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Luttinger’s theorem connects a basic microscopic property of a given metallic crystalline material,
the number of electrons per unit cell, to the volume, enclosed by its Fermi surface, which defines
its low-energy observable properties. Such statements are valuable since, in general, deducing a
low-energy description from microscopics, which may perhaps be regarded as the main problem of
condensed matter theory, is far from easy. In this paper we present a unified framework, which
allows one to discuss Luttinger theorems for ordinary metals, as well as closely analogous exact
statements for topological (semi)metals, whose low-energy description contains either discrete point
or continuous line nodes. This framework is based on the ’t Hooft anomaly of the emergent charge
conservation symmetry at each point on the Fermi surface, a concept recently proposed by Else,
Thorngren and Senthil. We find that the Fermi surface codimension p plays a crucial role for the
emergent anomaly. For odd p, such as ordinary metals (p = 1) and magnetic Weyl semimetals
(p = 3), the emergent symmetry has a generalized chiral anomaly. For even p, such as graphene
and nodal line semimetals (both with p = 2), the emergent symmetry has a generalized parity
anomaly. When restricted to microscopic symmetries, such as U(1) and lattice symmetries, the
emergent anomalies imply (generalized) Luttinger theorems, relating Fermi surface volume to various
topological responses. The corresponding topological responses are the charge density for p = 1,
Hall conductivity for p = 3, and polarization for p = 2. As a by-product of our results, we clarify
exactly what is anomalous about the surface states of nodal line semimetals.

I. INTRODUCTION

The metal-insulator dichotomy is one of the basic facts
of solid state physics. It is also one of the simplest and
most fundamental macroscopic manifestations of quan-
tum mechanics. If electrons are treated as noninteract-
ing, the existence of metals and insulators follows from
the quantum mechanics of a particle in periodic poten-
tial, which leads to the existence of bands and band gaps
in the electron energy spectrum, and from the Pauli prin-
ciple. Whether a given crystalline material is a metal or
an insulator is then determined by a single parameter,
the number of electrons per unit cell per spin (filling).
When the number is an integer, the material is an insu-
lator (we will not distinguish between insulators and ac-
cidental compensated semimetals due to band overlap).
Otherwise it is a metal, with a Fermi surface of gapless
excitations, which encloses a volume in momentum space,
directly determined by the fractional part of the filling,
which we denote as ν henceforth.

The relation between the Fermi surface volume and
the filling is in fact much deeper than simple counting
of filled single-particle states of noninteracting electrons
might suggest. It holds even when the electron-electron
interactions are taken into account, a statement known as
Luttinger’s theorem1. Recent work has made it clear that
this statement has a topological origin2–12, in particular
connecting it with the concepts of quantum anomalies
and higher-dimensional symmetry protected topological
(SPT) phases. In this sense ν may be viewed as a topo-
logical, although unquantized and continuously tunable,
invariant, characterizing a metallic phase, which is sand-
wiched between two insulators, corresponding to integer

values of ν.

On another front, it has recently been discovered that
there exists another way a metallic phase may arise: as
an intermediate phase between a topological and an or-
dinary insulator in three dimensions (3D), when a di-
rect transition is impossible2,3,13–17. Such materials are
known as topological semimetals, or topological metals
(“metal” in this paper refers to a state with gapless
fermionic excitations, but not necessarily compressible),
and exist at integer electron fillings per unit cell, which
would normally imply an insulator as the Luttinger in-
variant ν is zero. In this case however, there exist other
topological invariants, analogous to ν18. Just like ν, these
invariants are unquantized and continuously tunable, but
are topological in origin and require gapless modes to
be present. In the simplest case of a magnetic Weyl
semimetal, the unquantized invariant is the Hall con-
ductance per atomic plane15, which, when not equal to
an integer multiple of e2/h, requires gapless Weyl points
whenever the Luttinger invariant ν is zero. In other types
of topological semimetals the invariants are more sub-
tle, taking the form of fractional electric charges carried
by topological defects of crystalline symmetries in point
node semimetals18, or fractional polarization in the line
node case19,20. In all cases, however, the idea is very
similar to the Luttinger invariant in ordinary metals: a
“fractional” value of the invariant necessarily requires ei-
ther gapless modes or topological order (i.e. long-range
entanglement). The invariant is continuously tunable be-
tween two “trivial” values, which correspond to insula-
tors. These are either ordinary insulators at different
integer unit cell filling in the case of ordinary metals, or
insulators with different electronic structure topology in
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the case of topological semimetals.

This similarity suggests that there should exist a com-
mon framework to describe the topological properties of
all metallic phases, including both ordinary and topo-
logical metals. The goal of this paper is to describe
such a framework. We demonstrate that metals may be
described by ’t Hooft anomalies of emergent symmetry
groups, which characterize their low-energy excitation
spectrum. The ’t Hooft anomalies connect the corre-
sponding metallic phases to higher-dimensional SPT in-
sulators. While the SPT insulators themselves are char-
acterized by quantized topological response terms, the
unquantized anomalies in metals arise due to unquan-
tized charges of gauged crystalline symmetries (such as
translations and rotations), which enter the correspond-
ing quantized response terms.

