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In the physics of the Fractional Quantum Hall (FQH) effect, a zoo of Abelian topological phases can be ob-
tained by varying the magnetic field. Aiming to reach the same phenomenology in spin-like systems, we propose
a family of SU(N )-symmetric models in the fundamental representation, on the square lattice with short-range
interactions restricted to triangular units, a natural generalization for arbitrary N of an SU(3) model studied
previously where time-reversal symmetry is broken explicitly. Guided by the recent discovery of SU(2)1 and
SU(3)1 chiral spin liquids (CSL) on similar models we search for topological SU(N )1 CSL in some range of
the Hamiltonian parameters via a combination of complementary numerical methods such as exact diagonaliza-
tions (ED), infinite density matrix renormalization group (iDMRG) and infinite Projected Entangled Pair State
(iPEPS). Extensive ED on small (periodic and open) clusters up toN = 10 and an innovative SU(N )-symmetric
version of iDMRG to compute entanglement spectra on (infinitely-long) cylinders in all topological sectors pro-
vide unambiguous signatures of the SU(N )1 character of the chiral liquids. An SU(4)-symmetric chiral PEPS,
constructed in a manner similar to its SU(2) and SU(3) analogs, is shown to give a good variational ansatz of the
N = 4 ground state, with chiral edge modes originating from the PEPS holographic bulk-edge correspondence.
Finally, we discuss the possible observation of such Abelian CSL in ultracold atom setups where the possibility
of varying N provides a tuning parameter similar to the magnetic field in the physics of the FQH effect.

I. INTRODUCTION

Quantum spin liquids are states of matter of two-
dimensional electronic spin systems not showing any sign of
spontaneous symmetry breaking down to zero temperature [1–
3]. Spin liquids with long-range entanglement may also ex-
hibit topological order [4] such as the spin-1/2 Resonating Va-
lence Bond (RVB) state on the Kagome lattice [5]. Among the
broad family of spin liquids, chiral spin liquids (CSL) [6–10]
form a very special and interesting class [11] exhibiting bro-
ken time-reversal symmetry and chiral topological order [4].
Intimately related to FQH states [12], CSL are incompressible
quantum fluids (i.e. with a bulk gap) and host both (Abelian
or non-Abelian) anyonic quasi-particles in the bulk [13] and
chiral gapless modes on the edge [14]. After the original pa-
pers, the Kalmeyer-Laughlin CSL lay dormant for many years
until an explicit parent Hamiltonian was constructed [15, 16]
using Laughlin’s idea [8]. Later somewhat simpler Hamilto-
nians were found using different methods [17, 18]. An im-
portant step towards the goal of finding a chiral spin liquid in
realistic systems was taken by examining a physically moti-
vated model for a Mott insulator (Hubbard model) with bro-
ken time-reversal symmetry [19, 20]. Then, an Abelian CSL
was identified in the (chiral) spin-1/2 Heisenberg model on the
triangular lattice [21, 22]. Note that CSL hosting non-Abelian
excitations (useful for topological quantum computing [23])

have also been introduced in different contexts [24–26].
It was early suggested that, in systems with enhanced

SU(N) symmetry, realizable with ultracold alkaline earth
atoms loaded in optical lattices [27], CSL can naturally ap-
pear [28], although this original proposal on the square lattice
remained controversial. Later on, an Abelian CSL was indeed
identified on the triangular lattice in SU(N ) Heisenberg mod-
els withN > 2 [29]. The presence of a chiral spin interaction,
achievable experimentally via a synthetic gauge field, seems
to be a key feature to stabilize SU(N ) CSL [30]. Nevertheless,
the T and P violation required for a CSL could emerge spon-
taneously in T-invariant models, as found forN = 2 in a spin-
1/2 Kagome Heisenberg model [31–33] or, for N = 3, in the
Mott phase of a Hubbard model on the triangular lattice [34].
Note also that, using optical pumping, it is now possible to
realize (so far in one dimension) strongly correlated liquids
of ultracold fermions with a tunable number N of spin com-
ponents and SU(N ) symmetry [35]. This offers the prospect
to be able to experimentally tune the system through various
topological liquids, as it is realized in the physics of the FQH
effect via a tunable external magnetic field. Apart from ul-
tracold atom setups, condensed matter systems may also host
SU(N ) CSL. For example, it has been proposed very recently
that an SU(4) CSL could be realized in double-layer moiré
superlattices [36].

In recent years, Projected Entangled Pair States (PEPS) [37]
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have progressively emerged as a powerful tool to study quan-
tum spin liquids providing variational ground states competi-
tive with other methods [38–40]. PEPS also offer a powerful
framework to encode topological order [41–43] and construct
chiral Abelian [44] and non-Abelian [45] SU(2) spin liq-
uids. Generically, SU(2) CSL described by PEPS exhibit lin-
early dispersing chiral branches in the entanglement spectrum
(ES) well described by Wess-Zumino-Witten (WZW) SU(2)k
(with the level of the WZW model k = 1 for Abelian CSL)
conformal field theory (CFT) for one-dimensional edges [46].

Recently, on a square lattice with three-dimensional spin
degrees of freedom which transform as the fundamental rep-
resentation of SU(3) on every site, an Abelian CSL was found
as the ground state (GS) of a simple Hamiltonian involving
only nearest-neighbor and next-nearest-neighbor (color) per-
mutations and (imaginary) three-site cyclic permutations [47].
Exact diagonalizations (ED) of open finite-size clusters and
infinite-PEPS (iPEPS) in the thermodynamic limit (and en-
coding the full SU(3) symmetry) unambiguously showed the
existence of chiral edge modes following the SU(3)1 WZW
CFT. Interestingly, these results can be viewed as extending
previous results obtained for an SU(2) spin-1/2 (i.e. N = 2)
chiral Heisenberg model [20, 48]. Exactly the same type of
Hamiltonian can be defined for N -dimensional spin degrees
of freedom transforming according to the fundamental repre-
sentation of SU(N ), for arbitrary integerN ≥ 2. It is then nat-
ural to speculate that, if such SU(N ) models also host CSLs
for N > 3, then the later should also be of the SU(N )1 type.
Note however that, although a chiral perturbation necessary
induces, from linear response theory, a finite response of the
quantum spin system, it, by no means, implies the existence
of topological order or the absence of conventional (lattice
or magnetic) symmetry breaking, which both characterize a
CSL. The emergence of a uniform CSL with protected edge
modes is therefore a subtle feature that needs to be investi-
gated on a case by case basis. It is far from clear that the find-
ings for SU(3) generalize to SU(N > 3) bearing in mind that
N may be commensurate or incommensurate with the fixed
number of nearest neighbors on the square lattice. Then, in
this work, we have (i) generalized the chiral Hamiltonians of
Refs. [20, 47, 48] to arbitrary N , (ii) defined a subset of these
SU(N ) models whose Hamiltonians can be written solely as a
sum of S3-symmetric operators acting on all triangles within
square plaquettes (as in Ref. [47]) and (iii) studied these mod-
els up to N = 10 using a combination of complementary nu-
merical techniques such as ED, Density Matrix Renormaliza-
tion Group (DMRG) and iPEPS, supplemented by CFT ana-
lytical predictions.

We then start by generalizing the SU(2) and SU(3) chiral
Hamiltonians by placing, on every site of a square lattice, an
N -dimensional spin degree of freedom, which transforms as
the fundamental representation of SU(N ). As for N = 3,
we consider the most general SU(N )-symmetric short-range
three-site interaction:

H = J1

∑
〈i,j〉

Pij + J2

∑
〈〈k,l〉〉

Pkl (1)

+ JR
∑
4ijk

(Pijk + P −1
ijk ) + iJI

∑
4ijk

(Pijk − P −1
ijk ),

where the first (second) term corresponds to two-site permu-
tations over all (next-)nearest-neighbor bonds, and the third
and fourth terms are three-site (clockwise) permutations on
all triangles of every plaquette. Pij (Pijk ) is defined through
its action on the local basis states, Pij |α〉i|β〉j = |β〉i|α〉j
(Pijk|α〉i|β〉j |γ〉k = |γ〉i|α〉j |β〉k, for a fixed orientation of
the triangle i, j, k, let say anticlockwise). To restrict the num-
ber of parameters we have chosen J2 = J1/2. In that case, the
two-body part (J1 and J2) on the interacting triangular units
becomes S3 symmetric, hence mimicking the corresponding
Hamiltonian on the triangular lattice [49]. We then use the
same parametrization as in Ref. [47]:

J1 = 2J2 = 4
3 cos θ sinφ,

JR = cos θ cosφ, (2)
JI = sin θ,

and restrict ourselves to antiferromagnetic couplings J1, J2 >
0, i.e. 0 ≤ θ ≤ π/2 and 0 ≤ φ ≤ π. Note however that, for
φ > π/2, the amplitude of the (real) 3-site permutation JR
becomes ferromagnetic (JR < 0). A detailed analysis of the
multiplet structure of a 2 × 2 plaquette of the Hamiltonian
above is given in App. A.

For N = 2, various forms of the Hamiltonian (1) can
be found in the literature [20, 48]. In the original formula-
tion [20], a chiral interaction 4J3 Si · (Sj × Sk) on all trian-
gular units 4(ijk) is introduced, corresponding to the 3-site
cyclic permutations of (1) with amplitudes JR = 0 and JI =
J3. Also, the 2-site exchange interactions are introduced here
as spin-1/2 Heisenberg couplings, which is equivalent from
the identity 2Si · Sj = Pij − 1

2 [50]. A Hamiltonian includ-
ing a (pure-imaginary) cyclic permutation iλc(Pijkl−P −1

ijkl )

on each plaquette �(ijkl) was also introduced [48]. In fact,
the plaquette cyclic permutation i(Pijkl − h.c.) can be rewrit-
ten as i

2 (Pijk + Pjkl + Pkli + Plij − h.c.) [51] so that this
model corresponds also to JR = 0 and we can identify
JI = J3 = λc/2. An optimum choice of parameters for
the stability of the SU(2) CSL phase is found to be (in our
notations) J2/J1 ' 0.47 and JI/J1 ' 0.21 [20]. Further-
more, evidence is provided that the CSL survives in a rather
extended zone of parameter space around this point. Also,
an SU(2)-symmetric PEPS ansatz [44] provides an accurate
representation of the GS at the optimum values of the param-
eters [48], and of its edge modes [52] following an SU(2)1
WZW CFT.

For N = 3, from ED, DMRG and iPEPS simulations, clear
evidence of a gapped CSL is found for J2 = J1/2 and an-
gles like θ = φ = π/4 corresponding to JR/J1 = 0.75
and JI/J1 ' 1.06 [47], and around these values in a rather
extended parameter range (see Supplemental Materials of
Ref. [47]). In addition, edge modes are found to closely fol-
low the predictions of the SU(3)1 CFT.

