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We employ variational autoencoders to extract physical insight from a dataset of one-particle
Anderson impurity model spectral functions. Autoencoders are trained to find a low-dimensional,
latent space representation that faithfully characterizes each element of the training set, as mea-
sured by a reconstruction error. Variational autoencoders, a probabilistic generalization of standard
autoencoders, further condition the learned latent space to promote highly interpretable features.
In our study, we find that the learned latent variables strongly correlate with well known, but
nontrivial, parameters that characterize emergent behaviors in the Anderson impurity model. In
particular, one latent variable correlates with particle-hole asymmetry, while another is in near one-
to-one correspondence with the Kondo temperature, a dynamically generated low-energy scale in
the impurity model. Using symbolic regression, we model this variable as a function of the known
bare physical input parameters and “rediscover” the non-perturbative formula for the Kondo tem-
perature. The machine learning pipeline we develop suggests a general purpose approach which
opens opportunities to discover new domain knowledge in other physical systems.

I. INTRODUCTION

Experimental spectra such as those obtained by x-
ray absorption, resonant inelastic x-ray scattering, op-
tics, and angle resolved photoemission provide detailed
information about the system response for strongly corre-
lated materials [1–3]. Spectroscopy techniques typically
involve the absorption and emission of energy that induce
transitions between states of the material. These pro-
cesses are generally expensive/time-consuming to mea-
sure or simulate, and are also difficult to interpret, as
they involve complicated many-body interactions.

A particularly important quantity of interest is the
one-particle Green’s function, G(ω), which character-
izes the many-body system’s response to the injection
or removal of an electron [4]. The spectral function,
A(ω) = − 1

π ImG(ω), completely encodes G(ω) through
Kramers-Kronig relations and is generally experimen-
tally measurable. Its peaks and line shapes encode non-
trivial many-body features such as renormalized energy
scales, the many-body eigenspectrum, and quasiparticle
lifetimes. However, interpretation of spectral data is of-
ten a significant and system-dependent challenge requir-
ing the combination of experimental spectroscopy, edu-
cated guesses, and informed theoretical analysis. In this
paper, we develop a data-driven representation learning
workflow for generating physical insight in the form of
analytic expressions from a collection of physical data,
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and demonstrate its power in this context of spectral in-
terpretation.

The goal of representation learning techniques is to au-
tomatically extract a low-dimensional set of features that
describe the trends and variations of a collection of high-
dimensional raw data [5]. Unlike supervised learning,
each datapoint remains unlabeled, and the goal is to learn
the underlying structure of a dataset as opposed to a 1-
to-1 mapping. While there exist many viable techniques
for representation learning, we focus here on the recently
prominent approach of training autoencoders [6]. These
are feed-forward neural networks trained to approximate
the identity function f(x) ≈ x, where the network has a
restricted functional form that involves a low-dimensional
“bottleneck” (latent space). The intention is that the la-
tent space should distill the information most necessary
for accurate reconstruction of the input. In this work,
we use a stochastic variant called the variational autoen-
coder (VAE) [7, 8] which has been empirically found to
improve interpretability of the latent space components
[9].

Autoencoder-based unsupervised learning has begun
to see wide use in the physical sciences in various ap-
plications such as generating realistic data following a
learned distribution [10, 11], collider event anomaly de-
tection [12, 13], phase identification [14, 15], and as a
tool in inverse optimization problems [16]. However, the
prospect of using this technique for the discovery of in-
terpretable physical features has been explored only very
recently [17–19]. In these works, VAEs were found to pro-
duce remarkably interpretable low-dimensional features
characterizing datasets [17, 19], even near-perfectly re-
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producing known physical parameters in controlled set-
tings [18]. But it is not clear how to best train these
models or connect them to unknown physics without sig-
nificant prior knowledge. We here explore these ques-
tions and demonstrate a complete pipeline to train inter-
pretable VAEs, and additionally propose a novel appli-
cation of symbolic regression [20, 21] to discover analytic
expressions describing the captured features in terms of
a set of known physical quantities.

The present study focuses on a dataset of spectral re-
sponse functions from the famous single impurity Ander-
son model (SIAM) [22]. The SIAM model describes a
single quantum impurity (or quantum dot) embedded in
a non-interacting bath of fermions. Despite this model’s
simplicity, it is a key tool in the examination of strongly
correlated low-energy phenomena such as Kondo screen-
ing and the Kondo resonance. We have selected this sys-
tem as it is well-understood and numerically inexpensive
to evaluate non-perturbatively. Thus the creation of a
large, varied dataset for machine learning (ML) purposes
is achievable. Moreover, the dynamically generated low-
energy regime of this model is well-known to be non-
analytically related to the bare parameters, presenting a
non-trivial set of features for the VAE to unravel.

The outline of the paper is as follows. We first in-
troduce the model and review VAEs in the context of
spectral function reconstruction. Then, we demonstrate
that training VAEs with varying regularization strengths
reveals a “critical” number of dimensions needed to char-
acterize a dataset. We find that each dimension of the
latent space corresponds to a key physical descriptor for
the set of SIAM spectral functions. The automatically
discovered descriptors include (a) the Kondo tempera-
ture [23], (b) a measure of particle-hole asymmetry, and
(c) the presence of competing energy scales. Finally, we
propose and demonstrate the use of symbolic regression
to extract analytic expressions for these emergent physi-
cal descriptors.

II. METHODOLOGY

A. Overview of physical system

We examine the spectral functions of the prototypical
SIAM with Hamiltonian

Ĥ = Ĥimp + Ĥbath + V̂ (1a)

where

Ĥimp =
∑
σ

εdσn̂σ + Un̂↑n̂↓, n̂σ = d†σdσ, (1b)

Ĥbath =
∑
σ

∫ D

−D
dε ε ĉ†εσ ĉεσ, (1c)

V̂ =
∑
σ

∫ D

−D
dε

√
Γ(ε)
π

(
d̂†σ ĉεσ + H.c.

)
. (1d)

The impurity (imp) constitutes a particle with spin
σ = ±1(≡↑↓) at energy level εdσ = εd−σ2B relative to
the Fermi surface in the presence of an external mag-
netic field of strength B. Double occupation is penalized
by the Coulomb repulsion energy U. The impurity cou-
ples to the bath via V̂ characterized by the hybridiza-
tion function Γ(ε) = πρεV

2
ε , where ρε is the density of

states and Vε represents the hopping elements between
the impurity and bath level at energy ε relative to the
Fermi energy, with the normalized bath levels obeying

{ĉεσ, ĉ†ε′σ′} = δ(ε − ε′) δσσ′ . The fermionic bath is de-

scribed by Ĥbath. In this work we examine the SIAM
spectral functions for constant hybridization functions
within the bandwidth, Γ(ε) = Γϑ(D − |ε|), i.e. the so-
called “box” distribution, where ϑ is the Heaviside step
function. Hence the model Hamiltonian (1) is particle-
hole symmetric for εd = −U/2. Unless otherwise noted,
all energies are in units of the half-bandwidth D = 1. We
also set ~ = kB = 1.