The nature of the emergent anomaly and the corre-
sponding Luttinger-like topological invariants is decided
by the codimension of the Fermi surface p = d − dFS ,
where d is the space dimension and dFS is the Fermi sur-
face dimension. For odd p, the emergent symmetry has
a generalized chiral anomaly — examples include ordi-
nary metals (p = 1) and magnetic Weyl semimetal in
3D (p = 3). The corresponding topological invariants
in the (generalized) Luttinger theorems are the charge
density (p = 1) and the Hall conductivity (p = 3) re-
spectively. For even p, the emergent symmetry has a
generalized parity anomaly. Examples with p = 2 in-
clude nodal (Dirac) semimetals in two dimensions (2D)
and nodal line semimetals in 3D. In both cases, we show
that the corresponding topological invariant in the gener-
alized Luttinger theorem is the electric polarization — we
explain the exact meaning of this statement, and along
the way we also clarify what is “anomalous” about the
surface states of these p = 2 semimetals. While most
of the above examples have been discussed in the litera-
ture1,11,12,15,19–21, our work provides a unified framework
to understand various different systems, and clarifies the
topological aspects of the nodal line semimetals.

The rest of the paper is organized as follows. In Sec-
tion II we discuss odd-codimension Fermi surfaces, in-
cluding ordinary metals and magnetic Weyl semimetals.
In Section III we discuss even-codimension Fermi sur-
faces, including graphene-like systems in 2D and nodal
line semimetals in 3D. In particular, we provide a de-
tailed discussion of the nodal line semimetals and clarify
some important issues such as the anomaly of the surface
states. We conclude in Section IV with a discussion of
our results.

II. ODD FERMI SURFACE CODIMENSION:
GENERALIZED CHIRAL ANOMALY

A. Ordinary metals: p = 1

1. One-dimensional metals

Let us start with the simplest system, a one-
dimensional (1D) spinless metal. In this case the low-
energy electronic structure, ignoring interactions for now,
consists of two Fermi points at k± = ±kF . Each Fermi
point hosts gapless chiral modes, left (L) and right (R)
handed, as depicted in Fig. 1. The equilibrium part of
the response of this 1D metal has the form

S = −i
∫
dτdx ρA0, (1)

where ρ is the equilibrium charge density, A0 is the
imaginary-time scalar potential and we use ~ = c = e = 1
units throughout. The charge density is related to the
Fermi sea volume as

ρ =
2kF
2π

=
ν

a
, (2)

where ν is the filling (number of electrons per unit cell),
introduced before, and a is the lattice constant.

To emphasize the topological character of Eq. (1), it is
useful to “gauge” the translation symmetry11,22–25. Such
gauging may be viewed as a way to get rid of the depen-
dence on a nonuniversal parameter a, which enters the
expression for the density, focusing instead on the uni-
versal number ν. What this means formally is that we
imagine a strained crystal, in which a fixed reciprocal
lattice vector 2π/a is replaced by

2π

a
→ 2π

a
(δµx − ∂µux − xµ) . (3)

Here ux is the atomic displacement and xµ is an integer
translation gauge field, which accounts for the fact that
ux is only defined modulo the lattice constant a. The
translation gauge field has two components: spatial xx
and temporal xτ . Integral of x over the spatial cycle gives
the total number of unit cells in the 1D crystal∫

x

x = Lx, (4)

where the lattice constant a has been included in the
integration measure dx/a → dx. The integral over the
temporal cycle, on the other hand, defines the twist of
the periodic boundary conditions in the imaginary time
direction, i.e. the distance ∆Lx, by which the crystal
is shifted at τ = β = 1/T (T is the temperature) with
respect to τ = 0 ∫

τ

x = ∆Lx. (5)
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FIG. 1. (Color online) Band dispersion of 1D lattice fermions.
Left and right-handed Weyl branches are shown in black.

Discarding the “nontopological” pieces, Eq. (1) may then
be written as11,18

S = iν

∫
εµλxµAλ = iν

∫
x ∧A. (6)

Note that the nonuniversal lattice constant a disappears
from all observable quantities, obtained from Eq. (6),
given the translation gauge field definitions Eqs. (4) and
(5). Henceforth, we set the lattice constant to unity.

Now we note that Eq. (6) may alternatively be ob-
tained from the low-energy theory only, by invoking its
emergent ’t Hooft anomaly. Indeed, at low energies
and assuming perfect translational symmetry (i.e. ignor-
ing impurity scattering), the numbers of L and R elec-
trons are separately conserved,? which corresponds to an
emergent symmetry group U(1)L×U(1)R. This symme-
try, however, is anomalous, in the sense that it may not
be realized as a true microscopic symmetry on a 1D lat-
tice. In our context this simply means that the L and R
quantum numbers are only defined at the corresponding
Fermi points and not globally in the full 1D Brillouin zone
(BZ), as obvious from Fig. 1. A 1D system with such an
internal symmetry may only appear on the boundary of
a 2D topological crystalline insulator, whose topological
response theory is given by

S =
i

4π

∫
(AR ∧ dAR −AL ∧ dAL). (7)

Each of the two terms in Eq. (7) is a Chern-Simons term
with a unit coefficient, giving rise to a pair of chiral modes
of opposite chirality on the boundary — this is just the
familiar chiral anomaly in (1 + 1) dimensions.