In the following, we will investigate model (1) using
complementary ED and DMRG techniques, providing over-
whelming evidence of a stable topological CSL phase. Var-
ious systems of different topology, as shown in Fig. 1, will
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FIG. 1. We considered various system topologies: (a) periodic clus-
ter topologically equivalent to a torus; (b) open cluster topologically
equivalent to a disk; (c) cylinder with left and right boundaries. We
used (a) and (b) in ED and the infinite-length version of (c) in DMRG
and iPEPS. The chiral modes of the CSL are schematically shown on
the system edges.

be used. A torus geometry enables to probe bulk properties
while a disk or a cylinder geometry, with one or two edges
respectively, provides information on the existence and on the
nature of edge modes. More precisely, the topological nature
of a CSL phase can be established from (i) the topological GS
degeneracy [4] on periodic clusters, (ii) the existence of chi-
ral edge modes [14] both in open systems like Figs. 1(b) and
in the entanglement spectra of (quasi-)infinite cylinders, and
(iii) the content of the edge modes following closely the pre-
diction of some chiral CFT theory. The Abelian CSL expected
here should be revealed by exactly N quasi-degenerate GS on
a closed manifold and by the exact SU(N )1 WZW CFT con-
tent of its edge modes. The second goal of the paper, beside
establishing the existence of the SU(N )1 CSL phase itself, is
to provide its faithful representation in terms of an SU(N )-
symmetric PEPS. Following the prescription for N = 2 and
N = 3, we shall focus on the N = 4 case. Common features
observed for PEPS with these three values of N allow us to
draw heuristic rules and conclusions for general N .

II. EXACT DIAGONALIZATIONS

A. Exact diagonalizations in the U(1) basis and in the standard
Young tableaux (SYT) basis

We start this section by a brief review of the two distinct
and complementary exact diagonalisation methods used in
this work.

Ns t1 t2 point group
8 (2, 2) (2,−2) C4v

11 (1, 3) (3,−2) C2

12 (1, 3) (4, 0) C2

13 (2,−3) (3, 2) C4

14 (1, 4) (3,−2) C2

15 (1, 4) (4, 1) C2v

16 (4, 0) (0, 4) C4v

18 (3, 3) (3,−3) C4v

19 (1, 4) (4,−3) C2

20 (4, 2) (−2, 4) C4

21 (1, 4) (5,−1) C2

TABLE I. List of periodic clusters used here in ED: number of sites
Ns, cluster size vectors t1 and t2, and point-group symmetry. Eigen-
states can be labeled according to discrete momenta in the BZ. At
high-symmetry points Γ, X or M of the BZ, eigenstates can be fur-
ther labeled by the C4-symmetry (C2-symmetry) IRREP labels, A,
B, Ea and Eb (A and B) – see Fig. 4.

First, for periodic clusters (see Table I), we can imple-
ment the spatial symmetries (and in particular the translations)
which allows us to both reduce the size of the matrix to diag-
onalize by a factor typically equal to Ns (where Ns is the size
of the cluster) and to directly obtain the momenta associated
to each eigenenergy.

However, as N increases, EDs performed this way are
severely limited by the size of the available clusters since the
dimension of the Hilbert space increases exponentially with
Ns. A way to overcome such limitations is to implement the
SU(N ) symmetry and this is the second ED protocol that we
have employed here. In particular, when Ns is a multiple
of N , the ground state of Hamiltonian (1) is an SU(N ) sin-
glet state for a wide range of parameters. The singlet sector
has a dimension much smaller than the one of the full Hilbert
space. The gain to implement the full SU(N ) symmetry and
to look for the lowest energy states directly in the singlet sec-
tor is huge and increases with N . For instance, for N = 10
and Ns = 20, the singlet sector has only dimension 16796,
while the dimension of the full Hilbert space is 1020. In ad-
dition, to write the matrix representing the Hamiltonian in the
singlet subspace and in the sectors labeled by higher dimen-
sional SU(N ) irreducible representation (IRREP), we have
employed the algorithms detailed in Refs. [53, 54], which is
mainly based on the use of Standard Young Tableaux and on
the theory of the representation of the permutation group.

In particular, it allows one to bypass the need for the
Clebsch-Gordan coefficients, which can only be calculated
with an algorithm whose complexity also increases with N
(see Ref. [55]). Typically, for the present problem, through
this method, we can address clusters with Ns ∼ 20 sites for
N up to 10. Note that contrary to the first ED method based
on the implementation of spatial symmetries, the momenta
can only be accessed in a second stage: we first calculate the
eigenvectors and then the effect of translation or rotation on
them.
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FIG. 2. Low energy spectra computed by ED in the SYT singlet basis on periodic clusters of Ns = kN sites, k ∈ N, and (a-i) for a fixed
value of θ = π/4 as a function of φ, for N ranging from 2 to 10, or (k-n) for a fixed value of φ = π/2 as a function of θ ∈ [0, π/2], for
N = 4, 7, 8, 9. Only 10 (40) lowest singlet levels are shown at small N in (a-e) and (k) (larger N in (f-i) and (l-n)). The φ and θ axis being
discretized, lines connecting the data points are used as guides to the eye (hence, levels crossings around φlc may look like anti-crossings).
N degenerate or quasi-degenerate singlets (see Figs. 3,4 and text) are separated from the higher energy states by a gap, in an extended (φ, θ)
region around (π/2, π/4). The energy of the (fully polarized) ferromagnetic state (Eferro = 2

√
2Ns(2 cosφ+sinφ)), crossing the singlet GS

at φ = φF , is shown as a dashed line in (a-i). The location of the CSL and ferromagnetic phases along the cuts (c-i) and (k-n) are schematized
in (j). Note that for N = 2, 3 (a,b) the CSL is expected to extend all the way to φ = 0.

FIG. 3. Zoom of the singlet low-energy spectra at θ = π/4 and
φ = π/2, for N ranging from 2 to 10, and the same cluster sizes
as in Fig. 2. The GS energy is subtracted off for better comparison
between the various spectra. The exact degeneracy g of each level is
indicated on the plot as ×g. The first non-singlet excitation belong-
ing to the adjoint IRREP above the N quasi-degenerate low-energy
singlets is shown as a filled triangle (see text).

B. Periodic clusters : bulk gap and GS manifold

The results for N = 2 and N = 3 described above suggest
that the existence of an Abelian CSL may be generic for ar-
bitrary integer N . To investigate such an appealing scenario,
we start by examining, for larger N , the low-energy spectra
obtained on Ns-site periodic clusters (see Table I for details
about clusters used). For antiferromagnetic and frustrating
couplings J1 > 0, J2 > 0, we expect the lowest-energy to
belong to the antisymmetric IRREP aIRN (r0) defined by a
Young tableau of r0 vertical boxes, r0 = mod(Ns, N). In
particular, in the case where Ns is an integer multiple of N
(r0 = 0), the low-energy states are expected to belong to the
singlet subspace. However, at e.g. θ = π/4, when increas-
ing φ beyond φ = π/2, JR changes sign and states belonging
to the antisymmetric IRREP are gradually destabilized with
respect to the completely symmetric (ferromagnetic) state of
energy Eferro/Ns = 3J1 + 8JR. In particular, we clearly
see at θ = π/4 a macroscopic energy gain (penalty) of the
lowest-energy eigenstate of aIRN (r0) with respect to the fer-
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FIG. 4. Low-energy spectra on periodic clusters at fixed φ = π/2 and for θ = π/4 (a-d) or θ = π/6 (e-h). Clusters with site numbers
Ns = kN (left) or Ns = kN − 1 (right), k ∈ N, are chosen to obtain 0 and 1 quasi-hole, respectively, in the putative CSL. The respective
BZ with the allowed discrete momenta is shown on each plot as a gray square – only non-equivalent momenta are labeled – and the number of
equivalent momenta appearing are listed as grayed squared numbers. For Ns = kN (left), the GS manifold is composed of N singlets (open
circles). For Ns = kN −1 (right), it is composed ofNs quasi-degenerate levels, one level at each cluster momentum. Each level is comprised
of N degenerate states forming a N̄ anti-fundamental IRREP (open triangles).

romagnetic state at φ = π/2 (φ = π) (see App. D). This
fact indicates a transition at φ = φF (somewhere in the range
π/2 < φF < π) between one (or several) spin liquid phase(s)
and a ferromagnetic phase. Note also that a detailed analysis
of the 2 × 2 plaquette Hamiltonian in App. A, shows that the
antiferromagnetic states dominate the low energy regime, yet
with the ferromagnetic regime in close proximity.

We now focus on the prospective spin liquid region dis-
cussed above and consider the case of Ns = kN , k ∈ N, so
that no quasiparticle excitations would be populating the GS
of a CSL phase. To identify the exact nature(s) of the spin liq-
uid(s), one needs to examin in details the low-energy singlet
subspace (gap structure, degeneracies, etc...). A selection of
the singlet energy spectra for fixed θ = π/4, plotted versus φ
(for fixed φ = π/2, plotted versus θ), is shown in Fig. 2 for
N ranging from 2 to 10 (for N = 4, 7, 8, 9). For all the val-
ues of N studied here, in a broad interval of φ (φ < φF ) or θ
values, a clear gap is observed between a group of degenerate
and quasi-degenerate states and the rest of the singlet spec-
trum. Interestingly, for θ = π/4 and N > 3, we observe level
crossings occuring in the singlet subspace at some value of

φlc < π/2, suggesting the existence of two different gapped
phases. For 0 ≤ φ < φlc, we observe a two-fold quasi-
degenerate GS manifold within the singlet subspace which
are translationally invariant but which break the lattice point
group π/2-rotation symmetry [56]. This could correspond to
a nematic valence cluster state as also seen in SU(2) spin-1
models [57, 58]. Note that, as a finite-size effect, the ground
state of the total spectrum for small φ and θ around π/4 is
not necessarily a singlet state when Ns < N2 (see App. D). A
more careful investigation of this phase, although interesting,
is beyond the scope of this work and left for a future study.

We now move to a closer inspection of the gapped spin liq-
uid phase seen for N = 2, 3 and φ < φF , and for N > 3
and φlc < φ < φF , and identify it as a CSL. Interestingly,
we note that φ = π/2 – corresponding to a pure imaginary 3-
site cyclic permutation – is always located within this gapped
phase (Note, for N = 3, φ = π/4 instead was chosen in
Ref. [47]). This gapped phase is also stable within a signifi-
cant range of the parameter θ, around θ = π/4 and φ = π/2,
e.g. also at θ = π/6. Hence, in the following, we shall mostly
report results obtained at fixed φ = π/2 (i.e. for a pure imag-
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FIG. 5. Low-energy spectra on openC4-symmetric clusters depicted on the right-hand side of the figure, as a function of the angular momentum
l (with respect to the GS angular momentum l0), at fixed φ = π/2 and for θ = π/4 (a-d) or θ = π/6 (e-h). Symbols labeling the various
SU(N ) IRREPs entering the chiral mode are shown in the legends. The Young diagrams for the corresponding IRREPs can be identified
using the tables in App. C. The GS IRREPs are fully antisymmetric, and labeled by Young diagrams consisting of a single column of
r0 = mod(Ns, N) boxes, with degeneracy N !

(N−r0)!r0!
. Identifying l − l0 with the Virasoro level L0, all low-energy ToS in (a-h) for

0 ≤ l− l0 ≤ 3 follow exactly the WZW CFT predictions of Tables VIII,IX,XII,XIII,XVI,XV,XVII and XXI, respectively. The only exception
is the SU(6) 15 (SU(8) 1) tower, for which two multiplets 15 and 21 (1 and 63) are missing in the L0 = 3 Virasoro level.

inary 3-site permutation) and for θ = π/4 or, occasionally,
θ = π/6.