The spectral function Aσ(ω) = − 1
π ImGRσ (ω) repre-

sents the impurity’s local density of states, as derived
from the time-dependent retarded fermionic Green’s

function GRσ (t)=−iϑ(t)〈{d̂σ(t), d̂†σ}〉T after Fourier trans-
form from time t to frequency ω, with 〈·〉T denoting the
thermal average. At finite B, we pick an arbitrary but
fixed spin orientation σ throughout. The features of the
spectral data are well-known analytically: At B = 0, the
spectral data shows peaks around ω = εd and ω = εd+U
of width Γ (the so-called Hubbard side peaks) which
are trivially related to bare energies of the Hamiltonian,
as well as a peak pinned around ω = 0 which derives
from low-energy particle-hole excitations mediated by the
Kondo interaction. The width of the latter peak defines
the dynamically generated low-energy Kondo scale TK ,
where for the Kondo regime typically TK � Γ < U .
This peak gets suppressed by temperature T > TK , and
becomes strongly asymmetric in the spin-resolved case
when applying a magnetic field |B| > TK .

Each spectral function A(ω) is generated by the nu-
merical renormalization group (NRG) [24–27], and is con-
trolled by five independent physical parameters: U, Γ, εd,
B, and T (the temperature). Values for each of the pa-
rameters are chosen randomly according to the Anderson
set procedures presented in Ref. [28]. To normalize the
spectra to roughly comparable absolute scales, we utilize
our knowledge of the Friedel-sum rule to motivate a nor-
malization of the spectra to x ≡ πΓA(ωi) ∈ [0, 1]. As a
second element of human input, we choose to sample the
spectra on a fixed linear-logarithmic frequency grid ωi to
form the inputs to the VAE. This frequency sampling, as
detailed in Fig. A9 and Ref. [28], allows variations of the
dynamically-generated low-energy scale at exponentially
small ω to be clearly resolved.

We utilize the smallest physical energy (SPE) value,
E0 ≡ max (|B|, T, TK) to define two datasets with differ-
ent effective dimensionalities in their respective physical
parameter spaces. Here TK is the Kondo temperature
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FIG. 1. (a) The variational autoencoder architecture. Spectral functions x on a pointwise grid are fed into the encoder and
compressed into parameters µx,σx of an L-dimensional Gaussian distribution in latent space. Latent activations z are then
sampled from z ∼ N (µx, diag(σ2

x)) before being fed into the decoder, which reconstructs the input spectrum. The contribution
to the loss from a given x, Lx is shown in brief, with arrows noting which components of pipeline contribute. (b) A schematic
showing that increasing λ structures the data distribution in latent space such that the zi become statistically independent,
and aligns underlying generative factors (red/blue coloring) with the latent axes.

known analytically at B = T = 0 as [29, 30]

TK =
√

UΓ
2 exp

{
πεd(εd+U)

2UΓ

}
. (2)

The first dataset, referred to as the TK-dominated
dataset, is constrained to spectral functions within the
parameter space |B|, T < TK/20 [31], with a total of
about 28,000 spectral functions present in the train-
ing set. Spectra from this dataset are thus effectively
described by three parameters (U,Γ, εd). The second
dataset is unconstrained, such that the SPE is equally
controlled by |B|, T, or TK , resulting in a total of five pa-
rameters. We refer to this dataset as the full-parameter
dataset, with a total of about 60,000 spectral functions.
The random sampling of these two datasets from the data
pool of Ref. [28] is done independently, so that the first
dataset is not a subset of the second.

B. Overview of variational autoencoders

The core idea of all autoencoder-based architectures is
to learn an effective compression of a dataset by learn-
ing a parameterized form of the identity function with
an informational bottleneck. As shown in Fig. 1, VAEs
do this using two components: the encoder and the de-
coder. A standard fully-connected encoder compresses
the input through a series of affine transformations fol-

lowed by point-wise nonlinear functions. The output of
the mth layer a(m) is given by

a(m) = φ
(
W (m)a(m−1) + b(m)

)
, a(0) ≡ x, (3)

where φ is a nonlinear activation function acting element-
wise on its input. All encoder layers rely upon the
rectified linear unit activation function (ReLU (a) =
max(0, a)), except the final layer which uses the iden-
tity function. The encoder consists of Denc total hidden
layers.

The weight matrices W and bias vectors b are all free,
learned parameters which we collectively denote as θ.
In the encoding stage, the number of activations a(m)

steadily decreases, forcing the model to learn consec-
utively lower-dimensional representations of the input
data. We denote the final values output by the encoder
as l ≡ a(Denc) = [l1, l2, ..., l2L], with L an architectural
hyperparameter.

VAEs are distinguished from traditional autoencoders
in the sense that these final activations no longer rep-
resent a single compressed point encoding the input x.
Instead, these activations are used to parameterize a nor-
mal distribution with mean vector µ = [l1, l2, ..., lL] and
log-variances σ2 = [exp(lL+1), exp(lL+2), ..., exp(l2L)].
The L-dimensional space this distribution lives in is
called latent space, with each dimension being a latent
variable.

On any given forward pass, the encoder maps x 7→
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[µx, lnσ
2
x], then samples from the obtained multivariate

normal distribution P (z|x) = N (µx,diag(σ2
x)), where

diag constructs a diagonal matrix with σ2
x along the di-

agonal. The sampled L-component latent vector z is fi-
nally passed to the decoder which generates the recon-
struction z 7→ x̃. As is common practice, for simplicity
and speed we only sample a single z for each input x per
forward pass during training. Combined with the train-
ing procedure outlined in the next section, this sampling
process forces the VAE to acquire the notion of conti-
nuity and statistical independence in the learned latent
space. Thus, it is generally found that VAEs learn more
“meaningful”, statistically disentangled representations
than standard autoencoders [32].