If we restrict the emergent U(1)L × U(1)R symmetry
to the physical U(1) × Z symmetry (Z being the lattice
translation symmetry), we have AR = A+kFx and AL =
A − kFx (recall that momentum is the “charge” under

translation). The chiral anomaly becomes

S =
i

4π

∫
(A+ kFx) ∧ d(A+ kFx)

− i

4π

∫
(A− kFx) ∧ d(A− kFx) = iν

∫
x ∧ dA,(8)

which leads to precisely Eq. (6) on the 1D boundary, as-
suming the translation gauge field is flat, i.e. dx = 0.
The reason Eq. (6) actually exists in a stand-alone 1D
system is that the true symmetry of the 1D metal is not
U(1)× U(1), but U(1)× Z, where Z corresponds to dis-
crete translations. This is reflected in the fact that x in
Eq. (6) is not a U(1) gauge field, but a discrete transla-
tion gauge field. Moreover, the translational symmetry
is not an internal symmetry.

These considerations reveal the connection between
the Luttinger theorem in a 1D metal and the ’t Hooft
anomaly of the emergent U(1)L×U(1)R symmetry of its
low-energy theory. In what follows, we generalize these
arguments to ordinary metals in higher dimensions, as
well as to topological semimetals.

2. Two-dimensional metals

Let us now generalize the above ideas to higher-
dimensional metals. For simplicity we consider the 2D
case only, since it contains all of the essential new fea-
tures that distinguish higher-dimensional metals from the
1D case. In 2D the Fermi surface is a continuous 1D
manifold. Generalizing the emergent chiral charge con-
servation to this case, one assumes independent charge
conservation at every point on the Fermi surface, which
is in fact the standard assumption of the Fermi liquid
theory. This implies that the emergent symmetry group
is LU(1), the so-called loop group of U(1)12. Assuming
a single Fermi surface sheet for simplicity, the 1D Fermi
surface acts, in effect, as an extra dimension. Let us de-
note the coordinate, which parametrizes the Fermi sur-
face as θ ∈ [0, 2π], and let kx,y(θ) be the corresponding
components of the Fermi momentum. The total “space-
time” dimension of this system, which includes the extra
θ-dimension, is 2 + 1 + 1 = 4. The 2D Fermi surface may
thus be connected to the ’t Hooft anomaly of a (4 + 1)-
dimensional topological insulator, described by the fol-
lowing Chern-Simons topological field theory12,26

S =
i

6(2π)2

∫
A ∧ dA ∧ dA, (9)

where A is the probe gauge field living in both real and
(Fermi surface) momentum space. Accordingly, the ex-
terior derivative operation d above contains derivatives
with respect to the spacetime coordinates (including the
extra space dimension), as well as the Fermi surface co-
ordinate θ.

Following previous logic, we now restrict to the phys-
ical U(1) × Z2 symmetry (charge conservation and two
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lattice translations), and set A = A + kxx + kyy. The
LU(1) anomaly becomes

S =
i

6(2π)2

∫
(A+ kxx+ kyy)

∧ d(A+ kxx+ kyy) ∧ d(A+ kxx+ kyy), (10)

where x, y are gauge fields, corresponding to the trans-
lational symmetry in the x and y-directions respectively.
The nonvanishing part of this, which gives rise to the the-
ory of a 2D Fermi liquid, is the following mixed anomaly
term

S =
i

2(2π)2

∫
(kxx+ kyy) ∧ d(kxx+ kyy) ∧ dA. (11)

Assuming dx = dy = 0, as before, this corresponds to
the following boundary theory

S =
i

2(2π)2

∫
(kx∂θky − ky∂θkx)x ∧ y ∧A. (12)

Taking into account that

1

2

∫ 2π

0

dθ(kx∂θky − ky∂θkx) = VF , (13)

where VF is the 2D Fermi sea volume, we obtain the
following 2 + 1-dimensional topological field theory

S =
iVF

(2π)2

∫
x ∧ y ∧A = iν

∫
x ∧ y ∧A, (14)

which, similar to Eq. (6), declares that the charge per
unit cell is given by ν = VF /(2π)2. This is precisely the
field theory expression of the Luttinger theorem in a 2D
Fermi liquid11.

B. Magnetic Weyl semimetal: p = 3

Now we demonstrate that identical arguments may be
used to describe 3D topological semimetals. Topologi-
cal semimetals exist at integer fillings, which would nor-
mally correspond to insulators. This means that the fill-
ing anomaly, which corresponds to the Luttinger theorem
in Fermi liquids, does not exist in this case. However,
just as ordinary metals may be viewed as intermediate
phases between insulators, corresponding to different in-
teger values of the filling ν, topological semimetals may
be viewed as intermediate gapless phases between pairs
of topologically-distinct insulators at the same fixed in-
teger filling. Correspondingly, in each case there exists
a continuously-variable parameter, which tunes between
the two insulators and acts as the coefficient of the cor-
responding anomaly term, analogously to the filling ν in
Fermi liquids. While many different kinds of topological
semimetals exist, here we focus on the magnetic Weyl
semimetal. In Sec. III A we discuss nodal line semimet-
als in detail. For an in-depth discussion of other types

of topological semimetals from a similar viewpoint, see
Ref.18.