To identify the type of (singlet) gapped phase, we now in-
vestigate the exact degeneracy and the quantum numbers of
the singlet GS manifold. Fig. 3 shows a zoom of the low-

energy spectra at θ = π/4 and φ = π/2, with the exact
degeneracy of each level below the gap. A simple counting
shows that there are exactly N states below the gap. Note
that the first excitation defining the gap does not belong to
the singlet sector but most often belongs to the adjoint IR-
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REP of dimension N2 − 1, except for some of the largest
values of N (like N = 9) for which finite size effects are the
strongest. This is an extension of the SU(2) case where the
first excitation in antiferromagnetic spin liquids are typically
spin-1 “magnons”. In the thermodynamic limit, the gap in the
singlet sector should be bounded from above by twice the true
“magnetic” gap as two isolated “magnons” can fuse into a sin-
glet. If a singlet bound state occurs between two magnons, the
singlet gap is then strictly smaller than twice the magnon gap.

The above observation of the N -fold degeneracy of the GS
space suggests that the gapped phases indeed correspond to
Abelian SU(N)1 chiral spin liquids. As realized already for
N = 3 in Ref. [47], it is possible to obtain, for arbitrary N ,
the exact momenta of the various states in the GS manifold
expected for an Abelian SU(N )1 CSL. This can be inferred
from a simple generalized exclusion principle (GEP) [59, 60]
with clustering rules (see App. B for details). As a final check
for periodic systems, we then focus on two distinct commen-
surability relations between the cluster size Ns and N ; either,
(i) Ns = kN , k ∈ N, for which, as above, the GS contains
no quasi-particle and (ii) Ns = kN − 1, k ∈ N, for which,
a single quasi-hole populates the GS. Note that in case (ii),
r0 = N − 1 so that the IRREP of the GS manifold is the
N̄ anti-fundamental IRREP. The GEP implies a GS (quasi-
)degeneracy of N and Ns for (i) and (ii), respectively. This
is indeed observed as shown in Fig. 4. The predictions of the
GEP are even more precise, providing all GS momenta ex-
pected for the (Abelian) CSL on every periodic cluster (see
App. B for details on the way momenta are assigned). We
have checked that – in most cases – all GS momenta reported
in Fig. 4 match the ones predicted by the heuristic rules. In
particular, for Ns = kN − 1, the GS manifold is made of ex-
actly one N̄ (antifundamental) IRREP at each cluster momen-
tum. Rare failures of the GEP rules (which may be attributed
to cluster shapes, etc. . .) to predict the correct momenta will
be discussed in App. B.

Interestingly, the above features predicted and observed in
the case of a single quasi-hole can be understood using a
simple physical argument. If the single quasi-hole would be
static, it could be placed on each of the Ns sites of the clus-
ter, and this, for each of the N topological (singlet) sectors,
hence spanning a NsN -dimensional Hilbert space. The effec-
tive hopping allows the quasi-hole states to form a weakly dis-
persing band below the gap, hence with N states at every mo-
mentum. From the SU(N )-symmetry, these N states should
form a single multiplet belonging to the N̄ (antifundamental)
IRREP, as predicted by the GEP and found numerically.

C. Open systems : edge physics and CFT content

The previous results give strong evidence of the CSL na-
ture of the GS of the model, for the parameters chosen, from
its bulk properties on periodic systems (topologically equiva-
lent to tori). We complete the identification of the CSL phase
by the investigation by ED of open clusters. The existence of a
chiral edge mode fulfilling the SU(N )1 WZW CFT should be
reflected in the precise content of its low-energy spectrum. By

choosing finite-size clusters with (i) open boundaries and (ii)
C4 point-group symmetry, we can investigate the low-energy
spectrum as a function of the angular momentum, l = 0,±1, 2
(mod[4]) and reveal a single chiral branch linearly dispersing
only in one direction, as expected. At a given N , changing
the cluster size Ns – whenever such a C4-symmetric cluster
is available – enables to change the topological sector defined
by the integer r0 = mod(Ns, N), r0 = 0, · · · , N − 1. In-
deed, each topological sector is characterized by the SU(N )
IRREP of its GS, corresponding to the antisymmetric IRREP
aIRN (r0) (defined by a Young tableau of r0 vertical boxes),
and can then be reached whenever Ns = kN + r0. Note that
the dimension of aIRN (r0) is given by N !

(N−r0)!r0! .
The ED investigation of the chiral edge modes has been car-

ried out on two types of open systems, all exhibiting C4 sym-
metry with respect to the cluster center. The first type of clus-
ters is build around a central site by adding successive shells
of 4 sites at 90-degree angles. The second type of open clus-
ters are built in the same way but from a center 2× 2 plaque-
tte.The 13-site, 17-site and 21-site (16-site) clusters belongs to
the first (second) category, as shown on the right-hand side of
Fig. 5. Note that the 17-site cluster is ”chiral”, i.e. it breaks re-
flection symmetry (parity), and spectra for JI > 0 and JI < 0
are expected to be (slightly) different. Here, JI > 0 and the
Pijk permutation is assumed counterclockwise. ED spectra
obtained on such clusters for N = 4, 5, 6, 7, 8 are shown in
Fig. 5, for φ = π/2 and θ = π/4 or π/6 (as specified in the
caption). In all cases, we observed a rather sharply-defined
low-energy chiral edge mode, i.e. a group of levels (i) well-
separated from higher-energy levels by a gap, (ii) following a
linear dispersion with respect to the angular momentum and
(iii) with a very precise and non-trivial content in terms of
SU(N ) multiplets. Each edge mode is characterized by its GS
given by the antisymmetric IRREP aIRN (r0). For each pair
(N, r0) occurring in Fig. 5, we have computed the expected
“tower of states” (ToS) generated by aIRN (r0), as predicted
by the SU(N )1 WZW CFT – see App. C. Numerically, one
can use (N − 1) U(1) quantum numbers to diagonalize the
Hamiltonian and identify the IRREP content for each group of
exactly degenerate levels. A careful check shows that, gener-
ically, the quantum numbers of the chiral edge mode spectra
match exactly the WZW CFT ToS predictions (identifying the
angular momentum with the Virasoro level L0), providing a
real hallmark of the CSL phase. For two cases corresponding
to the smallest Ns = 16 cluster, a small number of multi-
plets in the CFT predictions are missing in Fig. 5. We have
explicitly checked that finite-size effects can indeed lead to
incomplete towers.

III. DMRG

For characterizing chiral topological states, the correspon-
dence between the entanglement spectrum and the conformal
tower of states is a fingerprint evidence. While DMRG is in
principle suited for this purpose, a technical difficulty is that
the characterization of topological order requires the full set
of (quasi-)degenerate ground states and, furthermore, these
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states should be combined into the so-called minimally en-
tangled state (MES) basis [61]. In this section, we use a two-
step procedure to accomplish this task: i) build Gutzwiller
projected parton wave functions which describe the SU(N)1

CSL, use them to construct the MES basis on the cylinder, and
convert them into MPS; ii) initialize DMRG with the parton-
constructed MES basis. This strategy allows us to find the
full set of N (quasi-)degenerate ground states in the MES ba-
sis. The parton picture also helps us to identify the correspon-
dence between the entanglement spectrum and the SU(N)1

conformal towers.

A. Parton wave functions

In this subsection, we outline the parton approach to con-
struct trial wave functions for the SU(N) CSL model. To con-
struct the minimally entangled states (MESs) [61], we use a
fermionic parton representation of the SU(N) generators [62–
64], Sµi =

∑
σσ′ c

†
iσT

µ
σσ′ciσ′ , where Tµσσ′ are matrix repre-

sentations of the SU(N) generators in the fundamental rep-
resentation, and c†iσ is the creation operator at site i. A local
constraint

∑
σ c
†
iσciσ = 1 has to be imposed to ensure that

singly-occupied fermions represent theN states in the SU(N)
fundamental representation, i.e., |σ〉 = c†σ |0〉 (site index sup-
pressed), with |0〉 being the vacuum of partons. The SU(N)
CSL with SU(N)1 topological order can be constructed by
Gutzwiller projecting a fully occupied C = 1 Chern band of
fermionic partons, where C is the Chern number. To have
a systematic construction for all N , we design the following
quadratic Hamiltonian for partons on a square lattice:

Hp =−
∑
m,n,σ

(
txc
†
m+1,n,σcm,n,σ + tye

imϕc†m,n+1,σcm,n,σ
)

−
∑
m,n,σ

(
t2e

i(mϕ±π/N)c†m±1,n+1,σcm,n,σ
)

+ h.c.

− µ
∑
m,n,σ

c†m,n,σcm,n,σ.

(3)

The phase ϕ is chosen to be 2π/N , so that the flux through
each square plaquette is 2π/N and each triangular plaquette is
π/N . To minimize finite-size effects, we maximize the band
gap by choosing t2 = ty/2.

The design of the parton Hamiltonian (3) follows a lattice
discretization of the Landau level problem, i.e., 2D electrons
in a strong magnetic field (with the Landau gauge). Under
periodic boundary conditions (torus geometry), the fluxes in
the square/triangular plaquette are chosen such that there are
N bands with the lowest band having Chern number C = 1
(see Fig. 6). The N = 2 case has been considered previ-
ously in Refs. [61, 65–67], which was used to constructed
Gutzwiller projected wave functions representing the SU(2)
CSL of Kalmeyer-Laughlin type. For N > 2, the lowest
band becomes flat and indeed resembles the lowest Landau
level. The trial wave functions for describing the SU(N)1

FIG. 6. Band structures of the parton Hamiltonian on the torus along
high symmetry directions for N = 2, 3 and 4. We set tx = ty for
N = 2 and 4, and tx = ty/2 for N = 3.

FIG. 7. The parton single-particle levels including the edge states on
a wide cylinder for N = 2 to 9. Filling the Fermi sea up to zero
energy corresponds to a filling fraction 1/N . This fully occupies the
lowest parton band as well as the edge states up to the degenerate
zero modes at the single-particle momentum ky = π/N . These
exact zero modes, denoted by dLσ and dRσ , are localized at the left
and right boundaries of the cylinder, respectively.

CSL are obtained by (i) tuning the chemical potential µ such
that the lowest band is completely filled and all others empty,
yielding a filling of 1/N on the lattice when also including
the edge mode (see Fig. 7) and (ii) Gutzwiller projecting the
Fermi sea with fully occupied lowest band. Strictly speaking,
this construction does not depend on the flatness of the C = 1
band. Here, our extra requirement of a nearly flat band serves
another purpose: the single-particle wave functions of a flat
band can be made more localized, which helps to suppress the
entanglement growth when converting Gutzwiller projected
wave functions into MPS [67]. Last but not the least, this par-
ton Hamiltonian is also designed to support exact zero modes
on the cylinder, which, as we shall see, are important for con-
structing the MES basis.

For our purpose, we shall consider the cylinder geometry
(with circumference Ny) rather than the torus geometry, with
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FIG. 8. The entanglement spectra on width-6 cylinders for SU(2)
CSLs. (a) Identity sector. (b) Semion sector (⊗ 1

2
). Identifying Ky

with the Virasoro level L0, the content of the chiral branches agrees
exactly with the CFT predictions of tables IV and II up to Ky = 4
(mod[6]).