The decoder is a deterministic fully-connected network
of Ddec hidden layers from the sampled latent variables
z back to the original input space, generally following a
reversed structure to the encoder as shown in Fig. 1. The
goal is for the decoded output to be a minimally-lossy re-
construction for the original input x. We denote the full
VAE action as fθ(x) ≈ x, which is a random variable due
to the sampling within latent space. As before, all layers
of the decoder except for the last use the ReLU activa-
tion function. For the last layer of the decoder we utilize
Softplus(x) = log(1 + exp(x)) as the activation function
to enforce positivity of x̃ in a smooth manner. In this
work, all networks studied have Denc = Ddec = 5, with
hidden layer sizes manually tuned to [240, 160, 80, 60, 2L]
(reversed for the decoder, except for 2L→ L). We found
L = 10 to be sufficiently large to saturate reconstruction
performance on both datasets (see App. A).

C. Loss functions and training

The parameters θ of the VAE are learned during
training so as to minimize the objective loss function,
L(θ;λ). This loss originates as a bound on the maximum
likelihood of the distribution defined by the VAE (see
Sec. A 2), and can be written in our case as:

L(θ;λ) = LRL(θ) + λLKLD(θ), (4)

where explicit dependence on the dataset has been sup-
pressed for brevity. The two contributions are defined as

LRL(θ) =
1

N

∑
x

Ez
[
|x− fθ(x)|2

]
, (5a)

LKLD(θ) =
1

N

∑
x

DKL

[
N (µx,diag(σ2

x))‖N (0, I)
]
,

(5b)

and are referred to as the reconstruction loss and the
Kullback-Leibler divergence (KLD), respectively, each
averaged across the dataset of size N .
LRL measures the expected squared error between the

input x and the reconstructed approximation fθ(x), with

the expectation over samples of z in latent space. Mean-
while, LKLD measures the average KLD DKL[•‖◦] be-
tween the distribution in latent space predicted by the
encoder, and a Gaussian distribution with zero mean and
unit variance [7]. For the case in Eq. (5b), this term is
known analytically as a function of µx and σx and can
be expressed as a sum over latent variables,

DKL =

L∑
i=1

1
2

(
µ2
x,i + σ2

x,i − 1− log σ2
x,i

)︸ ︷︷ ︸
≡D(i)

KL≥0

(6)

In the Bayesian sense, N (0, I) is to be interpreted as
a prior for the latent space distribution, and we penalize
the network for deviating from this prior [8]. In practice,
this regularizes the latent space learned by the model by
pushing it to only use as much of the latent space as nec-
essary to perform reconstruction well, as well as pushing
the latent variables to be statistically independent. The
relative strength of the KL divergence is tuned by the
regularization hyperparameter λ. The appropriate scale
of λ is set by the input and latent dimensionality as well
as the overall scale of the inputs, but in practice must be
tuned by hand (see App. A 2). During training, we find
it useful to anneal the regularization strength by start-
ing training with λ = 0 and slowly increasing it until
reaching the final (reported) value [33]. We perform this
optimization by standard minibatch training using the
ADAM optimizer [34] (see App. A 3).

III. RESULTS & DISCUSSION

A. Training results

To search for interpretable models that capture mean-
ingful aspects of the dataset, we first train a collection of
L = 10 VAEs at various final regularization strengths λ.
For each value of λ, we train three models [35] and mea-
sure the final reconstruction and KLD losses, averaged
across the dataset. Plotting these against each other in
Fig. 2(a) demonstrates the fundamental reconstruction-
regularization trade-off. Ideally, we want to minimize
both losses to obtain a model which captures the dataset
with a simply structured, low-dimensional latent space.

An interesting feature of this trade-off is a pronounced
corner region (highlighted in yellow) where LRL + LKLD

is minimal. Moving towards large λ only improves LKLD

modestly, but incurs a large sacrifice in reconstruction
performance. Since DKL measures the amount of in-
formation encoded into the latent space relative to the
unit Gaussian prior [8], we interpret the region marked
in yellow as where the “critical” amount of information is
present in the model. Beyond this point, the information
capacity of the model dips below what is necessary to
capture the trends contained in the dataset. In Sec. A 2,
we show that this critical region is clearly identifiable as
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FIG. 2. (a) Final LRL reconstruction and LKLD regulariza-
tion losses of L = 10 VAEs as the regularization strength λ in-
creases. The highlighted yellow region is a visual aid showing
the “critical region” of models with good LRL-LKLD tradeoffs.
The green circle marks the center of this critical region iden-
tifiable as an inflection point in log-log space (see App. A),
while the cyan circle marks models with stronger regulariza-
tion which are presented in this work. (b,c) Average KL loss

D(i)
KL contributed by each individual latent variable zi as λ in-

creases, for models trained on (b) the TK-dominated and (c)
the full-parameter datasets. Latent variables are ordered by

descending D(i)
KL loss. Values shown are from the models with

the fewest active zi across three training runs at each λ.

an inflection point in log-log space. This is understand-
able as a local optimum in (dLRL/dLKLD)/(LRL/LKLD),
which is a scale-invariant measurement of the tradeoff
magnitude.

We can gain further insight into these models by ob-
serving how the total DKL is spread across the latent vari-
ables for each λ, as shown in Fig. 2(b). Here, and for the
rest of the paper, we sort the latent variables zi by their

respective average D(i)
KL, in decreasing order. Increasing

the regularization strength has the effect of entirely de-
activating some of the latent neurons, resulting in them
simply predicting the prior zi ∼ N (0, 1) irrespective of

the input x, thus achieving a nearly-zero KL loss D(i)
KL.

As visualized in Fig. 2(b), the number of active neu-

rons in latent space is rather sharply defined for finite
λ. We find that at the onset of the “critical” λ region,
the number of active neurons nearly matches the num-
ber of free physical parameters describing the relevant
training dataset. Three physical parameters {U,Γ, εd}
characterize the TK-dominant dataset, and we observe
that the number of active neurons in the relevant trained
model transitions from 4 → 3 → 2. Similarly, the full-
parameter dataset has two additional underlying param-
eters {B, T}, and the trained model transitions from
6→ 5→ 4 active zi. We find however, that these discov-
ered latents do not correlate well one-to-one with the bare
Hamiltonian parameters, reflecting that bare parameters
are not necessarily the best way of characterizing the
dataset.

A second desired effect of the KL regularization is to
push each dimension of the latent space to correspond a
“disentangled” feature [32] which carries a distinct phys-
ical meaning. Ideally, this results in each latent vari-
able zi learning a statistically independent feature, i.e.
Cov(zi, zj) = δijVar(zi). In App. A, we define a heuristic
metric of success towards this goal as a normalized sum
of off-diagonal elements of the latent covariance matrix,
and show that statistical independence indeed improves
as λ is increased. To obtain simple interpretable models
which are well-disentangled and low-dimensional while
also capable of reconstructing spectra with reasonable
accuracy, we train beyond the critical λ at λ ≈ 0.5 (cyan
markers in Fig. 2) where only 2, 3 active zi remain for
the TK-dominated and full-parameter sets, respectively.
Since these models have fewer active zi than the num-
ber of free physical parameters we know to be present,
we are effectively forcing the models to learn high-level
combinations of these parameters, corresponding to the
most important physical variations in the dataset. (See
App. D for views of lower-regularization models).