A magnetic Weyl semimetal has an odd number of
pairs of opposite-chirality Weyl nodes at the Fermi en-
ergy. We consider the simplest case when this number is
one and assume the nodes are separated along the z-axis.
Let the node coordinates be k±z = ±Qẑ. The separation
between the nodes 2Q is a continuously-tunable parame-
ter. 2Q = 0 corresponds to an ordinary magnetic insula-
tor with zero Hall conductivity, while 2Q = 2π (i.e. a re-
ciprocal lattice vector) corresponds to a quantum anoma-
lous Hall insulator with a Hall conductivity

σxy =
1

2π

2Q

2π
=

1

2π
, (15)

which is equivalent to a Hall conductance quantum 1/2π
per xy atomic plane, i.e. this is a weak topological insu-
lator that may be viewed as a stack of 2D integer quan-
tum Hall insulators. Intermediate values of 2Q ∈ (0, 2π)
correspond to the Weyl semimetal. In this case the Hall
conductance per atomic plane σxy = 2Q/4π2 takes a non-
integer value, which is impossible in an insulator, unless
it has topological order. This is the analog of a fractional
filling in a Fermi liquid metal.

The corresponding emergent anomaly is the familiar
chiral anomaly of the emergent U(1)L×U(1)R symmetry
corresponding the the charge conservation at each Weyl
node. If the U(1)L×U(1)R symmetry is exact, the system
can only be realized on the boundary of a 4D topological
insulator, described by the following (4 + 1)-dimensional
Chern-Simons theory

S =
i

6(2π)2

∫
(AR∧dAR∧dAR−AL∧dAL∧dAL). (16)

We now restrict to the physical U(1) and z-translation
symmetry, and make the substitution AR = A + Qz,
AL = A−Qz. The anomaly becomes

S =
i

6(2π)2

∫
(A+Qz) ∧ d(A+Qz) ∧ d(A+Qz)

− i

6(2π)2

∫
(A−Qz) ∧ d(A−Qz) ∧ d(A−Qz)

=
iQ

4π2

∫
z ∧ dA ∧ dA. (17)

This gives a (3 + 1)-dimensional boundary theory

S =
iQ

4π2

∫
z ∧A ∧ dA, (18)

which describes the topological response of the magnetic
Weyl semimetal. Indeed, Eq. (18) encodes precisely the
Hall conductance of

Gxy =
2Q

4π2
Lz. (19)

There exists a close connection between the magnetic
Weyl semimetal and the 1D metal, discussed in Sec-
tion II B. This may be seen by inserting a magnetic flux
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line carrying a unit flux quantum Φ = 2π in the xy-plane.
According to Eq. (18), this flux line is described by the
action

S =
i2Q

2π

∫
z ∧A. (20)

Comparing this with Eq. (6), we see that the 2π flux line
carries a 1D metal, with the effective filling ν = 2Q/2π.
This is just another way to arrive at the familiar result
that a Weyl semimetal in an external magnetic field has
the lowest Landau level that crosses the Fermi energy at
the location of the Weyl nodes.

We note that we can derive the emergent anomaly
of a magnetic Weyl semimetal from that of a three-
dimensional metal. The latter is described by a 7-
dimensional [(3 + 1) from real spacetime, 2 from Fermi
surface momentum, and 1 extra “bulk” dimension]
Chern-Simons term

S =
i

6(2π)3

∫
A ∧ dA ∧ dA ∧ dA. (21)

A Weyl fermion can be recovered in the limit of a small
spherical Fermi surface, with a total Berry curvature∫
FS

dA = 2π on the Fermi surface. This reduces Eq. (21)
to a 5-dimensional Chern-Simons term, which is exactly
the anomaly of a Weyl fermion Eq. (16). This procedure
can be straightforwardly generalized to higher dimen-
sions, from which we can obtain the emergent anomaly of
a general odd-codimension Fermi surface, as we discuss
next.

C. General dimensions

Using the (momentum space) dimensional reduction
scheme described above, the pattern becomes apparent
for general space dimension d and Fermi surface dimen-
sion d − p, with p odd. The emergent symmetry cor-
responds to charge conservation at each point on the
d − p-dimensional Fermi surface. The probe gauge field
A then lives in both real space-time, as well as the
d− p-dimensional momentum space. The corresponding
’t Hooft anomaly can be described by a Chern-Simons
term in (d+ 1) + (d−p) + 1 = 2d−p+ 2 dimension (note
the importance of p being odd):

S =
i

Nd,p

∫
A(dA)d−(p−1)/2, (22)

where all the products in the integrand are wedge prod-
ucts, and the normalization factor

Nd,p = (d− (p− 3)/2)!(2π)d−(p−1)/2. (23)

If we restrict to the physical U(1) and translation sym-
metries (with gauge fields represented by A and x1, x2...),

the anomaly term becomes a response term in the phys-
ical d+ 1 space-time dimensions

S =
iV Fi1...id+1−p

(p+1
2 )!(2π)d−(p+1)/2

∫
A(dA)(p−1)/2xi1xi2 ...xid+1−p

,

(24)
where V Fi1...id+1−p

is the Fermi surface volume, projected

to the i1...id+1−p subspace. Physically this represents a
nontrivial Chern-Simons type of response per unit length
scale.