TABLE II. SU(2)1 WZW model – The direct product of the confor-
mal tower of the spin-1/2 primary (left - see Table V in App. C) with
a spin-1/2 gives a new tower (right) with a doubling of the number
of states in each Virasoro level indexed by L0.

L0

2

tower
2

tower⊗
2

0 1
2

1
1• ⊕ 1

3

1 1
2

→
1

1• ⊕ 1
3

2 1
2

⊕ 1
4

1
1• ⊕ 2

3

⊕ 1
5

3 2
2

⊕ 1
4

2
1• ⊕ 3

3

⊕ 1
5

4 3
2

⊕ 2
4

3
1• ⊕ 5

3

⊕ 2
5

open boundaries in the x direction and a periodic (or twisted)
boundary condition in the y direction. This allows us to char-
acterize the MESs via the entanglement spectrum [65, 68],
and to use these wave functions to initialize our DMRG sim-
ulations [69].

By diagonalizing the parton Hamiltonian (3) on the cylin-
der, we obtain a set of single-particle orbitals composed of
local operators, d†kσ =

∑
m,nAm,n(k)c†m,n,σ . For N = 2,

it is known that the exact zero modes play an important role
in constructing the MESs [65, 67]. These exact zero modes,
denoted by dLσ and dRσ , localize at the two boundaries of the
cylinder. Their occurrence at the single-particle momentum
ky = π/2 requires that for mod(Ny, 4) = 0 (2), the parton
Hamiltonian has periodic (antiperiodic) boundary condition in
the y direction. The two MESs with Sz = 0 are then written as
Gutzwiller projected wave functions, |Ψ1〉 = PGd

†
L↑d
†
R↓ |Φ〉

and |Ψ2〉 = PGd
†
L↑d
†
L↓ |Φ〉, where PG imposes the single-

occupancy constraint at each site and |Φ〉 is the state with all

parton modes below the zero modes being fully occupied. In
this representation, it is transparent that the zero mode d†L(R)σ

creates a semion carrying spin-1/2 (with spin projection σ) at
the left (right) boundary of the cylinder. It was found [67] that
the entanglement spectra of |Ψ1〉 and |Ψ2〉 correspond to the
conformal towers of states of the chiral SU(2)1 WZW model
in its spin-1/2 (semion) and spin-0 (identity) sectors, respec-
tively. To qualify as the (quasi-) degenerate ground states of
chiral spin liquids, the wave functions should be SU(2) spin
singlets. While |Ψ2〉 is manifestly a spin singlet, |Ψ1〉 needs
to be combined with PGd

†
L↓d
†
R↑ |Φ〉 to form a spin singlet

|Ψ̃1〉 = PG(d†L↑d
†
R↓ − d

†
L↓d
†
R↑) |Φ〉. However, the entangle-

ment spectrum of |Ψ̃1〉 would then correspond to two copies
of spin-1/2 conformal towers due to the entanglement cut of
an additional nonlocal singlet formed by a pair of two spin-1/2
semions at the boundaries [70].

This parton construction of MESs for the SU(2) CSL can
be naturally generalized to the SU(N ) CSL. To allow for exact
zero modes, the hopping parameters in Eq. (3) are chosen as
tx = ty if N is even, and tx = ty cos(π/N) otherwise. This
ensures that the exact zero modes, d†Lσ and d†Rσ , appear at
ky = π/N (see Fig. 7), which is always allowed for a suitably
chosen boundary condition (i.e., periodic or twisted) in the y
direction. Occupying N of these boundary modes distributed
arbitrarily over left and right boundaries ensures that the total
momentum of the state in y-direction is zero. As such this is
then consistent with a width-N cylinder with plain periodic
boundary conditions around the cylinder.

With that, MESs belonging to N different topological sec-
tors can be written in analogy to the SU(2) case as

|Ψp〉 = PG

(
d†L1 . . . d

†
Lpd
†
R,p+1 . . . d

†
RN |Φ〉

)
(4)

p = 0, . . . , N . Here d†L(R)σ creates an elementary anyon
of the chiral SU(N )1 theory and also transforms under the
SU(N ) fundamental representation. Therefore p = 0 (N )
corresponds to all N anyons either located, equivalently and
respectively, at the left or right boundary. The entanglement
spectra of these states |Ψp〉 should be in one-to-one correspon-
dence with the N Kac-Moody conformal towers of the chiral
SU(N )1 WZW model, whose N primary fields are labeled by
Young diagrams with p vertical boxes, respectively. However,
except for p = 0 or N the states above do not yet describe
proper SU(N ) multiplets. For a more direct comparison with
CFT, the N boundary modes need to be antisymmetrized over
all flavors into an overall SU(N ) singlet. The corresponding
SU(N ) singlets can be written as

|Ψ̃p〉 = PG

(
εσ1...σNd

†
Lσ1

. . . d†Lσpd
†
Rσp+1

. . . d†RσN |Φ〉
)

, (5)

where εσ1...σN is the totally antisymmetric Levi-Civita ten-
sor. Eq. (5) indicates that for non-identity sectors, multi-
ple branches contribute to the entanglement spectrum. The
number of branches is N !

(N−p)!p! , where N ! comes from the
Levi-Civita tensor, and the factors (N − p)! and p! account
for the antisymmetrization of the anyons on the left or right
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edge, represented by N − p or p vertical boxes in the corre-
sponding Young tableau, IRREPS p̄ and p, respectively. Note
that as such this precisely also corresponds to the dimensions
dim(aIRN (p)) = dim(aIRN (N − p)) [see Sec. II C above].

Using the matrix-product-operator matrix-product-state
(MPO–MPS) method of Ref. [67] to implement the parton
construction, we can express the filled Fermi sea of the above
parton wave function |Ψ̃p〉 as an MPS. The principal idea for
that is as follows: (i) the vacuum state |0〉 is an MPS with bond
dimension D = 1. (ii) the non-local parton operator d†kσ ,
subject to Wannier localization, can be written as an MPO
of bond dimension D = 2. (iii) the MPOs d†kσ are applied
sequentially onto the MPS with possible compression after
each step, resulting in an MPS with a finite bond dimension
that represents a filled Fermi sea. (iv) the Gutzwiller projec-
tor PG =

∏L
`=1 P` is applied to separately enforce the local

constraint,
∑
σ c
†
m,n,σcm,n,σ = 1, on each site to recover the

correct local physical subspace.

B. Infinite DMRG

For a cylinder geometry, the N different minimally entan-
gled states of the SU(N) CSLs, each carrying distinct any-
onic flux threading through the hole in the annulus, form a
complete basis for the N -fold degenerate ground states. Find-
ing such a complete basis numerically for the Hamiltonian of
Eq. (1) would be a convincing validation for our short-range
CSL proposal.

Numerically the finite system width Ny lifts the N -fold
ground-state degeneracy, with an energy gap which decreases
with increasing width. If the cylinder is infinitely long, CFT
predicts that the energy splittings (with respect to the ground
state) are given by 2πv

Ny
(hp + h̄p), where v is the velocity

of the chiral edge states and hp, h̄p are conformal weights
of the primary fields (corresponding to the respective anyons
at the boundaries). Thus, we expect a power-law splitting
O(1/Ny) for chiral topological phases (rather than exponen-
tial, as in the case of nonchiral topological phases with gapped
edges [5, 71, 72]). This hampers the search for distinct topo-
logical sectors via DMRG, a ground-state search algorithm
when using cylinders. Previous DMRG works [31, 72–77]
have shed some light on this, showing that the presumably
higher-energy states can still be examined by adopting tai-
lored boundaries, e.g. imposing ZN charges [78]. Concretely,
DMRG is used to optimize the bulk part of the cylinder, while
a small portion of spins at the boundaries are engineered to
mitigate finite-width effects, thereby favoring different topo-
logical sectors if any exist. However, how to engineer the
boundary spins and choose suitable lattice orientation remains
an elusive undertaking.

Our work here is an extension of the above idea, and
the parton approach paves a systematic way to construct the
boundary spins for different MESs. For the identity sector, we
use typical infinite DMRG (iDMRG) to find the ground state
for Eq. (1) [79, 80]. For other sectors that are higher in en-
ergy, we use the parton approach outlined above to initialize

several possible MESs by occupying edge modes in different
ways, then use the infinite DMRG algorithm to minimize the
(bulk) ground-state energy with respect to the Hamiltonian of
Eq. (1) for each. The ED calculations in Sec. II suggest a
substantial region of a gapped CSL in the parameter space of
(θ, φ) = (sin−1(JI), tan−1( 3

4J1/JR)) for each N . Here we
focus on only one point within that phase, for N = 2 up to
4. While N = 2 and 3 have been investigated by ED and
iPEPS previously, a thorough DMRG study for them has not
been performed. We therefore include them here too, to cor-
roborate the consistency of the model as well as the method
for different N . We choose (θ, φ) = (π/12, π/2) for N = 2,
(θ, φ) = (π/6, π/2) for N = 3, and (θ, φ) = (π/4, π/2) for
N = 4. The widths of the cylinder are chosen to be a multiple
of N , so that if N different MESs do exist, all of them they
can be found for arbitrary cylinder lengths.

The entanglement spectrum, as the fingerprint of topologi-
cal order, can be readily extracted from iDMRG wave func-
tions. To enable a comparison with CFT, we identify the
entanglement levels by their SU(N ) irreps and the momen-
tum ky =

2πKy
Ny

, Ky ∈ N [72], as the converged states
should be translationally invariant along the y direction. They
are thus (approximate) eigenstates of the translation operator,
with phase factors as eigenvalues, from which we extract the
associated momenta ky . From Fig. 8 (a), we see that the iden-
tity sector agrees with the SU(2)1 WZW CFT (see Table IV)
for the first few low-lying states. For the semion sector, the
ES (see Fig. 8 (b)) consists of a new conformal tower con-
taining integer spin multiplets, and twice the number of states
expected for the semionic conformal tower. This discrepancy
is rooted in the fact that semions carry spin-1/2 quantum num-
bers and can be best understood from the parton context [67]:
the CFT content describes a single edge mode for spin-1/2,
while the state in our simulation is a spin-singlet, correspond-
ing to an antisymmetric combination of two spin-1/2 edge
modes. In other words, neither of the semion states carry-
ing spin-1/2 at the edges, i.e., |Ψ1〉 = PGd

†
L↑d
†
R↓ |Φ〉 or

|Ψ1′〉 = PGd
†
R↑d
†
L↓ |Φ〉, does have a definite total spin. A

spin-singlet can be formed, however, via a linear combination
of |Ψ1〉 and |Ψ1′〉, which leads to the doubling of the number
of states of the conformal towers [81]. This can be easily ver-
ified by a direct product of the conformal towers of the spin-
1/2 primary of Table V ( App. C) with a spin-1/2, as shown in
Table II. This observation applies also for cases ofN > 2 : for
non-identity sectors, the ESs contain, in each Virasoro level,
an integer multiplicity (≥ N ) of the number of states of a sin-
gle CFT tower. In general, it is possible to account for such
a multiplicity by taking the direct product of each conformal
tower with the conjugate of its primary spin (see Tables XXVI
, XXVII and XXVIII in App. F as examples). This brings our
simulations in overall agreement with CFT as shown in Figs. 9
and 10 for N = 3 and N = 4, respectively, and a direct com-
parison with Tables XXVI, XXVII and XXVIII (see App. F).
Conversely, one also could have ‘quenched’ the edge spins p
and p̄ in the DMRG simulation by coupling them to an artifi-
cial additional physical edge site with spin p̄ and p at the left
and right boundary, respectively. However, we refrained from
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FIG. 9. The entanglement spectra on width-6 cylinders for SU(3) CSLs. (a) Identity sector. (b)
3

sector (⊗

3̄

). (c)

3̄

sector (⊗
3

).