B. Interpretation of the latent spaces

We first investigate VAE models trained to recon-
struct spectral functions from the TK-dominated regime,
TK � T, |B|. To analyze the latent space structure
post-training, we disable the random sampling by set-
ting z = µx. Hence, when discussing distributions be-
low, we are referring the distribution of µx in the latent
space across all x in the training dataset. For the TK-
dominated dataset, we find that well-trained models at
λ ≈ 0.5 have all but two bottleneck neurons deactivated
[cf. Fig. 2(b)].

To understand the nature of this two-dimensional ac-
tive latent space, we scan the values of the two active
latents and analyze how the reconstructed spectral func-
tions evolve. Examples are shown in Fig. 3, where we
sweep the two active neurons in the range zi ∈ [−2, 2] cor-
responding to two standard deviations of the KL prior.
We also provide the respective ground-truth input NRG
spectra which encodes the closest z-value. We observe
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FIG. 3. Thick blue curves show reconstructed spectral func-
tions corresponding to different points in the two-dimensional
latent space learned by a λ = 0.5 VAE on the TK-dominated
dataset. Thin dashed black curves show real spectral func-
tions in the dataset whose compressed latent representations
are closest to the sampled latent space point. Curves are plot-
ted on the log-linear frequency grid (see App. A) as they are
fed into the VAE.

that the reconstructed spectra smoothly evolve as we
move around this space, reconstructing plausible inten-
sity profiles. However, due to the reconstruction vs. KL
loss trade-off, this model misses the fine details of the
small Hubbard-like side peaks at large energies for large
negative z1.

Fig. 3 shows that increasing z1 corresponds to a broad-
ening and flattening of the central Kondo peak in the
spectral function. Physically, we infer that this feature
relates to the Kondo temperature TK which sets the over-
all energy scale associated with this peak. Meanwhile,
z2 learned the physical particle-hole asymmetry of the
SIAM Hamiltonian. For any (z1, z2), the transformation
z2 → −z2 roughly results in the reflection of the decoded
spectral function around ω = 0.

These correspondences are summarized in Fig. 4 where
we plot the distribution of the training dataset in la-
tent space and color the points according to relevant
physical parameters. We find a remarkably high cor-
relation between the first latent dimension and log TK
[Fig. 4(a,c)]. Furthermore, in Fig. 4(b,d) we see that z2

can be associated with the ratio (U + 2εd)/Γ which char-
acterizes the particle-hole asymmetry in the SIAM. These
strong correlations indicate that the VAE has successfully
learned the dominant physical features characterizing the
dataset.

We now investigate VAEs trained on the full five-
parameter dataset, which shares the SPE control equally
between |B|, T, and TK . We again choose to examine
models from the λ ≈ 0.5 cyan region of Fig. 2, where we
see only three latents remain active. Similar to Figs. 3,4,
we simultaneously examine both direct generative scans

FIG. 4. Latent space learned by a λ = 0.5 VAE on the
TK-dominated dataset, colored by (a) log10(TK) and (b)
(U + 2εd)/Γ. The blue open circles mark the points in latent
space corresponding to the shown spectral functions. In (c)
and (d), correlations between the principal components and
log TK , (U+2εd)/Γ are plotted, whose strengths are quantified
by Pearson correlation coefficients |ρ| ≤ 1 which are measures
of linear correlation.

of the learned latent space (Fig. 5), as well as the dataset
distribution in the full three-dimensional latent space
(Fig. 6). Interestingly, we now find that rather than one
globally continuous manifold, our models tend to break
the dataset into multiple distinct clusters which only sep-
arately form continuous spaces. This decomposition can
be directly connected to certain physical properties in
the dataset. In Fig. 6(c), we show how the learned latent
space decomposes into four disconnected clusters, each of
which is characterized by a different physical parameter
that dominates the smallest physical energy E0. Addi-
tional views of these data are available in App. B.

When all zi = 0 (center column of Fig. 5), the height
of the spectral function is reduced (indicative of finite
temperature T ), the spectrum is left-right (particle-hole)
symmetric, and shows no Hubbard side peaks (indica-
tive of larger Γ/U). Now when varying z1, this changes
the height of the spectral function while keeping it largely
symmetric. Therefore z1 controls the underlying temper-
ature, which is also reinforced by observing that z1 . 0
is in a T -dominated regime, as seen by the green data in
Fig. 6 and Fig. A12. On the other hand, large positive z1

switches towards the TK-dominated low-T regime (red
data in Fig. 6). Additionally, we find that z3 controls the
width of the spectral function’s central peak. As such,
it is directly connected to the absolute energy scale de-
scribing each spectral function, as shown in Fig. 6(b) and
Fig. A12.

Meanwhile, z2 controls much of the asymmetry of the
spectral function around ω = 0. At small B, z2, char-
acterizes the particle-hole asymmetry (U + 2εd)/Γ [see
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FIG. 5. Reconstructed spectral functions from a λ = 0.3
VAE trained on the full five-parameter dataset. Each row
corresponds to a line scan in latent space where all zi are
held at 0 except for one.

Fig. 6(a)]. Magnetic fields also break the inversion sym-
metry of the spin-resolved spectral data. Hence B com-
petes with the effect of particle-hole asymmetry con-
trolled by (U+2εd)/Γ. For large ±B therefore the latent
space switches to a B-dominated domain (see blue data
in Fig. 6(c)) which goes hand in hand with a sign change
in z2.

Due to the rather strong regularization, the exam-
ined VAE does not fully capture all of the features of
the dataset. In particular, this examined model focuses
on the central Kondo peak features, but tends to miss
the sharp Hubbard-like side peaks appearing in the high-
T and high-B regions. In Fig. A16, we examine VAEs
trained with weaker regularization that do successfully
capture these side peaks, but are more difficult to inter-
pret.

To gain confidence that our VAEs learn meaningful
representations, an important question is whether the
structures of the data manifolds discovered by these
separately-trained VAEs are consistent with each other.
The TK-dominated dataset by its construction lies en-
tirely within the red high-TK “bulb” of the full-parameter
dataset at large z1 in Fig. 6, seen to be a roughly two-
dimensional manifold. Do continuous paths within the
two-dimensional latent space of the TK-dominated model
correspond to continuous paths on this bulb?

