation with the
Chern numbers of the bands, from bottom to top in energy,
is shown at the top of the figure.

In Fig. 8, we illustrate the magnetic properties of the
ground state via HF at half-filling. We followed the same
procedure mentioned before in the dice lattice section,
and again we concluded that the 2D Lieb lattice at fi-
nite U/t also exhibits ferrimagnetism. We found that
the magnitude of the spin at sites 2 (|〈S2〉|) is always
smaller as compared to the magnitude of the spin at
sites 1 (|〈S1〉|), while the dot product of the two spins
〈S1〉.〈S2〉 is always negative. Moreover, all the spins are
always collinear. Then, this information helps us to es-
tablish that the ground-state for the Lieb lattice is fer-
rimagnetic as for the dice lattice. However, unlike the
dice lattice, here we have observed a magnetic anomaly
at U ∼ 3.4t. For example, see the change in slope in
the |2〈S1〉 + 〈S2〉| curve in Fig. 8. However, it does not
influence on the symmetry breaking pattern, nor on the
prediction of topological phase transitions in our system.
The origin of this strange anomaly will be studied in
future work, and its presence is not crucial for the dis-
cussion that follows.

For the case of the Lieb lattice the method of Ref. [35]
to calculate Chern numbers may have problems because
the singular portions of the Berry curvature that con-
tribute to the Chern number are located at the bound-
ary of the first BZ. We have found two solutions to this
problem:

(1) The Lieb lattice contains 3 sites (1, 2, 3) (see
Fig. 1(b)) per unit cell. Each site has one active orbital
and, as a result, we have an effective three-orbital model,

although the three orbitals have different locations in the
unit cell. Thus, the wave function is not periodic in the
first Brillouin zone (BZ). The periodicity instead is of two
BZs in each direction (x and y). Thus, we can calculate
the Chern number by focusing on an extended, instead of
single unit, BZ with momentum ki in the interval [0, 4π)
instead of [0, 2π) for both directions i = x, y. In this
situation, the admissibility condition for the calculation,
described in Ref. 35 is now satisfied.

(2) However, there is another procedure that leads to
the same results: using a gauge transformation will allow
us to evaluate the Chern number in a single BZ. This
gauge transformation effectively places the three orbitals
at the same site, i.e. it maps sites 1 and 3 into site 2,
restoring the periodicity of the wave function.

The gauge transformation is given by:

U =

 eikx/2 0 0
0 1 0
0 0 eiky/2

 (9)

for the sites (1, 2, 3) as in Fig. 1(b). Defining H ′ =
UHU−1 we can calculate the Chern number in the tra-
ditional way since the wavefunctions are now periodic in
the first BZ and the admissibility condition described in
Ref. [35] is now satisfied. This transformation is simi-
lar in spirit to the approach in Ref. [36] to evaluate the
Z2 topological invariant for band insulators. We have
verified that the Chern numbers are identical using both
methods (1) and (2). The second approach reduces the
number of points in k-space needed to compute the Chern
numbers.

In Fig. 9, the U/t vs λ/t topological phase diagram for
the Lieb lattice in the HF approximation is displayed,
at ε = 0.5t. As for the dice lattice, here we computed
the first order Chern number of all the 6 non-degenerate
bands at half-filling. For the Lieb lattice, we used the
methods (1) and (2) described above in momentum space
to verify consistency in many points, but primarily the
methodology (1). As for the case of the dice lattice, the
plethora of topological phases is remarkable, with 11 of
them, all displaying ferrimagnetic order. Previous stud-
ies of non-interacting electrons with Rasba coupling, us-
ing in addition staggered magnetic fields which qualita-
tively resemble the ferrimagnetic order, also reported a
rich phase diagram but with only 4 different topologi-
cal phases [33]. Other studies of the Lieb lattice using
non-interacting electrons with variations of the real next-
nearest-neighbor hopping [37] also reported rich topolog-
ical phase diagrams.

As mentioned for the dice lattice where |∆Cn| = 1 or
2 is observed as a phase transition condition, in the Lieb
lattice we noticed that for a specific band n while moving
from one phase to another a net change in Chern number
of |∆Cn| = 1 is observed. This is true for all the phase
transitions in our Lieb lattice phase diagram in Fig. 9.