Identifying Ky with the Virasoro level L0, the content of the chiral branches agrees exactly with the CFT predictions of tables VI and XXVI
up to Ky = 3 (mod[6]). Note that the towers of the 3 and 3̄ sectors are identical, apart from an overall conjugation of all IRREPs.

FIG. 10. The entanglement spectra on width-8 cylinders for SU(4) CSLs. (a) Identity sector. (b)
4

sector (⊗

4̄

). (c)

6

sector (⊗

6

). (d)
4̄

sector (⊗
4

). Note that the towers of the 4 and 4̄ sectors are identical, apart from an overall conjugation of all IRREPs. Identifying Ky

with the Virasoro level L0, the content of the chiral branches agrees exactly with the CFT predictions of tables VIII, XXVII and XXVIII up to
Ky = 3.
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{0, 0, {0, 1, {1, 0, {1, 3, {3, 0, {0, 2, {2, 1, {1, 1,
3, 1} 0, 3} 1, 2} 0, 0} 1, 0} 1, 1} 0, 1} 2, 0}

A1 1 2 1 2 3 3 4
A2 1 1 2 2 3 3 5
B1 1 2 1 2 3 3 4
B2 1 1 2 2 3 3 5

TABLE III. Number of symmetric site-tensors in each class char-
acterized by the IRREP of the C4v point group of the square lattice
(rows) and the occupation numbers {n6, n4, n4̄, n1} of the 6,4, 4̄
and 1 multiplets on the 4 virtual bonds (columns).

FIG. 11. PEPS on the square lattice involving site A tensors and
bond B tensors. The bond dimension on the black links is D, up
to D∗ = 4 (D = 15), and the vertical red segments correspond
to the physical space F spanned by the d = N (d∗ = 1) physical
degrees of freedom. All indices (i.e. legs or lines) carry arrows which
indicate whether legs enter or leave a tensor in terms of state space
fusion. This can be translated into co- and contravariant tensor index
notation, respectively [82, 83]. Note that reverting an arrow also flips
all affected IRREPS into their dual representations.

doing so.
To summarize: in this section we have shown that a DMRG

ground-state search for the Hamiltonian of Eq. (1), initial-
ized with an MPS obtained via Gutzwiller-projected parton
construction, yields entanglement spectra in excellent agree-
ment with the expectations for SU(N )1 CSLs. At a tech-
nical level, this required thefollowing innovations: (i) the
Gutzwiller projected wave functions for SU(N )1 CSLs, in-
cluding the MES basis on the cylinder, are systematically con-
structed; (ii) the powerful tensor network library incorporating
non-Abeliansymmetry efficiently converts the projected wave
functions into MPSs with high fidelity; (iii) the iDMRG is
initialized with the MES basis and preserves theSU(N ) sym-
metry. The combination of these innovative techniques allows
us to obtain allN degenerate ground states of theSU(N )1CSL
and characterize them from the entanglement spectrum.

IV. IPEPS

The results obtained from ED and iDMRG have shown
affirmative evidences for SU(N)1 CSL in a wide range of
parameters with arbitrary N . On the other hand, a varia-
tional ansatz capturing properties of the CSL phase is also
highly desired, especially in terms of symmetric PEPS. Fol-
lowing the implementation of chiral PEPS for N = 2 (see

Refs. [44, 48, 52]) and N = 3 (see Ref. [47]), we will first
outline the general scheme of the construction, with focus on
how the relevant symmetries are realized on the local tensors.
We then proceed to a variational optimization of the very few
parameters. Finally, we investigate the entanglement proper-
ties and bulk correlations of the optimized chiral PEPS, con-
fronting the results with general considerations.

A. Symmetric PEPS construction

Let us first extend the construction of chiral PEPS used for
N = 2 (see Refs. [44, 48, 52]) and N = 3 (see Ref. [47]
for more details). The PEPS is obtained by contracting the
network represented in Fig. 11, i.e., by summing all virtual in-
dices on the links connecting rank-(z+1) site and rank-2 bond
tensors, z being the lattice coordination number, z = 4 for the
square lattice. The physical space F on every lattice site is
spanned by d = N states transforming according to the fun-
damental IRREP of SU(N ). The choice of the virtual space
on the z = 4 bonds around each site can be made following
heuristic rules valid for all N . In other words, we construct
a SU(N )-symmetric PEPS from site/bond tensors with virtual
(or bond state) space,

VN = • ⊕ ⊕ · · · ⊕

N − 1 (6)

where the direct sum contains all N IRREPs defined by sin-
gle column Young diagrams of 0 up to N − 1 boxes, consis-
tently with the N = 2 and N = 3 cases, V2 = 1 ⊕ 2 and
V3 = 1 ⊕ 3 ⊕ 3̄ [84]. For the N = 4 case we then assume
V4 = 1⊕ 4⊕ 6⊕ 4̄ (with bond dimension D = 15). By con-
struction, the bond state (or virtual) space remains the same
when the direction of arrow in Fig. 11 is reverted, as V maps
into itself when all IRREPs are flipped into their dual. Note
that the site tensor A can be seen as a linear map (or projec-
tion) (VN )⊗z → F onto the physical state space, and the bond
tensor B as fusing bond state spaces into a fully entangled pair
singlet state, (VN )⊗2 → •. As such, the tensors A and B ex-
plicitly correspond to the ‘P’ and ‘EP’ part in the acronym
PEPS, respectively. Up to normalization, the bond tensor B
corresponds to an orthogonal matrix inserted into each bond
within the tensor network [82, 83]. It is real and defined as a
weighted sum of three elementary (reflection-symmetric) ten-
sors representing the three allowed fusion channels •⊗• → •,
6⊗ 6→ • and 4⊗ 4̄→ •. As such, it does not add any vari-
ational degrees of freedom.

As for N = 2 and 3, we classify the SU(4)-symmetric site-
tensors according to (i) the number nα of α-IRREPs appear-
ing on their z = 4 virtual bonds, nocc = {n6, n4, n4̄, n1}
(
∑
nα = z) and (ii) the (1-dimensional) IRREP of the C4v

point group of the square lattice [85] (see Table III). Since the
chiral spin liquid only breaks P (parity) and T (time-reversal)
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FIG. 12. Entanglement spectra on an infinitely-long width-4 cylinder obtained from an SU(4) (D = 15) PEPS wave function optimized for
θ = π/4, φ = π/2 and environment dimension χ = 1350. Spectra are plotted vs perimeter momentum ky and, to better evidence their chiral
nature, the ky = −π/2 spectrum is replicated at ky = 3π/2. Appropriate Z4 charge boundaries Q = 2, 0 and ±1 are set up to select the
6 (a), 1 (b), and 4/4̄ (c,d) topological sectors, showing one, two and four branches, respectively. Note that the 4 and 4̄ spectra are identical
apart from an overall charge conjugation of all IRREPs (and small finite-χ numerical errors).

but does not break the product PT, the PEPS complex site ten-
sor A should be invariant (up to a sign) under PT symmetry
but acquires a complex conjugation under P or T separately
(up to a sign). The simplest adequate ansatz has the following
form:

A = AR + iAI =

NR∑
a=1

λRaAaR + i

NI∑
b=1

λIbAbI , (7)

where the real elementary tensorsAaR andAbI either transform
according to the A1 and A2 IRREPs, respectively, or accord-
ing to the B1 and B2 IRREPs, respectively, giving rise to two
possible families, AA and AB . NR = 16 and NI = 17 are
the numbers of the elementary tensors in each class and λRa
and λIa are arbitrary real coefficients of these tensors to be op-
timized variationally.

To contract the infinite (double layer) tensor network, we
have used the iPEPS method employing a Corner Transfer
Matrix Renormalization Group (CTMRG) algorithm [86, 87]
and obtain the fixed-point environment tensors used to com-
pute the variational energy (on a 2 × 2 plaquette) or the en-
tanglement spectra on infinite cylinders [47, 48]. In order to

cope with the large bond dimension (D = 15), the tensor con-
tractions at each CTMRG step have been performed using the
full SU(N )-symmetry, thanks to the QSpace library [82, 83].
This changes the description of any vector space V from state-
based to multiplet-based. For numerical efficiency then, im-
portantly, the dimensionality is reduced from DV states to an
effective dimension ofD∗V multiplets, where for SU(N ) it typ-
ically holds D∗V � DV . As an example, the bond dimension
D2 = 225 of the double layer (rank-4) tensor AA∗ (used in
CTMRG) can be reduced to D2∗ = 26 which represents the
number of multiplets in the product space:

ν⊗2
4 = 4

1• ⊕ 4
4

⊕ 4

4̄

⊕ 4

6

⊕ 1
10

(8)

⊕ 1

10

⊕ 3

15

⊕ 2

20

⊕ 1

20′

⊕ 2

20

.

By fully enforcing SU(N ) symmetries on all tensors and in-
dices, this automatically implies that singular values within
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any multiplet are degenerate. Therefore naturally, state space
truncation is also always performed based on entire multiplets.
Degeneracies across different multiplets, however, can be ar-
bitrarily split depending on the algorithm and overall conver-
gence. For SU(4), we have increased the environment dimen-
sion up to χ∗ = 221 multiplets (corresponding to χ = 1350
states) to control truncation errors. The optimization of the
PEPS (7) with respect to its variational parameters is done
within a variational optimization scheme [88]. For θ = π/4,
φ = π/2, the best variational energy (per site) e ' −2.105
(close to the DMRG estimate −2.14) is obtained for the AB
ansatz that we shall consider hereafter.

B. Entanglement spectrum and edge physics

Both ED and DMRG computations have shown over-
whelming evidence of SU(N )1 edge modes, both on disk and
cylinder geometries, a fingerprint of the Abelian CSL phase.
We note that, apart from the trivial (identity) sector, the con-
formal towers previously obtained using PEPS on cylinders
for N = 2, 3 bear some differences with those obtained in
DMRG. For example, the spin-1/2 semionic branch of the
SU(2) spin-1/2 chiral PEPS corresponds exactly to the SU(2)1
conformal tower – consisting of half-integer spin multiplets
– associated to the WZW spin-1/2 primary field and its de-
scendants, but with an exact two-fold degeneracy [44, 48, 52].
For the SU(3) spin- chiral PEPS, in the topological sectors
defined by imposing Q = ±1 Z3 charges at the boundaries
(stricly speaking, infinitely far away), three chiral branches –
instead of a single one – separated in momentum by 2π/3 are
observed in the ES, whose level contents follow the prediction
of the Virasoro levels of the SU(3)1 WZW CFT [47]. Inter-
estingly, both DMRG and PEPS show the same number of
states in each Virasoro level, namely N times the WZW CFT
content. These particular features of the PEPS ansatz are now
further tested in the case of the SU(4) model in order to draw
more general (empirical) statements for SU(N ) spin- chiral
PEPS.