To answer this, we start by choosing several paths of
points in the latent space of the TK-dominated model,
as shown in Fig. 7(a). The red and green paths are cho-
sen to be at roughly constant and opposite values of the
particle-hole asymmetry z2, extending primarily along
z1 ∼ log TK . The yellow and purple paths are chosen
to span the two particle-hole asymmetric lobes, with the
yellow path tracing through a seemingly connected re-
gion while the purple path crosses an apparent void. By
feeding these same spectra into the encoder of the full-
parameter VAE, we can retrace these paths in its learned
three-dimensional activate latent space.

As shown in Fig. 7(b), we indeed find that the mapped
path demonstrates consistency in the sense of continuity
and qualitative topology between the two models. The
two-dimensional TK-dominated latent space is continu-

Dominating

Energy

(b)

(a)

(c)

FIG. 6. Latent space learned by the VAE on the full five-
parameter dataset using λ = 0.3. The data in (a-c) is pre-
cisely the same, except that the color coding differs based
on the chosen physical parameter: (a) (U + 2εd)/Γ; (b)
log10 E0 = log10 max(TK , T, |B|); (c) dominant energy scale
out of {TK , T,B}. Within each cluster, points are darker if
the relative factor to the next-highest energy scale is larger.
Supplementary views from different angles are provided in
Fig. A12.
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3

-3

(a)

(b)

FIG. 7. (a) Chosen paths in the latent space of the VAE
trained on the TK-dominated dataset. Each highlighted point
corresponds to a single spectral function in the dataset. (b)
The same spectral functions mapped into the latent space
learned by the VAE trained on the full-parameter dataset,
colored as in Fig. 6(c). Supplementary view angles are pro-
vided in Fig. A12.

ously “wrapped” into the red frontal bulb of the full-
parameter latent space. Interestingly, the purple path
maintains its single discontinuity in the extended space,
occurring exactly when the path jumps between the two
particle-asymmetric lobes. This analysis further con-
firms that these learned latent spaces are all meaningfully
connected to the same underlying physics, regardless of
which subset of the data is seen by the model.

C. Symbolic regression to extract physical
descriptors

Much of our previous analysis depended on having the
physical foresight to determine explicit physical features
which could correspond to various dimensions in latent
space. For use in machine learning-aided discovery, we
require some means to automatically extract these fea-

tures given a trained VAE. We propose a potential route
towards this goal using symbolic regression (SR) [20, 21].
We assume knowledge of a set of physical parameters p
associated with each spectral function (and hence each
latent vector z). Symbolic regression then attempts to
search through the space of functions of these param-
eters to create effective descriptors which well describe
the latent dimensions individually.

In SR, functions are represented as syntax trees, where
operations appear as interior nodes, and parameters pi
appear as leaves [see Fig. 8(c,d) for examples]. We de-
fine the class of representable functions S by specify-
ing a list of unary and binary functions which are al-
lowed to appear in these trees. In this work, we limit
this list to include the standard binary arithmetic opera-
tions {+,−,×, /} as well as unary negation and inversion.
Then, we phrase the objective as finding the symbolic
function fi(p) in this class which maximizes the Pearson
correlation coefficient with an individual latent zi:

f∗i (p) = arg max
fi∈S

Ep∼D[(fi(p)− 〈fi〉)(zi(p)− 〈zi〉)]
σfiσzi

,

(7)
where expectation values indicate means with respect to
the dataset and σ’s are standard deviations of the sub-
scripted variables. We note that this objective function
is invariant under an overall scale factor or constant shift
of either the f ’s or z’s. To bias the optimization process
towards simple expressions, an additional penalty is in-
troduced of the form γl where γ is a hyperparameter and
l is the number of nodes in the syntax tree.

One symbolic function f∗i is regressed per active la-
tent dimension zi. We utilize the gplearn library [36],
which performs this search using genetic algorithm tech-
niques [37]. At the beginning of the regression, a large
number Npop of trial symbolic functions are added to a
population by constructing random syntax trees up to a
given finite depth. At each stage, the worst-performing
functions are discarded and new functions are generated
by randomly modifying the best-performing functions us-
ing biologically inspired mutation and crossover opera-
tions. Mutation operations randomly replace nodes with
alternate operations or parameters, while crossover op-
erations mix subtrees between functions. Iterating these
processes improves the general performance of the entire
population until reaching some plateau. While this ap-
proach is generally sensitive to the specification of various
hyperparameters controlling mutation/crossover proba-
bilities, we find that other than increasing the population
size to 5000 and the program length penalty to γ = 0.01,
the default package parameters perform well for our pur-
poses.

We apply this approach to extract explicit functions
describing the latent dimensions of VAEs trained on the
TK-dominated dataset in Fig. 4. Since |B|, T � TK in
this dataset, the available Hamiltonian parameters which
may appear in our regressed functions are {U,Γ, εd}. We
find it useful to enforce unitless expressions by setting
the available leaf nodes in the regression to be the unit-
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div

ϵ/Γ add

1.000 U/Γ

mul

add ϵ/U

ϵ/Γ U/Γ

(c)

(a) (b)

(d)

(e) (f)

FIG. 8. Results of applying symbolic regression to learn func-
tions describing each latent variable of the VAE trained on the
TK-dominated dataset (Fig. 4). (a) Symbolic regression pop-
ulation fitness and (b) program length as the algorithm learns
f∗
1 . (c,d) Obtained symbolic syntax trees and equivalent func-

tions which maximize correlation with the active latents zi.
(e,f) Scatterplots showing f∗

i vs. zi for each latent dimension,
analogous to Fig. 4(c, d). Colorbars show the density of data
at each point.

less ratios p = {U/Γ, εd/U, εd/Γ}. We regress two func-
tions f∗1 (p), f∗2 (p) to obtain symbolic expressions which
correlate well with the two active latent variables z1, z2,
resulting in Fig. 8.

Remarkably, we consistently find the function auto-

matically discovered as describing z1 to be f∗1 = εd(εd+U)
UΓ

(syntax tree in Fig. 8(c)), which is precisely log TK
[Eq. (2)] up to a logarithmic correction of log(UΓ) in-
expressible in terms of our chosen operator set, and a
constant coefficient/shift which leaves the correlation in-
variant. While the symbolic regression does not directly
inform us that it has learned the log of a relevant quan-
tity, this can be inferred from the fact that the data has
been presented to the VAE on a logarithmic energy grid.
The correlation between this optimized function f∗1 and
z1 was found to be ρ = 0.77 (Fig. 8(e)) while the correla-
tion between the full log TK and z1 is ρ = 0.96, indicating
that these logarithmic corrections explain a small but no-
table fraction of the correlation. We find that expanding
the operator set to include log and using bare input pa-
rameters tends to recover these key logarithmic factors,
but also generates a handful of extraneous terms. We

anticipate that careful tuning or advanced approaches
producing Pareto frontiers [38] would successfully filter
through this excess, though are beyond the scope of this
work.