III. EVEN FERMI SURFACE CODIMENSION:
GENERALIZED PARITY ANOMALY

A. Nodal line semimetal: p = 2

1. Topological response

We now discuss the case of nodal line semimetals.
Since this has not received as much attention in the lit-
erature as point node semimetals, we discuss this case in
more detail. Nodal line semimetals with nontrivial topol-
ogy arise only when bands are nondegenerate16,19. This
requires breaking of either time reversal or inversion sym-
metry and nonvanishing spin-orbit coupling. The gap-
lessness of the nodal line is then protected by mirror re-
flection symmetry in the plane, containing the nodal line.
Given this, we adopt a simple two-band model, with the
following cubic-lattice Hamiltonian27,28

H(k) = [6− t1 − 2(cos kx + cos ky + cos kz)]σx

+ 2t2 sin kzσy + t3(2− cos kx − cos ky). (25)

The nodal line in this model appears in the xy-plane and
is protected by the mirror reflection symmetry within this
plane, where the mirror reflection operator is σx. It is im-
plicit that the time reversal symmetry is broken, since the
bands are nondegenerate. Exactly this sort of Hamilto-
nian describes the low-energy electronic structure in, for
example, the magnetic multilayer model of Ref.16.

In the absence of the last term in Eq. (25), proportional
to the unit matrix, the Hamiltonian has an exact particle-
hole symmetry, which requires all points on the nodal
line to be at the same energy. However, once the last
term is included, this is no longer the case and the elec-
tronic structure consists of electron and hole pockets of
zero total Luttinger volume. We first derive the topolog-
ical response of the nodal line assuming the particle-hole
symmetry and then argue that relaxing this assumption
does not change the response.

Following our logic in the previous examples, we con-
sider an emergent symmetry LU(1), that corresponds to
charge conservation at each point on the nodal line. This
is justified by the fact that all weak short-range inter-
actions, including attractive, are irrelevant in this case
due to the vanishing density of states. The correspond-
ing probe gauge field A lives in (3 + 1)-dimensional real
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space-time as well as 1-dimensional momentum space. If
there is an emergent anomaly, associated with this sym-
metry, it is a topological term in one higher dimension.
The most obvious such term in (3 + 1) + 1 + 1 = 6 di-
mensions is the θ-term with θ = π:

S = ± iπ

6(2π)3

∫
dA ∧ dA ∧ dA, (26)

where the arbitrariness of the sign reflects the 2π period-
icity of the coefficient. The quantization of the θ angle
comes from the mirror reflection symmetry, which inverts
only one coordinate (the real space z) and sends θ → −θ.
This is consistent with the fact that the nodal ring can
be trivially gapped if the reflection symmetry is broken.

The above generalized parity anomaly can in fact be
derived from the generalized chiral anomaly of ordinary
metals, using a dimensional-reduction scheme similar to
that in Sec. II B. To see this, consider a slightly electron-
doped nodal line, such that the Fermi energy εF > 0
(still assuming particle-hole symmetry as in the undoped
state). In this case we have a toric Fermi surface, which
encloses the nodal line along its length. As discussed
originally in Ref.12 and reviewed in Sec. II A 2, the Fermi
surface carries an emergent anomaly, encoded by the (6+
1)-dimensional Chern-Simons term

S =
i

6(2π)3

∫
A ∧ dA ∧ dA ∧ dA. (27)

A characteristic feature of the nodal line is the π Berry
phase, accumulated along a path in momentum space,
enclosing the nodal line16. Let the toric Fermi surface
be parametrized by two angular variables θ, φ ∈ [0, 2π],
where θ refers to the azimuthal direction, which traverses
the Fermi surface without enclosing the nodal line, while
φ is the polar direction, which wraps around the nodal
line. Then we have ∫ 2π

0

dφAφ = ±π. (28)

Plugging this into Eq. (27) and taking the limit εF → 0,
we again arrive at Eq. (26).

Following the same logic as in the previous cases, we
can now restrict to the microscopic symmetries [U(1),
lattice translations and the mirror reflection z → −z].
Introducing a parameter θ ∈ [0, 2π], such that kx,y(θ)
are the coordinates of the points on the nodal line, we
have A = A+ kxx+ kyy. The 6-dimensional θ-term now
becomes

S = ± iπ

6(2π)3

∫
d(A+ kxx+ kyy) ∧ d(A+ kxx+ kyy)

∧ d(A+ kxx+ kyy). (29)

This gives rise to a mixed anomaly term, which is similar
to Eq. (11), except in one extra dimension

S = ± iπ

2(2π)3

∫
d(kxx+ kyy)∧ d(kxx+ kyy)∧ dA, (30)

corresponding to a boundary theory

S = ± iπ

2(2π)3

∫
(kx∂θky − ky∂θkx)x ∧ y ∧ dA

= ± iVF
8π2

∫
x ∧ y ∧ dA, (31)

where VF is the area in momentum space, enclosed by
the nodal line.