In Figs. 10(a) and 10(b), we display represen-
tative bands for the phases (1,−1,−1, 1, 1,−1) and
(1,−1,−1, 0, 2,−1), as example, in the weak coupling
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FIG. 10. Representative bands for some phases shown in the
phase diagram at half-filling. Panel (a) is for U/t = 1.7 and
λ/t = 0.7, representing the phase (1,−1,−1, 1, 1,−1). Panel
(b) is for U/t = 1.1 and λ/t = 0.225, representing the phase
(1,−1,−1, 0, 2,−1). The insets panels (c) and (d) amplify
points where bands are very close to one another, illustrating
that there is an abnormally small but nonzero finite gap be-
tween the top two and middle two bands, respectively. The
gap between the two bands at the bottom is already visible
in panel (a). Inset plots (e) and (f) depicts the finite gap
between the top two bands, whereas (g) shows the finite gap
between the middle two bands. Again, the gaps for the two
bottom lines are already visible in panel (b). All the plots are
for a 64×64 Lieb lattice, calculated using the Hartree-Fock
approximation. ε/t = 0.5 is used here.

regime where the original group of three bands of U/t = 0
(each doubly degenerate) can still be observed. At first
impression in the scale used, the bands seem to have
band touching points, namely the abnormally small gaps
in this band structure are not visible to the eye. To show
that actually there is a tiny but nonzero gap in our re-
sults we have included some insets where by changing
the scale, using a finer grid of points, and focussing on
the apparent touching points, we show that small gaps
are actually present between these curves (see insets plots
10(c) to 10(g)). Similarly small gaps were reported before
in Ref. [33] for the same Lieb lattice but in a staggered
magnetic field. An important qualitative observation is
that if we add up the Chern number of the lowest three
bands, namely those populated at half-filling, they add to
a nonzero Chern number and as a consequence an AQHE
is to be expected, similarly as it occurs for the dice lattice
but in a uniform magnetic field at U/t = 0 [8], instead of
the ferrimagnetic order found here.

In Fig. 11(a), 11(b) and 11(c), we continue showing
representative bands for the phases (1,−2, 1,−1, 2,−1),

FIG. 11. Representative bands for some typical phases at
half-filling in the phase diagram. Panels (a), (b), and (c)
are for U/t = 3.0, U/t = 4.2, and U/t = 5.5, respectively,
using parameters λ/t = 0.3 and ε/t = 0.5. (a) contain the
bands from the phase (1,−2, 1,−1, 2,−1), (b) represents the
bands from the phase (0,−1, 1,−1, 2,−1), while (c) are the
bands from the phase (1, 0,−1, 1,−2, 1). All the plots are
for a 64×64 Lieb lattice, calculated using the Hartree-Fock
approximation.

(0,−1, 1,−1, 2,−1) and (1, 0,−1, 1,−2, 1), respectively,
at larger values of U/t. Because of the large U/t, and as
in the dice lattice, three bands are now grouped together
at low energies and three at high energies. Note that
in this figure, if we fill with electrons up to half-filling,
the sum of Chern numbers is now zero, and as a con-
sequence no AQHE is expected. Thus, although not a
phase transition, there are two regimes in the Lieb phase
diagram, one with AQHE nonzero and one with AQHE
zero at half-filling, adding an extra interesting detail to
our results. It is remarkable that nonzero AQHE does
not occur in any of the phases of the dice lattice: this is
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the only, but important, difference we found between the
dice and Lieb lattice that otherwise behave very similarly
within the HF approximation, both with many topolog-
ical phases.

IV. CONCLUSIONS

The simultaneous study of the effect of Hubbard cor-
relation and spin-orbit coupling in electronic models is
widely considered among the most important next chal-
lenges in condensed matter theory. In this publication,
we presented the phase diagrams of the dice and the Lieb
lattices, including Rashba spin-orbit coupling and Hub-
bard onsite repulsion, within the Hartree-fock approxi-
mation to treat electronic correlation effects.

A surprisingly rich phase diagram was unveiled in both
cases. While regarding canonical spontaneous symme-
try breaking both lattices display the same ferrimag-
netic order, as predicted for the dice case in Ref. [18]
using small cluster Lanczos, our present work unveiled
a plethora of “hidden” topological transitions where the
Chern numbers of the bands change at the boundaries
between phases. In these topological transitions, gaps
between pairs of bands close and reopen varying param-
eters, and before and after the closing the resulting Chern
numbers are different. The abundance of phases is sur-
prising: without calculating the Chern numbers, a priori
it would have been impossible to anticipate that topo-
logical transitions occur because finding the exact place
where the closing of the gap occurs is in principle quite
difficult (we showed a few examples). The regions of zero
gap are a web-like manifold of dimension 1 in the dimen-
sion 2 of the phase diagram varying Hubbard U/t and
Rashba λ/t couplings, at a fixed onsite energy ε/t differ-
ence between sites with different coordination number.