The obtained function which correlates best with z2

was consistently found to be f∗2 = εd/(U + Γ), which
differs from our “knowledgable” guess for particle-hole
asymmetry of (U + 2εd)/Γ. In fact, f∗2 is found to have a
greater correlation with z2 than (U + 2εd)/Γ does, show-
ing that this is not a failure of the regression. This in-
stead can be explained from the observation that the la-
tent space is not very well-structured at large |z2|, as
seen from the large spread in Fig. 4(b,d). While the VAE
can accurately perform the correct z2 ordering of spec-
tral functions which slightly deviate from the particle-
hole symmetric point, it seems to not focus as much on
getting this ordering correct between very asymmetric
curves. Motivated by this observation, we find that if
the symbolic regression is restricted to regress only the
high-density region of points with |z2| < 0.5, it then does
reliably recover the “ideal” expression of (U + 2εd)/Γ.

IV. DISCUSSION

The results of this work demonstrate a promising av-
enue towards machine-assisted physical discovery. Given
an unlabeled set of data generated through some physical
process, our work shows how methods from unsupervised
machine learning can automatically extract physically-
meaningful structure. VAEs accomplish this by discov-
ering a small set of disentangled features parameterizing
a low-dimensional manifold which can be used to recon-
struct the data faithfully. However, alternate dimension-
ality reduction techniques can also stand in this place
(see App. C). Symbolic regression then allows us to dis-
cover an (approximate) analytic parameterization of this
manifold in terms of a set of known physical parame-
ters, which here was found to near-exactly reproduce a
known complex physical descriptor in the single-impurity
Anderson model. While here we demonstrate these ap-
proaches on spectral function data, we believe this to be
a powerful idea applicable for general physical data with
appropriate modification of the architecture.

As presented in this manuscript, our procedure uses
simple “off-the-shelf” techniques from machine learning
and therefore is easily transferable to a wide set of prob-
lems. While this was already sufficient to discover sig-
nificant and meaningful structure in the current dataset,
we envision several improvements that can be made. In-
teresting possible modifications include specializing the
VAE architecture to better capture the target data, or
the changing the VAE prior itself which may be ben-
eficial in datasets where the underlying descriptors are
not necessarily Gaussian-distributed [39]. A potential
example use-case is in phase identification, where the
latent variables may fall into disjoint clusters depend-
ing on the phase attributed to the input. Additionally,
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more complex [38, 40] or physically-motivated [41, 42]
approaches to symbolic regression may produce more ro-
bust and meaningful symbolic expressions to describe the
latent space. This may include the ability to produce a
full Pareto frontier [38] of increasingly complex but ac-
curate formulae. Finally, a remaining task is a thorough
investigation of the minimal data needed to extract phys-
ical insights, which is relevant in lower-data experimental
settings. We leave these developments to future work.

DATA & CODE AVAILABILITY

The data used in this study has been made available at
Ref. [43]. The code used to train the VAEs and perform
the symbolic regression in this study has been made avail-
able at https://github.com/ColeMiles/SpectralVAE.
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Appendix A: Training Details

1. Training data

Each trial in the dataset is represented by a discretized
subset of coordinate pairs

(
ωi, πΓA(ωi)

)
. We only exam-

ine the spectral weight between ω ∈ [−0.8, 0.8] to avoid
band-edge artifacts caused by the sharp band edge of
the otherwise featureless hybridization functions. Within
this “window,” we select i = 1, . . . , 333 frequency points
on a mixed linear-logarithmic grid which are the same for
all trials. Between |ω| ∈ [0.1, 0.8], the ω grid is spaced lin-
early, at δωi ∼ 0.01 intervals; between |ω| ∈ [10−5, 10−1],
the grid is at even intervals in log10 space. A single point
at ω ≈ 0 bridges the gap between negative and positive
frequencies. This procedure of coarse-graining A (ω)→ x
provides sufficient resolution for our spectral features of
interest at a very manageable modest grid size. For more
details, see Fig. A9 and Appendix in [28].

2. VAE framework

Here, we briefly connect our abridged presentation of
the VAE in the main text to the “standard” probabilistic
presentation in the literature, roughly following Ref. [8].
In the context of generative modeling, one assumes that
the data D is sampled from some unknown probability
distribution, P (x), which we would like to infer. As a
latent variable model, VAEs factorize this distribution
as

P (x) =

∫
dz P (x|z)P (z), (A1)

where z ∼ N (0, I) are normally-distributed latent vari-
ables controlling the generation of x. Both P (z|x) and
P (x|z) are modeled as neural networks (the encoder
and decoder, respectively), which we denote in this sec-
tion as Enc(z|x) and Dec(x|z). We denote the dis-
tribution over x predicted by a model in training as

FIG. A9. An example of the coarse-grain mapping from A (ω)
to x. The left panel shows the original spectral function on
a linear ω axis. The middle panel showcases how the same
spectrum distorts under the linear-logarithmic ωi grid, form-
ing the input x to the VAE. The right panel shows the fre-
quency values for the 333 coordinates with the exception of
the single bridge point at ω ∼ 10−11.

https://github.com/ColeMiles/SpectralVAE
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P̃ (x) =
∫
dz Dec(x|z)P (z), which we aim to drive to-

wards the true P (x).
We would like to minimize the negative log-likelihood

of the data D, −Ex∼D[log P̃ (x)] to optimize this vari-
ational distribution. However, a full evaluation of this
requires an expensive marginalization over P (z) as in
Eq. (A1). Instead, simultaneously learning P (z|x)
through the encoder allows us to minimize the negative
of the easily-calculable “evidence lower-bound” (ELBO)
which lower-bounds the log-likelihood [7]:

L = −Ex∼D
[
Ez∼Enc

[
log Dec(x|z)

−DKL[Enc(z|x)||N (0, I)]
]]
. (A2)

To arrive at the loss presented in the main text, the en-
coder is taken to model a normal distribution in latent
space, Enc(z|x) = N (µx,diag(σx)), and the decoder is
interpreted as modeling a Gaussian distribution centered
at the prediction x̃ as Dec(x|z) = N (x̃|λI/2), with λ a
hyperparameter. Inserting these into Eq. (A2) brings the
loss into the form of Eq. (4) shown in the main text.