The ES, revealing the topological properties of the PEPS, is
computed by placing the optimized D = 15 (D∗ = 4) PEPS
on a width-4 infinite cylinder partitioned in two halves. The
PEPS holographic bulk-edge correspondence [47, 89] enables
to compute the ES simply from the (fixed-point) environment
tensors. The four topological sectors are selected by impos-
ing a well-defined total Z4 charge Q at both ends (strictly
speaking at infinity) on the virtual levels. Following the as-
signment q1 = 0, q4 = 1, q4̄ = −1 and q6 = 2, we have
Q =

∑
qα mod[4], where the sum runs over the virtual open

bonds along the circumference at the boundaries. In practice,
this is performed by filtering out the components of the envi-
ronment tensors used to approximate each halves of the cylin-
der.

A necessary ingredient for identifying the linear dispersing
modes in ES is the momentum quantum number associated
with each energy level, which originates from the translation
invariance along the circumference of the cylinder. For that

purpose, we consider the momentum projection operator Pky :

Pky =
1

Ny

Ny−1∑
r=0

e−ikyrT r, (9)

where ky = 2π
Ny
Ky , Ky = 0, 1, 2, . . . , Ny − 1, and T is

the one-site translation operator acting on the virtual degrees
of freedom. Since T commutes with ρ, we can diagonalize
PkyρPky , whose nonzero eigenvalues are also eigenvalues of
ρ, and corresponding eigenstates carry momentum quantum
number ky , to obtain ES and momentum quantum number si-
multaneously. In this setup, the action of translation operator
on ρ can be implemented as a permutation of indices of ρ.

In Fig. 12 the ES in the four topological sectors are shown
as a function of the momentum ky along the circumference.
For Q = 2, 0 and ±1, we identify one, two or four linearly
dispersing chiral branches, respectively. When two or four
branches are seen, the later are equally spaced in momentum,
i.e. by 2π/2 = π and by 2π/4 = π/2, respectively. De-
spite the very small circumference (Nv = 4), for Q = 2 and
0 the expected SU(4)1 counting of the first Virasoro levels is
satisfied. For Q = ±1, due to limited resolution in K-space,
the states of the second Virasoro level of each branch are not
clearly separated from the continuum above. Although it is
difficult to draw definite conclusions on such a thin cylinder,
it seems that the SU(4) chiral PEPS reveals, as for the SU(2)
and SU(3) cases, a duplication of the chiral branches for most
topological sectors. In the SU(2) PEPS this was attributed
to the so-called “dressed mirror symmetry” within the virtual
degrees of freedom [90]. Note however that there is no ex-
act degeneracy in the N = 3 and N = 4 cases, in contrast
to N = 2, so that the duplication of the chiral modes may
have a different origin here. In any case, as for the DMRG
wave function, the duplication of the chiral states in the PEPS
is linked to the fact that the ansatz is not a MES but, rather,
carry an extra entanglement due to its global singlet nature.
However, the manifestation in the ES is different in the two
cases.

C. Correlation lengths

It was proven that any short-range quadratic parent Hamil-
tonian for chiral non-interacting PEPS is gapless [91]. This
suggests that a fundamental obstruction or “no-go theorem”
may prevent to describe a gapped CSL phase with a 2D PEPS
(of finite bond dimension D). In fact, the PEPS optimized for
the N = 2 and N = 3 chiral Heisenberg models [47, 48]
reveal rather long-range correlations and growing correlation
lengths with environment dimension χ. It is therefore of much
interest to also test this important feature in our SU(4) PEPS.
For that purpose, we have computed the leading correlation
lengths (associated to the leading correlations in the bulk of
the PEPS) from the leading eigenvalues of the transfer ma-
trix (TM) [44] (with no gauge “vison” flux). These correla-
tion lengths, plotted in Fig. 13, show no sign of saturation
with χ∗/D2∗, or equivalently with χ/D2 (D = 15) – at least
the three largest ones. The latter (shown in orange color)
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FIG. 13. Leading correlation lengths obtained from the transfer ma-
trix (in the absence of gauge flux) for the case of SU(4) plotted versus
the number of multiplets χ∗ kept in the environmental tensors, nor-
malized by D2∗ = 26 which represents the number of multiplets in
the product space of D×D states with D fixed. The SU(4) IRREPs
associated to these correlation lengths are indicated.

have been obtained from the singlet eigenvalues of the TM
and, probably, correspond to dimer correlations. The next two
(shown in blue color) correspond to spinon correlations. We
note that all correlation lengths remain rather short, even for
the largest χ value. However, the data for N = 2, 3 and
4 clearly show that all correlation lengths are comparable at
the same value of χ/D2. For example, the dimer correlation
length ranges between 3.5 and 6 for χ/D2 = 6, weakly de-
pendent on N and on the model parameters. Since the PEPS
bond dimension increases significantly with N (D = 3, 7, 15
for N = 2, 3, 4, respectively) the maximum achievable value
of χ/D2, and hence of the correlation lengths, decreases
strongly with N .

Note that in the SU(2) case, the diverging nature of the cor-
relation lengths was shown to be associated, not to a conven-
tional critical behavior but, rather, to the existence of “long-
range tails” (of very small weight) in most correlation func-
tions [48]. We believe such a property also holds for any
SU(N ) CSL, although it could not be established here for
N = 4 due to the large value of the bond dimension D.

V. CONCLUSION AND OUTLOOK

In this work, the previous family of SU(3) chiral Heisen-
berg models on the square lattice has been generalized to
any SU(N ) fundamental IRREP as physical degrees of free-
dom. The construction follows two steps: the first one con-
sists in building up the most general fully translational, rota-
tional and SU(N )-symmetric model (possibly breaking time-
reversal symmetry) whose interactions extend at most to 3-
sites within the square plaquettes. In a second step, one re-
stricts to a subset of this model family whose Hamiltonians

can be written solely as a sum of S3-symmetric operators de-
fined on all the triangles within the square plaquettes. By do-
ing so, we expect to mimic some of the physics of the trian-
gular lattice with 3-site chiral interactions, although keeping
the full C4v point group symmetry of the square lattice. This
procedure defines a sub-family of chiral Heisenberg models
spanned by two independent parameters (angles) that we have
explored in details.

Extensive ED computations bring overwhelming evidence
of extended regions of stability of SU(N ) CSL phases for all
N , up to N = 10. The Abelian SU(N )1 topological nature of
these phases has been clearly established from the many-body
low-energy spectra of periodic (tori) and open (disks) clusters.
When the system size Ns is commensurate with N (so that no
anyons is present in the GS) a N -fold GS degeneracy is ob-
served on small tori as expected. When the commensurability
between Ns and N is such that a single quasi-hole populates
the GS, Ns quasi-degenerate GS are found, as expected. Fi-
nally, chiral many-body low-energy spectra on open clusters
following WZW CFT counting rules provide an even more
stringent test of the existence of the SU(N )1 Abelian CSL.

iDMRG computations by enabling to access much larger
systems – typically infinitely-long broad cylinders – provide
most valuable and complementary results for N = 2, 3, 4.
Gutwiller-projected parton wave functions offer a guide to
construct iDMRG ansatze in each topological sector. Due to
their SU(N ) global singlet nature, the iDMRG wave functions
carry larger entanglement than MES (they can be seen as lin-
ear combinations of MES, except in the trivial sector) and,
hence, show ES with more structure whose complete under-
standing has been fully provided.

Following the prescriptions for N = 2 and N = 3, we
have constructed a family of chiral SU(4)-symmetric PEPS
and, under optimization, a good variational PEPS ansatz is
obtained for the chiral SU(4) Heisenberg model. The entan-
glement spectra obtained in the N = 4 topological sectors
of an infinitely-long cylinder reveal chiral modes. The mul-
tiplicity of the chiral modes is attributed to the non-MES na-
ture of the singlet PEPS ansatz in most topological sectors.
Finally, growing correlation lengths with environment dimen-
sion are consistent with the existence of “long-range tails” (of
very small weight) in correlation functions (evidenced explic-
itly for N = 2 [48]). We speculate that these long-range tails
would fade away (i.e. their weights would continuously van-
ish) for increasing D, providing a more and more faithful rep-
resentation of the GS. If correct, this implies that the no-go
theorem [91] does not practically prevent an accurate chiral
PEPS representation of the topological gapped CSL phase.

We note that the SU(N ) CSL is stable in some regime
where the 3-site interaction is purely imaginary (correspond-
ing to φ = π/2), mostly studied here. In fact, this case is rel-
evant in ultracold atom systems which can realize an SU(N )
fermionic Hubbard model [27]. In the presence of an arti-
ficial gauge field (providing complex amplitudes to the ef-
fective hoppings), at 1/N filling (one particle per site), the
large-U Mott insulating phase [19, 29, 30] can be approx-
imately described by our Hamiltonian, so that an Abelian
SU(N ) phase on the square lattice may be seen experimen-
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tally if low-enough temperatures could be reached. Experi-
mental setups of ultracold atoms at other fractional fillings like
k/N (k ∈ N particles/per site) could be also of great interest
and be described by new types of SU(N ) spin Hamiltonians,
like the two-fermion SU(4) model [92] with additional chiral
interactions on triangular units, opening the way to observe
non-Abelian CSL.

ACKNOWLEDGMENTS

J.-Y. C., J.-W. L. and P. N. contributed equally to this
work. D. P. conceptualized the work. We acknowledge en-
lightening conversations with Norbert Schuch. We also thank
Alexander Wietek for the use of his QuantiPy library and Lau-
rens Vanderstraeten for help on non-abelian symmetries in
tensor networks. J.-Y. C. acknowledges support by the Eu-
ropean Union’s Horizon 2020 programme through the ERC
Starting Grant WASCOSYS (Grant No. 636201) and the
ERC Consolidator Grant SEQUAM (Grant No. 863476), and
from the Deutsche Forschungsgemeinschaft (DFG, German
Research Foundation) under Germany’s Excellence Strategy
(EXC-2111–390814868). K. T. is supported in part by JSPS
KAKENHI Grant No. 18K03455 and No. 21K03401. H.-
H. T. is supported by the Deutsche Forschungsgemeinschaft
through project A06 of SFB 1143 (project-id 247310070). J.
v. D. acknowledges support from the Deutsche Forschungs-
gemeinschaft under Germany’s Excellence Strategy EXC-
2111390814868, through project No. 409562408. D. P.
acknowledges support by the TNSTRONG ANR-16-CE30-
0025 and TNTOP ANR-18-CE30-0026-01 grants awarded by
the French Research Council. J.-W. L. acknowledges support
by DFG WE4819/3-1. A. W. was supported by the U.S. De-
partment of Energy, Office of Science, Basic Energy Sciences,
Materials Sciences and Engineering Division. This work was
granted access to the HPC resources of CALMIP and GENCI
supercomputing centers under the allocation 2017-P1231 and
A0030500225, respectively, and computations have also been
carried out on the TQO cluster of the Max-Planck-Institute of
Quantum Optics.