The physical meaning of Eq. (31) is that it describes
spontaneous (i.e. existing in the absence of an external
electric field) electric polarization11,19, given by

P = ± VF
8π2

. (32)

The two signs in front reflect the fact that, in the presence
of the mirror symmetry, there must exist two degenerate
values of polarization, related to each other by the mirror
reflection (unless P = 0). If the nodal line is expanded
to the edges of the BZ, in which case a gap opens, we
have VF = (2π)2 and P = ±1/2. This half-quantized po-
larization is the only nontrivial value of polarization that
an inversion (or mirror) symmetric insulator can have. A
nontrivial “fractional” value of polarization in Eq. (32)
means that the polarization is not uniquely defined, as
manifested by the arbitrary sign in Eq. (32), which in
turn requires a gapless spectrum, i.e. the nodal line.

The precise meaning of polarization Eq. (32) for a gap-
less system requires a more careful explanation. Unlike
the Chern-Simons type of responses (such as the Hall
conductivity or the charge density), which can be eas-
ily defined even for gapless systems, the θ-term type of
responses are sometimes ill-defined in this case. One well-
known example is the 1D metal, which does not have a
well-defined polarization (this is a direct consequence of
the (1 + 1)d chiral anomaly). Similarly, the magneto-
electric polarizability (the dAdA θ-angle) of a 3D Dirac
semimetal is not defined. So what exactly do we mean
by Eq. (32) for the nodal line semimetal? One possible
answer is that if we weakly break the mirror reflection
symmetry and completely gap out the nodal line, the re-
sulting insulator has a spontaneous polarization given by
Eq. (32), with the overall sign determined by the sign of
the mirror symmetry breaking. However, one may still
ask if we can associate the polarization directly to some
observable in the semimetal phase, instead of having to
rely on neighboring phases to define it (such as mirror-
breaking insulators).

The definition of polarization through the Luttinger
theorem violation on the boundary11 turns out to be use-
ful here. If the surface state is a 2D Fermi liquid at low
energy, the bulk polarization is given by

P = ρ− VF
(2π)2

mod 1, (33)

where P is the polarization density, perpendicular to the
surface, ρ is the surface charge density (per unit cell) and
VF is the Luttinger volume of the surface Fermi liquid.
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FIG. 2. Electronic structure of a finite size nodal line system,
described by Eq. (25) with t1 = 0.75, t2 = 1, t3 = 0. The
perfectly flat surface state acquires a dispersion if t3 6= 0.

One can think of the first term as the classical contribu-
tion (which interprets polarization as a dipole moment)
and the second term as the quantum correction.?

The band structure for an xy-surface of the nodal line
semimetal is schematically illustrated in Fig. 2. The most
important feature is a branch of fermion modes that exist
only inside the region, enclosed by the projection of the
nodal line onto the surface BZ. Other features, such as
the flatness of these modes, are less robust and do not
play a role in the following discussion. Now let us put
the surface chemical potential somewhere and calculate
the polarization from Eq. (33). The answer, however,
depends on the surface chemical potential. We denote
the polarization, calculated when the chemical potential
is above (below) zero, which is taken as the energy of the
nodal line, as P+ (P−). We find

P+ − P− =
VF
4π2

. (34)

This means that the bulk state cannot have a uniquely
defined polarization (unless VF = 4π2, which is trivial),
and therefore cannot be a short-range entangled insula-
tor. Since the reflection symmetry inverts polarization,
we must have

P+ = −P− =
VF
8π2

, (35)

which is exactly Eq. (32).
The above discussion also clarifies the anomalous na-

ture of the surface states of the nodal line semimetal:
while a surface Fermi liquid per se appears to be quite
non-anomalous (just like any other 2D metal), the Lut-
tinger theorem is violated. Such Luttinger theorem vio-
lation also happens on the surface of a ferroelectric in-
sulator [Eq. (33)], but the violation on the surface of a
nodal line semimetal is stronger in the sense that it can-

+ - + + + +- - - -

t2

−t2
a a

FIG. 3. (Color online) Stacked domain wall construction.
Each domain wall, separating regions with different sign of
the mirror symmetry breaking “mass” m, hosts a spinless
particle or hole-like Fermi liquid state. The ± signs are the
corresponding eigenvalues of σx.

not be removed by redefining the surface charge density
by a constant shift P .

We now consider breaking the particle-hole symmetry,
so that the energy is no longer constant on the nodal
line. We ask how the above discussion of polarization
could change. Again, consider moving the surface chem-
ical potential gradually from well below the nodal line to
well above. The difference now is that there are inter-
mediate regions, where the chemical potential is above
only parts of the nodal line. The resulting Fermi liquid
has open Fermi surfaces (arcs) and VF cannot be defined.
As a result, the polarization P cannot be defined in the
intermediate region. However, when P is well defined
(when the chemical potential is far away from the nodal
ring), it still takes the values P± = ±VF /8π2.