Within this perspective, the hyperparameter λ may be
roughly interpreted as how accurate we can expect the
decoder’s predictions to be, given access to z. An alter-
nate perspective (taken from Ref. [9], where a similar pa-
rameter β is employed) is that λ regularizes the model to
emphasize making the latents normally-distributed rela-
tive to making accurate reconstructions. To maintain a
fixed reconstruction/regularization balance, λ should be
linearly related to the input dimension and inversely re-
lated to the chosen latent dimension [32]. At the same
time λ must be increased with the average scale of x. In
practice, this means that some amount of hyperparame-
ter scanning is required, as we exhibit in Fig. 2(a).

FIG. A10. The same performance measurements and region
highlights as in Fig. 2(a), but on a log-log scale. Here, we can
identify the “critical region” as a pronounced inflection in the
LRL − LKLD curve.

By scanning multiple models trained at various λ val-
ues, we find that a reasonable method for identifying

critical VAE regions is to plot LRL versus LKLD as in
Fig. 2(a), but on a log-log scale as in Fig. A10. No-
tably, the shape of this curve is independent of an overall
scaling of the data, which simply shifts the curve in log-
log space. We note that the critical region appears as
a clearly defined inflection point, which we can identify
as a local optimum in the first derivative. To select our
final models shown in the main text, we train multiple
randomly-initialized VAEs with the same λ, and choose
the model with the fewest active latent neurons and the
simplest structure in latent space.

3. Machine Learning Implementation

We construct our neural networks using the Py-
Torch [44] deep learning library, and train them using
standard minibatch training with the ADAM [34] opti-
mizer for a total of E = 2000 epochs. Every epoch,
the training dataset is randomly partitioned into “mini-
batches” with batch size = 1024 spectral functions.
Model parameters are updated once per batch using
gradients backpropagated from the error on the sam-
ples within the minibatch. Step sizes are adaptively
computed within the ADAM algorithm, with an up-
per bound set by the learning rate (lr) hyperparam-
eter. This lr, initially set to lr = 0.001, is modi-
fied each epoch according to a cosine annealing schedule
[45] as implemented by Pytorch’s CosineAnnealingLR.
Between each fully connected layer of our network,
we employ a batch normalization [46] layer to pro-
mote gradient backflow. Our code is made public at
https://github.com/ColeMiles/SpectralVAE.

As mentioned in the main text, we anneal the regu-
larization strength λ by ramping up from 0 to the final
value across the first fraction of the training epochs. This
is heuristically found to improve the quality of trained
VAEs [33], due to avoiding local minima where the model
solely focuses on minimizing DKL. The exact form of this
ramping is not found to significantly affect results as long
as it is done slowly enough, and we employ a ramp of the
form λ tanh(4t/E) with t the current epoch number.

(a) (b)

FIG. A11. Additional performance measurements. (a) Final
reconstruction performance of unregularized (λ = 0) VAEs
as the latent dimension L is varied. (b) Measurements of
our disentangling metric upon increasing λ, showing that the
DKL loss effectively drives learned features to be statistically
independent. The cyan dashed line marks λ = 0.5.

In Fig. A11(a), we show final reconstruction perfor-

https://github.com/ColeMiles/SpectralVAE


12

mance results for unregularized (λ = 0) VAEs as L is
varied. When the latent dimension size L is large, we
note a significant plateau in reconstruction performance.
This plateau is already firmly established by L = 10,
motivating our choice to set this as the latent size of our
VAEs. We also note a “critical” latent L, smaller than
which reconstruction performance rapidly worsens. In-
terestingly, this is roughly 3 and 5 for the TK-dominated
and full-parameter datasets respectively, corresponding
to the number of free physical parameters in each case.
This provides an alternate method to extract the critical
dimension from that shown in the main text.

Once we turn on the DKL regularization loss (i.e.
λ 6= 0), this drives the learned latent features zi to
become statistically independent. In the VAE litera-
ture, statistically independent features are referred to
as “disentangled” [32, 39]. We define a heuristic met-
ric of success towards this goal as the normalized sum of
the off-diagonal elements of the covariance matrix. With
σij = E[(zi − 〈zi〉)(zj − 〈z〉)] being the standard covari-
ance, we define normalized elements as:

σ̃ij =
σij∑

i′j′ |σi′j′ |
, (A3)

and define a “disentangling” metric as
∑
i 6=j σ̃ij , which

becomes zero when all zi’s are completely independent.
In Fig. A11(b), we show that this metric rapidly de-
creases with increasing λ, demonstrating how the reg-
ularization pushes the latent zi’s towards statistical in-
dependence.

Appendix B: Alternate Views of Latent Space

Here we offer the reader additional viewpoints into
the VAE-learned latent spaces characterizing the full-
parameter dataset. In particular, Fig. A12 shows mul-
tiple plane projections of the VAE presented in the main
text (Fig. 6). Each column shows a different plane projec-
tion onto two of the active latents, while each row colors
the points according to (U+2εd)/Γ, log10E0, or the dom-
inant energy scale {TK , |B|, T}, with each colormap as in
Fig. 6. A particular feature which is more evident here
is the strong correlation between the latent z2 and the
smallest physical energy scale logE0 (second row).

Next, in Fig. A13 we show the learned latent spaces
of two additional randomly initialized, independently
trained VAEs at the same value of λ = 0.3. Both of the
models presented have a higher total loss than the VAE
presented in the main text. However, they can be seen
to have qualitatively similar (but lower-quality) structure
in latent space. On rare occasions the learned structure
will “twist” into an extra dimension, but these are eas-
ily identifiable by a large DKL loss. In practice, due to
the presence of multiple local minima in the loss function
it is necessary to train multiple models and analyze the
best-performing one.

FIG. A12. Additional view angles of each plane in the three-
dimensional latent space learned by the VAE on the full five-
parameter dataset in the main text, with the same colorings
as in Fig. 6.

FIG. A13. Latent spaces of two additional randomly ini-
tialized, independently trained λ = 0.3 VAEs on the full-
parameter dataset, with coloring as in Fig. 6(c). Both VAEs
displayed here have a higher total loss than the one presented
in the main text.

Appendix C: Comparison to linear dimensionality
reduction

Since we do not make use of the generative aspects
of VAEs in this work, their application here can be un-
derstood as an example in the broader class of “dimen-
sionality reduction” or “representation learning” [5] tech-
niques. All methods falling into this category attempt to
find a low-dimensional parameterization of a collection of
high-dimensional data. Due to their disentangling prop-
erty, we find VAEs are particularly well suited for dis-
covering independent, physically meaningful descriptors,
but other dimensionality reduction techniques may also
fit into our pipeline. To demonstrate this, we compare
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our results from the main text to the results of a linear
dimensionality reduction approach provided by principal
component analysis (PCA).