17

Appendix A: Analysis of 2× 2 plaquette

The focus of the present paper is on chiral spin liquids
which have the SU(N ) flavor symmetry intact both locally and
globally. In particular, the ground state remains an SU(N ) sin-
glet in the thermodynamic limit. This suggests that also the
low-energy regime of smaller clusters should have a singlet
ground state. If that is not possible by finite size, at least, one
may expect to have a ground state that is closest to a singlet in
the sense that they tend to prefer to fill up full columns in the
corresponding Young tableau (YT).

In this spirit this appendix analyzes the 2 × 2 plaquette as
an elementary unit of the Hamiltonian. The Hamiltonian (1)
on the full 2D square lattice can be rewritten as

H =
∑
p

Hp (A1)

whereHp is the Hamiltonian for a single square plaquette p of
2×2 sites that combines all terms i, j, k ∈ p (in order to avoid
overcounting along the edge of the plaquette, we set J1 →
1
2J1 for Hp, whereas J2, JR, and JI remain the same). Now
with Hp the combined set of local operators that can be used
to tile the entire 2D Hamiltonian, it is natural to analyse its
multiplet structure. Multiplets inHp that are low in energy are
expected to be important in the low energy physics on the 2D
lattice itself, whereas multiplets of Hp at higher energies will
likely play a minor role. Clearly, the ground state multiplet
of Hp also may change when tuning the coupling parameters
{J1, J2, JR, JI}. This then may signal a qualitative change
of the overall low-energy behavior of the 2D system, e.g., a
low-order phase transition for similar coupling parameters.

The eigenspectrum of the 2 × 2 plaquette Hamiltonian Hp

is analyzed in Fig. 14 for N = 2, 3, 4, 5 in panels (a-d), re-
spectively. The SU(N ) multiplet structure is fully resolved
as indicated with the legend. For the sake of the discussion
here, we use Dynkin labels in compact notation to identify
symmetry sectors where q ≡ (q1 . . . qN−1) directly specifies
to corresponding SU(N ) YT via differential length offsets of
the number of boxes in subsequent rows of the YT (e.g. see
also App. A in [93]). For example, (10 . . . 0)N−1 is the fun-
damental or defining representation also labelled as N in the
main text, and (10 . . . 01)N−1 is the adjoint representation.
The reverse order (qN−1 . . . q1) ≡ q̄ specifies the dual IRREP
to any q = (q1 . . . qN−1). For the case of SU(2), having a
single number (q1) only, the integer q1 simply counts the to-
tal number of boxes in the YT, and thus corresponds to a spin
S ≡ q1/2 multiplet. Its adjoint is given by S = 1, i.e. multi-
plet q = (2).

General aspects of SU(N ) permutation Hamiltonian

The Hamiltonian (1) and therefore alsoHp above is defined
via simple permutations of flavors over two or three sites. A
direct consequence of this is, that all eigenenergies appear-
ing for SU(N ) exactly also must appear for SU(N ′ > N ),
as can be clearly observed in Fig. 14. The simple reason is
that adding additional flavors N ′ − N > 0 on top of all
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FIG. 14. Eigenspectrum of a 2 × 2 cluster described by the plaque-
tte Hamiltonian Hp in Eq. (A1) vs. φ using the parametrization in
Eq. (2), with θ = π/4 fixed as in the main text [e.g. see Fig. 2]. To
focus on energy per site, the energies are divided by the number of
sitesNs = 4 as indicated. Panels (a-d) refer to case ofN = 2, 3, 4, 5
symmetric flavors, respectively. Colors indicate symmetry sectors as
indicated with the legend based on Dynkin labels. The small num-
bers on top of each line in panel (a) indicate the degeneracy of multi-
plets which shows that the green line only is 2-fold degenerate. This
also holds for all data in the other panels.

sites, the Hamiltonian will not make any reference to these
when applying it to a state that only contains up to the first
N flavors. The multiplet label needs to adapt, though. By us-
ing Dynkin labels, this simply concatenates additional trailing
numbers qi. Considering a four-site plaquette here, these extra
trailing numbers must all be zero for N ′ > 4, as largely al-
ready also observed for SU(4) itself [see legend in Fig. 14(d)].
With this clearly also the degeneracy in terms of states within
these multiplets changes as required by the increased Hilbert
space. However the eigenenergies themselves remain exactly
the same. Therefore given a Hamiltonian that solely consists
of permutations of otherwise symmetric flavors, the many-
body eigenspectrum for a given SU(N ) is exactly inherited
also to all cases SU(N ′ > N ). This is made explicit across
the panels in Fig. 14 by choosing matching color coding. For
example, what was a singlet in SU(2), i.e., the green line for
q = (0), becomes q = (02) for SU(3), and then q = (020 . . .)
for larger N still.

When increasing the number of flavors N → N ′ > N ,
however, also new eigenenergies can emerge that were previ-
ously absent. For example, in Fig. 14 this is seen as additional
lines that appear when going from N = 2→ 3 (yellow lines)
or N = 3 → 4 (blue line). Given a 4-site plaquette with the
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fundamental IRREP on each site, the number of lines will no
longer change forN ′ > 4, as seen by going fromN = 4→ 5,
since all YTs with four boxes are already present.

Low-energy regimes

Now the analysis in Fig. 14 tracks the eigenvalues vs. φ
for fixed θ = π/4 similar to Fig. 2 in the main text. The
red line in Fig. 14 corresponds to the fully symmetric IRREP
q = (40 . . .)N−1 that is present for all N ≥ 2. This multi-
plet crosses over and becomes the ground state for φ > π for
N ≥ 4, and already earlier forN = 2 andN = 3. This shows
that the 2× 2 plaquette becomes ferromagnetic around φ & π
[note that based on Eq. (2), φ > π corresponds to negative,
and hence ferromagnetic J1 and J2]. As such, this signals the
onset of ferrogmagnetism on the full 2D system, also consis-
tent with the analysis of the larger clusters in Fig. 2.

Finally, with focus on a singlet ground state, on the given
four-site plaquette this can only be achieved exactly forN = 2
and N = 4. Interestingly then, the singlet for SU(2) [green
line in Fig. 14(a)] becomes a non-singlet for N > 2, i.e., (02)
for SU(3), and (020 . . .) thereafter. Instead, an entirely new
singlet shows up for SU(4) in the low-energy regime, and re-
mains an eigenenergy for N ≥ 4 (blue line). Therefore while
in the case of SU(2) the singlet is favored for small φ ∈ [0, π],
it is favored for larger φ ∈ [0, π] for SU(4) and onward. What
comes closest to a singlet for SU(3) on the 2 × 2 plaquette,
on the other hand, is the multiplet (10), i.e. the fundamen-
tal IRREP. Based on the fusion of the four fundamental IR-
REPs on the 2 × 2 plaquette to start with, this already fused
three of these into a singlet. As seen by the yellow line in
Fig. 14(b), the multiplet (10) is the ground state for a wide
range φ ∈ [0, π], including small but excluding large φ where
the system becomes ferromagnetic. This is perfectly consis-
tent with the analysis on the larger cluster in Fig. 2(a) in the
main text which for N = 3 also shows the chiral phase ex-
tending all the way down to φ = 0.

The chiral phase was identified in Fig. 2 with the gapped
phase around φ & π/2. However, when reducing φ, as seen
in Fig. 2 for N > 3, this gapped phase closes at finite φ. Even
more, for certain N it appears to reopen before approaching
φ = 0. Hence based on Fig. 2 having the chiral phase iden-
tified with the regime of larger φ & π/2, this is entirely con-
sistent with the regime in the present analysis of the 2 × 2
plaquette where the system is (or tends towards becoming) a
singlet for N ≥ 4 in Fig. 14(c,d). Note that for N > 4, the
blue line in Fig. 14(d) corresponds to the fully antisymmetric
multiplet where four boxes are stacked on top of each other
into a single column in the corresponding YT.

In the chiral regime φ & π/2 also the coupling strength of
the real three-site permutation termHR

ijk ≡ JR(Pijk+P − 1
ijk )

turns negative, i.e., having JR < 0. Its effect is revealed by
looking at the eigenvalues in the 3-site eigenbasis for given
triangle triangle (ijk). One finds for N ≥ 3 that the com-
pletely symmetric multiplet (30 . . .) and the completely anti-
symmetric multiplet (001 . . .) [equivalent to (00) for SU(3)]
are eigenstates to the same eigenvalue +2JR, whereas the

2-fold degenerate multiplets (110 . . .) have eigenvalue −JR
(which are eventually differentiated by the complex term JI ).
Hence negative JR equally favors both, the completely sym-
metric multiplet (ferromagnetic) as well as the completely
antisymmetric multiplet (antiferromagnetic) on any triangle.
When considering all triangles within a 2 × 2 plaquette as
analyzed in Fig. 14, the antiferromagnetic states dominate the
low energy regime, yet with the ferromagnetic regime in close
proximity (both , the blue and red lines move downward with
increasing φ for N ≥ 4). Eventually, for φ > π when also
the two-site exchange couplings J1 and J2 turn negative, the
ferromagnetic state takes over.

Appendix B: Generalized exclusion principle for Abelian SU(N )
CSL

We provide here complementary details about the heuristics
on the content (degeneracy, quantum numbers, etc. . .) of the
GS manifold within the CSL phase on small periodic clusters
(of torus geometry).

As realized already for N = 3 in Ref. [47], it is possible
to obtain, for arbitrary N , the exact momenta of the various
states in the GS manifold expected for an Abelian SU(N )1
CSL. This can be inferred from a simple generalized exclu-
sion principle (GEP) known for FQH states [59] or fractional
Chern insulators [60] with clustering properties.

For our SU(N ) model in the fundamental representation,
there are N states per site which can be viewed as a color de-
gree of freedom. The mapping to a bosonic FQH requires to
treat them separately: one (arbitrarily chosen) color will cor-
respond to a hole while the remaining C = N − 1 will corre-
spond to spinful SU(C) bosons. Hence, Abelian bosonic FQH
states can be constructed at a filling νFQH = C/(C + 1) =
(N − 1)/N , corresponding to Halperin states [94–96]. In
this terminology, the ground states and quasi-hole states is
given by the number of dressed partitions (1, 2)C , see Ref. 60.
Moreover, the respective momenta can be obtained from the
mapping between Ns orbitals obtained when folding the Bril-
louin zone [97, 98].