2. Alternative perspective: Coupled-layer derivation of the
topological response

We can also derive the nodal line topological re-
sponse Eq. (31) by an entirely different, more microscopic
method. This method allows us to demonstrate more ex-
plicitly that particle-hole symmetry is not essential and
the response is unchanged when it is broken. We start
with the nodal line Hamiltonian Eq. (25) (but still as-
suming particle-hole symmetry for now) and add a mirror
symmetry breaking “mass term”

H(k) = [6− t1 − 2(cos kx + cos ky + cos kz)]σx

+ 2t2 sin kzσy +mσz. (36)

Let us now consider a domain wall, at which the mass m
changes sign from negative to positive as a function of z.
As in other, more familiar cases, topologically nontriv-
ial nature of the gapless nodal line state manifests in a
gapless bound state on such a domain wall. To find this
state, we replace kz → −i∂/∂z, keeping only up to linear
order terms in kz. Inclusion of the higher order terms
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does not affect the gaplessness of the bound state29. We
thus consider the following real-space Hamiltonian

H(kx, ky, z) = (4− t1 − 2 cos kx − 2 cos ky)σx

− 2it2σy
∂

∂z
+m(z)σz, (37)

where m(z → −∞) < 0, m(z → ∞) > 0. A straightfor-
ward and standard calculation gives the wavefunction of
the bound state as

Ψ−(z) = e−
1

2t2

∫ z
0
dz′m(z′)|σx = −1〉, (38)

and the corresponding energy eigenvalue

ε−(kx, ky) = −(4− t1 − 2 cos kx − 2 cos ky). (39)

A domain wall of opposite topological charge, where m
changes sign from positive to negative, binds a state with

Ψ+(z) = e−
1

2t2

∫ z
0
dz′m(z′)|σx = 1〉, (40)

and

ε+(kx, ky) = 4− t1 − 2 cos kx − 2 cos ky. (41)

These bound states correspond to spinless 2D electron
or hole-like Fermi liquids. Their topological responses
are thus given by Eq. (14), where the coefficient is the
corresponding Luttinger volume, including opposite signs
in the electron and hole cases. Note that these domain
wall states by themselves are not anomalous, in the sense
that a purely 2D lattice realization clearly exists.

Now we note that the gapless nodal line state may
be reconstructed by stacking alternating domain walls
with opposite topological charges, while preserving mir-
ror symmetry, as shown in Fig. 3. To preserve the mirror
symmetry, the inter-domain wall tunneling Hamiltonian
must have the form

Ht(kz) = 2t2σy sin kz, (42)

i.e. exactly the form of the second term in Eq. (36), which
corresponds to inter-unit cell tunneling with a direction-
dependent sign of the tunneling matrix element.

To obtain the topological response of the nodal line
we need to sum the contributions from the domain wall
bound states

S = ±i VF
(2π)2

∫ ∑
n

(−1)nA0(zn), (43)

where VF is the magnitude of the Luttinger volume of
each 2D domain-wall-bound Fermi liquid, zn is the co-
ordinate of the nth domain wall and the arbitrariness of
the overall sign reflects the arbitrariness of assigning the
starting point of the summation. Taking the continuum
limit and switching to the translation gauge field nota-
tion, following the logic of Section II A 1, we arrive at the
topological response theory of Eq. (31).

Now let us add the particle-hole symmetry breaking
term t3(2− cos kx− cos ky)− εF to the nodal line Hamil-
tonian. A finite Fermi energy εF is necessary to keep
charge neutrality once the particle-hole symmetry is bro-
ken. It is clear that the domain wall bound states remain
the same, except for a shift in their energies

ε±(kx, ky) = t3(2− cos kx − cos ky)− εF
± (4− t1 − 2 cos kx − 2 cos ky), (44)

i.e. the Luttinger volumes of the electron and hole-like
domain wall states get changed by equal and opposite
amounts, so that overall charge neutrality is preserved.
It follows that the topological response term Eq. (43)
remains unchanged.

3. Gapped topological orders

The above picture of the nodal line as a stack of 2D
Fermi liquid domain wall states offers a useful prospective
on the question of gapping the nodal line while preserv-
ing its anomalous response Eq. (31). Following the “vor-
tex condensation” approach, originally applied to surface
states of 3D topological insulators30,31 and later general-
ized to 3D topological semimetals in Refs.21,32,33 (also see
Ref.34 for related work), we may start with a gapped su-
perconducting nodal line state and then attempt to con-
struct an insulator with the same topological response
by condensing vortices in the superconductor. A sim-
ple mean-field picture of this state may be obtained by
applying this procedure to each 2D domain wall state in-
dependently. Since each domain wall hosts a spinless 2D
Fermi liquid, the simplest fully gapped superconducting
state is p-wave, described by the following Hamiltonian

H =
∑
k

[
ε±(k)c†kck +

∆

2
(sin kx + i sin ky)c†kc

†
−k + h.c.

]
,

(45)
where ε±(k) are given by Eqs. (39), (41) (we ignore the
particle-hole symmetry breaking here for simplicity) and
k is the 2D crystal momentum. Introducing Nambu

spinor notation ψk = (ck, c
†
−k), this may be represented

as a massive 2D Dirac Hamiltonian

H =
1

2

∑
k

ψ†k [ε±(k)τz + ∆(τx sin kx − τy sin ky)]ψk,

(46)
where τa are Pauli matrices in the particle-hole space.
This representation makes it clear that the superconduct-
ing domain wall state is a Read-Green topological super-
conductor35, which hosts chiral Majorana modes at the
edges, with chirality determined by the type (electron or
hole-like) of the domain wall state. Consequently, an ele-
mentary flux hc/2e = π vortex hosts a zero-energy local-
ized Majorana bound state and can not be condensed. A
double, or flux 2π, vortex does not host any zero-energy
states, but may still not be condensed without break-
ing symmetries. This is a consequence of the fact that
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such vortices experience the nontrivial band filling ±ν of
the 2D domain wall Fermi liquid (the signs distinguish
between the electron and hole-like states) as magnetic
flux, leading to a projective representation of the group
of translations every time a vortex line intersects with a
layer36.