Principal component analysis is a simple, parameter-
free technique for discovering the directions in a feature
space which vary the most within a dataset. Thinking of
each input spectral function as a 333-dimensional vector
x, PCA is done by simply diagonalizing the covariance
matrix Cij = 〈(xi − 〈xi〉)(xj − 〈xj〉)〉, with the expec-
tations taken over the dataset. The resulting eigenvec-
tors can be thought of as a rotated orthogonal basis of
this vector space ordered such that the first basis vec-
tor points along the direction of greatest variance in the
dataset (with its corresponding eigenvalue the variance),
and then decreasing in variance for each subsequent vec-
tor. A dimensionality reduction can then be achieved by
projecting the original data onto the first few of these
principal component vectors.

We show the results of applying PCA to the full-
parameter dataset in Fig. A14. In Fig. A14(a), we show
that a great fraction of the total variance of the data
is captured by only a few principal components, four of
which we plot in Fig. A14(b). We can see that the first of
these components (blue) measures the broad central spec-
tral weight, the second and fourth (orange, red) charac-
terize the width of the central peak, and the third (green)
characterizes some measure of asymmetry. We note that
our dataset as a whole is very nearly symmetric about
the central frequency – for every spectra in the dataset
there exists another spectra which is approximately its
mirror about the center. As a result, all of the princi-
pal components are either symmetric or antisymmetric
about the center.

While these features are somewhat similar to those dis-
covered by the VAE, the reduced space is obtained only
from linear projections onto these curves. We find that
this is sufficient to somewhat capture the particle-hole
asymmetry and overall energy scale (Fig. A14(c,d)), but
the separate energy scales TK , |B|, T are folded together
in a somewhat complex way (Fig. A15). Evidently, some
nonlinear transformations are needed to properly unfold
this structure into one where all physically meaningful
descriptors are naturally aligned with the new dimen-
sions. A virtue of the VAE process is that we can arrive
at a minimal set of such features, even capturing more
complex features are shown in the following section.

A typical method for applying PCA is to perform
some amount of feature normalization as a preprocess-
ing step. One standard scheme is to normalize the spec-
tra such that each frequency is independently normal-
ized to zero-mean and unit-variance across the dataset,
i.e. x̃i ← (xi − 〈xi〉)/σxi

. This normalization approach
effectively emphasizes subtle details in the tails of x,
putting them on the same scale as other changes. In
Fig. A14, we show the result of applying PCA to the

full five-parameter dataset after this normalization has
first been performed. We see in Fig. A14(b) that again
the first and third components measure the broad cen-
tral spectral weight and asymmetry respectively, while
the the second and fourth (orange, red) now characterize
the amount of weight in the tails compared to the center.

Surprisingly, this new normalization process has made
various energy scales separate out far more cleanly. In
particular, the various dominating energy scales are now
visible as distinct lobes in Fig. A15(e). Additionally, the
smallest physical energy E0 now appears correlated with
PCA4 as shown in Fig. A15(f,g), though not quite as
sharply as the correlation with the VAE-discovered la-
tent z3 (Fig. A15(h)). We remark that although the VAE
did not have the benefit of this human-inspired normal-
ization scheme, it was nonetheless able to discover a set
of features that directly correlates with known physics.

Appendix D: Latent Traversals of
Weaker-Regularization Models

In the main text, for simplicity of presentation we ex-
amined VAEs trained with a rather strong regulariza-
tion of λ ≈ 0.5 which were found to smoothly capture
high-level information about our dataset. However, as
a consequence of this strong regularization our models
miss smaller features such as details of the Hubbard side
peaks in the spectral functions. Indeed, it is a well-
known phenomena that VAE reconstructions tend to ap-
pear “blurred” compared to the original input [9]. In
Fig. A16, we examine VAEs trained with weaker regu-
larization strengths by scanning each latent dimension
zi ∈ [−2, 2] while keeping all others at zero. We find
that at intermediate regularization we can capture addi-
tional meaningful features in the dataset beyond those
presented in the main text, demonstrating that we are
not limited by the learning capacity of our VAE.

For λ = 0.002 in Fig. A16(a), we find that 3 latent vari-
ables are completely inactive, and one additional vari-
able (z2) barely affects the reconstruction. For the re-
maining active neurons, we can still (partially) assign
meaningful descriptors even at this weaker regulariza-
tion. Additionally, we can tell from our disentangling
metric (Fig. A11(b)) that these variables are more cor-
related with each other than at λ = 0.5. In particular,
these additional active latents appear to capture fine de-
tails about the development of the Hubbard side peaks
in the spectra.

At even smaller λ = 6.25×10−5 in Fig. A16(b), we see
that all latent variables seem to affect the reconstruc-
tion in at least a minor way. Additionally, we see that
it is difficult to separate the latent variables into partic-
ular physical effects on the reconstruction, as multiple
variables can be seen to produce similar changes on the
resulting spectral function.
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FIG. A14. Results of applying principal component analysis (PCA) directly to the spectral functions in the full five-parameter
dataset. (a) Explained variance, defined as the fraction of the variance along each PCA axis compared to the sum of all variances,
for each discovered principal component. (b) The first four principal component vectors. (c-e) Scatter plots of projections of
the dataset onto the first three principal components, colored respectively by the particle-hole asymmetry, log10E0, and the
dominant energy scale [with color coding as in Fig. 6(c)].

(a) (b)

(c) (e)

(f) (g) (h)

(d)

FIG. A15. Like Fig. A14, but with a frequency-dependent normalization performed before PCA. (a–e) are as in Fig. A14. (f)
An alternate 3D projection, showing that PCA4 roughly captures log10E0. (g,h) Scatterplots showing correlation between
log10E0 and either PCA4 or the VAE’s latent z3 (introduced in the main text), respectively.
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FIG. A16. Line scans along each latent variable zi of VAEs trained on the full five-parameter dataset for smaller regularization
strengths than the λ ≈ 0.5 examined in the main text having (a) λ = 0.002 and (b) λ = 6.25 × 10−5. The latent variables zi
have been sorted according to decreasing KL loss, as in the main text. Red dashed lines mark the log-to-linear frequency grid
crossover points described in A 1. Both models can be seen to recover finer peak details as compared to Fig. 5, though are not
quite as well disentangled.