Moreover, as already expressed, the entire phase dia-
gram is ferrimagnetic, and this order parameter appears
to behave smoothly across the topological phase tran-
sitions. This confirms via a toy model the growing per-
ception in the community that topology is “everywhere”,
namely that a large percentage of materials studied for
years in fact have nontrivial topological properties. The
same seems to occur with seemingly “harmless” models
of interacting electrons, as our example suggests.

In a conceptually related mean-field study of spin-
less fermions on the honeycomb lattice with nearest-
neighbor repulsive interaction of strength V and in the
Hofstadter regime – i.e. adding a gauge field to produce
fluxes through the plaquettes – related effects were ob-
served [38]. The non-interacting system has a nonzero
Hall conductivity. Increasing V and for two occupied
bands, these bands were found to touch at a specific V
and a redistribution of Chern numbers led to a topologi-
cal transition from Chern numbers (-1,1), in a topological
ferrielectric phase, to Chern numbers (0,0) in a canoni-
cal ferrielectric phase. Other phase transitions involving
changes in the Chern numbers increasing the repulsion

V can be found in Fig. 3 of Ref.[38].
Returning to our results, overall both dice and Lieb lat-

tices behave very similarly, with the only exception that
the lower three bands (out of the six bands of both mod-
els), namely the three bands that are populated at half
filling, sometimes behave differently as a group. For the
dice lattice, their combined Chern numbers add to zero
in the entire phase diagram suggesting the absence of an
Anomalous Quantum Hall Effect. However, for the Lieb
lattice in weak coupling this does not occur and AQHE
should be observable in physical realization of the half-
filled weakly-coupled Lieb lattices. In strong coupling,
both Lieb and dice have the three lower bands cancelling
their summed Chern numbers. Of course, merely by
changing the chemical potentials, in both cases regions
of nonzero AQHE can be easily found for both lattices.

The next computational challenge is the study of rib-
bons of dice and Lieb lattices employing the powerful
DMRG technique fully incorporating quantum fluctua-
tions, to confirm our results. At present, it is possible
to study comfortably up to six legs in a ladder arrange-
ment with DMRG. When we recently studied ribbons
of the non-interacting dice lattice [18], we observed that
the physics of two-dimensional planes – including Chern
numbers deduced from the transverse Hall conductance
σxy – can be rapidly reached by increasing the number
of legs in ladders, at least for non-interacting electrons.
σxy can be calculated with DMRG as well. This study
will be carried out in the near future.
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APPENDIX

A. Hartree vs Hartree-Fock Comparison

In Fig. 12 we compare results for the dice lattice us-
ing (a) non-interacting electrons in a staggered external
field, (b) Hartree, and (c) Hartree-Fock methods at cou-
plings U = t, λ = 0.3t, and ε = 0.6t. The results for
(a) are reproduced from Ref. [8] for the benefit of the
readers. They were obtained optimizing variationally ex-
ternal magnetic fields associated with the two types of
sites in the dice lattice, especifically B1 = 0.224t and
B2 = −0.0162t. In Fig. 12(b), we show our Hartree-only
results for the same U, λ, ε parameters and realized that
the Hartree results are quite similar to the variational re-
sults. The bands are almost identical. Moreover, in both
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FIG. 12. Central energy bands near E = 0 for the dice lattice
at U = t, λ = 0.3t, and ε = 0.6t. (a) depicts the energy
bands reproduced from Ref. [8] for comparison, thus the label
“Ref.[7]”. For panel (a), those authors worked with the same
couplings and evaluated the corresponding optimal magnetic
fields for sublattices 1 and 2 via a variational method, with
values shown as insets. The Chern numbers for the two red
bands were ±2. Panel (b) illustrates the energy bands ob-
tained by us when we only use the Hartree approximation.
Here, the results are the same as in (a), i.e. C = ±2, and
illustrates that using only Hartree is basically equivalent to
optimizing external staggered fields, as intuitively expected.
However, in (c) we show the complete Hartree-Fock results of
the present study. The energy in Hartree-Fock is lower than
in Hartree. More importantly, note that the results change
qualitatively, namely now the two red bands have C = 0 and
the gap is much smaller.

cases the sum of Chern numbers for the first three bands
from the bottom (only one shown) is 2. However, in Fig.
12(c) we show explicitly that when performing the full,
and more accurate, HF approximation we obtain different
results. Not only a lower ground-state energy is obtained
in panel (c) than panels (a,b), but in addition the sum of
Chern numbers for the first three bands is now 0 in HF
as opposed to 2 in just Hartree, showing that the Fock
terms are relevant when λ 6= 0. The main message is
that the Fock terms are important in this context and
they alter the physics qualitatively.
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