TxTy = e±2πiνTyTx. (47)

This effect is most obvious when the system has a bound-
ary, in which case the sign in Eq. (47) depends on exactly
how the system is terminated. This, in turn, means
that 2π flux vortices carry nontrivial momentum and
their condensation leads to breaking of the crystal trans-
lational symmetry. When the filling ν is rational, i.e.
ν = p/q with p and q mutually prime integers, flux 2πq
vortices may be condensed without breaking any sym-
metries. This leads to an insulator with Zq topolog-
ical order, which reproduces the response of the gap-
less nodal line state. This Zq topological order con-
tains both particle-like and loop-like excitations. The
loop excitations are the remnants of the uncondensed
vortices, with the property that each time the loop in-
tersects with a layer, the translation symmetry action
changes by Eq. (47). Similar “foliated” structures for
the loop excitations have been discussed by some of us
in the closely related context of a gapped magnetic Weyl
semimetal in Refs.21,32,33. We defer a detailed analysis of
the foliated 3D topological field theory for gapped nodal
line semimetals to future work.

B. General dimensions

We can now easily generalize to arbitrary space dimen-
sion d with an even codimension p for the Fermi surface.
The generalized parity anomaly lives in (d+1)+(d−p)+
1 = 2d − p + 2 dimensions and is described by a θ-term
at θ = π:

S =
iπ

Nd,p

∫
(dA)d+1−p/2, (48)

where all the products in the integrand are wedge prod-
uct, and the normalization factor

Nd,p = (d+ 1− p/2)!(2π)d+1−p/2. (49)

Unlike the cases with odd p, the parity anomaly re-
quires extra discrete symmetries, such as reflection, to
quantize the θ-angle at π.

When restricted to the microscopic U(1) and transla-
tion symmetries, Eq. (48) becomes

S =
iV Fi1...id+1−p

(p2 )!(2π)d−p/2

∫
(dA)p/2xi1xi2 ...xid+1−p

, (50)

where V Fi1...id+1−p
is the Fermi surface volume projected

to the i1...id+1−p subspace. Physically this represents a
nontrivial θ-term type of response per unit length scale.

Another familiar case is when d = p = 2, which is
nothing but graphene-like Dirac semimetals in 2D, with
the emergent anomaly being the standard parity anomaly
for each Dirac cone. For example, consider a spinless
system with two Dirac cones, separated by momentum
Qx̂, protected by reflection symmetry y → −y. It is
straightforward to repeat the analysis for the nodal line
semimetal and conclude that the polarization in the ŷ
direction is Py = ±Q/2. In fact the situation is even
simpler than the nodal line case, since polarization can
be defined directly in the bulk without having to go to
the boundary, as discussed in Ref.11.

IV. DISCUSSION AND CONCLUSIONS

The main goal of this paper was to introduce a com-
mon framework, which may be used to describe topo-
logical properties of both ordinary metals and topo-
logical semimetals. We have demonstrated that both
may be described in terms of unquantized (i.e. hav-
ing continuously-variable coefficients) anomalies, which
in turn may be connected to quantized topological re-
sponse terms of higher-dimensional SPT insulators, asso-
ciated with the emergent symmetries of the (semi)metal.
The unquantized coefficients arise from tunable charges
of crystal symmetry gauge fields (e.g. crystal momentum
in the case of translational symmetry).

Such a common framework is useful, in part, because it
emphasizes similarities between ordinary and topological
metals. In both cases the necessary existence of gapless
modes may be connected to topology, a viewpoint advo-
cated early on by Volovik2,3. It also compactly encodes
the physical properties of metals, which are directly con-
nected to topology. This may be viewed as a way to
generalize Luttinger’s theorem to (almost) all bulk met-
als.

One concrete result along these lines is an improved un-
derstanding of nodal line semimetals in three dimensions.
In particular, we have shown that the area, enclosed by
the nodal line, determines the electric polarization of the
semimetal. By carefully defining the concept of polar-
ization for such semimetals, we have also clarified the
anomalous nature of the “drumhead” surface states of
nodal line semimetals.

One specific type of a metal this scheme omits is the
so-called type-II Dirac semimetal37–40. The electronic
structure of these materials contains Dirac points at time
reversal invariant momenta (TRIM) at the edge of the
BZ, terminating an axis of nonsymmorphic rotation37,38.
A type-II Dirac semimetal fails to be an insulator due to
the nonsymmorphic nature of its point group. The only
continuously-tunable property this system has is the fill-
ing, since the Dirac points are pinned to TRIM. However,
the standard filling anomaly of a metal of course vanishes
in this case, since the filling is an integer. It is clear that,
since a nonsymmorphic nature of the space group plays
a crucial role, the corresponding anomaly term must in-
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volve the corresponding nonsymmorphic symmetry gauge
field. We leave an in-depth exploration of this to future
work, noting that some closely related ideas have been
discussed in Refs.41–43.
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