To be more specific, let us consider for instance N = 3
which maps onto C = 2 bosons, i.e spin-1/2 particles. Then,
the generalized exclusion principle for the ground-states (for
Ns = kN ) enforces the occupations (↓, ↑, 0, . . .) and its trans-
lations, i.e. 3 states. This (1, 2)2 exclusion rule simply en-
forces that identical particles cannot be neighbors but a ↓
particle can be followed by a ↑ particle. Such rules can be
rephrased in terms of follow-up rules in the string of states,
e.g. 0→ (0, ↓, ↑), ↑→ 0, ↓→ (0, ↑), which defines a “transfer
matrix”,

T (N=3) =

1 1 1
1 0 1
1 0 0

 , (B1)

for N = 3.
The transfer matrix above is easy to generalize to any N ,

with 1’s in the first column and above the diagonal and zeros
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otherwise. For example, one gets

T (N=5) =


1 1 1 1 1
1 0 1 1 1
1 0 0 1 1
1 0 0 0 1
1 0 0 0 0

 , (B2)

for N = 5. Note that, in addition to the rules encoded in the
transfer matrix (which alone produce a large number of irrel-
evant configurations), one should also simultaneously enforce
a global property relating the total appearance of all colors
such that the GS belong to the SU(N ) IRREP of smallest pos-
sible dimension compatible with system size. More precisely,
defining the integer r0 = mod(Ns, N), the smallest possible
IRREP corresponds to the antisymmetric IRREP with a Young
diagram of r0 vertical boxes (labeled in the text aIRN (r0)),
and, heuristically, is to be associated to the GS manifold. For
instance for Ns = kN , all colors should appear exactly k
times, i.e. c1 = c2 = · · · = cN = k, as the singlet character
of the GS manifold implies.

For Ns = kN − 1, k ∈ N, we expect the low-energy states
to represent the quasi-hole excitations, similar to the quasi-
hole Laughlin states when inserting a flux in a fractional quan-
tum Hall state on a torus. In particular, the quasi-hole counting
on a finite cluster should be the same as in the thermodynamic
limit and is given by a generalized Haldane exclusion princi-
ple [97, 98]. Moreover, the lattice momenta at which these
(quasi) degenerate states sit can be obtained using a heuristic
rule by folding the two-dimensional Brillouin zone into a one-
dimensional lattice of orbitals [97]. For instance, for all the
quasi-hole examples shown in Fig. 4, since GCD(N ,Ns)=1,
we expect to find one low-energy SU(N ) multiplet at each
momentum (i.e. a total number of quasi-hole states equal to
NNs), which is exactly what is found numerically.

When Ns = kN , we expect N -fold quasi-degenerate
ground states on a torus. The momenta are given using a sim-
ilar heuristic rule and are non-trivial. For completeness, here
are the predictions corresponding to the values shown in Fig. 4
(see the Brillouin zones as insets for the momenta notations):
(i) N = 4 and Ns = 20: one state at momentum Γ, M and
2-fold degenerate X; (ii) N = 5 and Ns = 15: one state at
momentum Γ,±Σ0,±Σ2; (iii)N = 6 andNs = 12: one state
at momentum Γ, Z1, ±∆, Z0, ∆; (iv) N = 7 and Ns = 14:
one state at momentum Γ, ±0, ±2, ±5. All these predictions
are verified numerically, and the low-energy states are always
well separated from the higher excited ones as expected in this
topological incompressible gapped phase.

Appendix C: WZW SU(N )1 chiral towers of states

We provide here an almost self-contained explanation of the
Hilbert-space structure of the SU(N ) WZW CFT and derive
the SU(N )1 WZW towers of states for N = 2 to 8, which are
to be compared with the ED results for SU(N ) open clusters
investigated and discussed in the main text. This appendix
is organized as follow. In the first part, we recall some ba-
sic facts on su(N) Lie algebra and its representation theory

(see Ref. [99] for a readable introduction to Lie algebras and
their representation). In a second part, we briefly present the
affine extension of SU(N ) and introduce the primary states on
which the Hilbert space is constructed. Most of the equations
presented in the first two parts are relevant to any (affine) Lie
algebras unless otherwise stated. In the last part, we explain
how WZW SU(N )1 chiral towers of states for open clusters
can be computed using this formalism. The appendix closes
with the tables showing the explicit form of the towers of
states relevant for the present study, up to SU(8). This ap-
pendix in not intended to give a mathematical presentation
of the field but rather to introduce, without any mathematical
proof, the basic tools needed to identify the expected repre-
sentations in WZW SU(N )1 chiral towers of states.

1. su(N) Lie Algebra

Group, Generators - The special unitary group SU(N ) is
the Lie group of N ×N unitary matrices with determinant 1.
The Lie algebra su(N) associated to the Lie group SU(N ) is
determined by a set of N2 − 1 traceless hermitian generators
Jα satisfying the commutation relations,[

Jα, Jβ
]

= ifαβγJ
γ , (C1)

where the real fully antisymmetric tensor f encodes the struc-
ture constants. Equation (C1) is a direct consequence of the
group structure of SU(N ) and the fact that the Lie group and
the Lie algebra are related by the exponential map which as-
sociate to any element J of su(N) an element exp(itJ) of
SU(N ).

Cartan Weyl basis, Adjoint representation, roots - The
maximal subset {Hi}i=1,...,r of su(N) composed of commut-
ing generators [Hi, Hj ] = 0 forms the Cartan subalgebra of
su(N) and plays the role of Sz in su(2). Obviously, since all
Hi can be diagonalized simultaneously, the rank r of su(N)
is N − 1, which is equal to the maximal number of traceless
diagonalN×N matrices. As {Hi} can be simultaneously di-
agonalized, we can choose the basis vectors in any irreducible
representation to be the eigenstates |µ〉 of Hi:

Hi|µ〉 = µi|µ〉 . (C2)

The (N − 1)-dimensional vector µ = (µ1, . . . , µN−1) is
called the weight. The remainingN(N−1) off-diagonal gen-
erators will be denoted as Eα.

To each generator Jα, we can associate a linear map adJ
from su(N) to itself defined as adJ(X) = [J,X] for anyX in
su(N). This defines the adjoint representation which can be
used to classify the generators Eα as eigenvectors of adHi :

adHi(Eα) = [Hi, Eα] = αiE
α (i = 1, . . . , N − 1) .

(C3)
The (N − 1)-dimensional vectors α = (α1, . . . , αN−1) are
called the roots and Eα, which play the role of S±, the ladder
operators. The Cartan-Weyl basis is {Hi, Eα}i∈{ 1,...,r},α∈∆

where ∆ denotes the set of all N(N − 1) roots. Obviously,
only r = N − 1 roots are linearly independent. An important
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remark is the non-degeneracy of roots. Indeed, the existence
of a degenerate root would contradict the definition of the Car-
tan subalgebra (maximal set of commuting generators).

It is clear from Eq. (C3) that there is some arbitrariness in
the determination of Eα and α as both depend on the choice
of a particular basis for the Cartan subalgebra. Nevertheless,
some general properties can be established. Once the basis of
r = N −1 linearly independent roots is fixed, one can expand
any root in this basis. Roots with positive coefficients in this
expansion are called positive and form the set ∆+. A root
α(i) (i = 1, . . . , r) that cannot be expressed as an integer sum
of two positive roots is by definition a simple root.

The central role of such r = N−1 simple roots not only lies
in the fact they provide a convenient basis for roots but also
because the (N−1)×(N−1) matrixA of the scalar products
of simple roots (the Cartan matrix) completely encode the Lie
algebra:

Aij =
2α(i).α(j)

α(j).α(j)
= α(i).α(j)∨, (C4)

with α(i)∨ = 2α(i)/|α(i)|2 (coroots). The entries of this ma-
trix are always integers and, in the su(N) case,A is symmetric
and take the form Aij = 2δij − δ|i−j|,1. For su(N) in which
all the N(N − 1) roots have equal length (i.e., simply laced),
it is convenient to choose |α(i)| =

√
2 so that we do not need

to distinguish between the roots and the coroots. The lattice
spanned by the r = N − 1 basis vectors α(i) (α(i)∨) is called
the root lattice Λr(su(N)) [the coroot lattice Λ∨r (su(N))].

Fundamental weights - From the set of simple roots {α(i)},
we can introduce its dual, i.e., the fundamental weights ω(i)

satisfying

α(i)∨·ω(j) = δij , (C5)

which can be used as the basis of the weights (Dynkin basis):

µ =

N−1∑
i=1

d(µ)i ω(j) . (C6)

The coordinates d(µ)i in this basis is called Dynkin labels.
The lattice spanned by the basis {ω(i)} is called the weight
lattice Λw(su(N)) (see Fig. 15). The relation between the co-
root lattice Λ∨r (su(N)) and the weight lattice Λw(su(N)) is
analogous to that between the lattices in the real space and the
reciprocal space. Any irreducible representation R of su(N)
is specified by its highest weight λR or its Dynkin labels
{d(R)i}

λR =

r∑
i=1

d(R)iω(j) (di ∈ Z, di ≥ 0) (C7)

and, by applying the lowering operators E−α (α ∈ ∆+),
we can construct the corresponding irreducible representation
(see Fig. 16 for su(3) examples). In su(N), the represen-
tation specified by (d1, d2, · · · , dN−1) has a Young diagram
with d1 columns with length 1, d2 columns with length 2, · · · ,
and dN−1 columns with length N − 1. For example, the fun-
damental representations are always specified by the Dynkin

labels {d(R)i} in which only one of di is 1 and the others are
zero.

FIG. 15. (color online) The (co)root lattice Λr(g) (black circles) and
and the weight lattice Λw(g) (red circles) of g = su(3). The root
(weight) lattice is an integer span of two simple (co)roots α(1) and
α(2) (two fundamental weights ω(1) and ω(2)). In su(3), ω(1) and
ω(2) respectively correspond to the highest weights of 3 and 3̄.

hws

hws

FIG. 16. (color online) Weights of 6 and 10-dimensional represen-
tations of su(3). The representations 6 and 10 have highest weights
(shown as “hws”) with Dynkin labels (d1, d2) = (2, 0) and (3, 0),
respectively. Red (blue) arrows show the action of the roots (“low-
ering operators”) −α(1) (−α(2)) to the weights (see Fig. 15 for the
definitions of α(1,2)).

2. Affine Lie Algebras and Wess-Zumino-Witten model

The affine Lie algebras are characterized by the following
commutation relations which generalize (C1):

[Jαn , J
β
m] = ifαβγJ

γ
n+m + k̃nδm+n,0δ

αβ (C8)



21

(see, e.g., Refs. [46, 100] for physicist-friendly reviews of
affine Lie algebras). Physically, (C8) is the algebra of the
Fourier modes of the local SU(N ) currents {Jα(x)} satisfy-
ing:

[ Jα(x) , Jβ(y) ] = i fαβγJγ(y)δ(x− y)

+
i

2π
k̃ δαβ ∂xδ(x− y)

Jα(x) =
1

L

∑
n∈Z

e−i
2π
L nx Jαn .

(C9)

The above are anomalous in that the right-hand side contains
the central term [which is proportional to δ′(x)] on top of the
term expected from the Lie algebra. Obviously, the coefficient
k̃ of the central term depends on the normalization of Jαn and
it is convenient to introduce the normalization-independent in-
teger k called the level of the affine Lie algebra by

k̃ =
|θ|2

2
k ,

where |θ| is the length of the highest root (the quantization
of k follows, e.g., from the consistency of the path-integral
representation of the WZW model). The |θ| depends on the
normalization of the generators and, in su(N), a convenient
choice is to normalize the N -dimensional hermitian gener-
ators {Jα} as Tr(JαJβ) = δαβ which amounts to setting
|θ| =

√
2. Then, we do not have to distinguish between the

coefficient k̃ of the central term and the level k (∈ Z). The
special casem = n = 0 of (C8) reduces to (C1), which means
that the zero modes {Jα0 } form the usual su(N) Lie algebra
(called the horizontal subalgebra).

As a class of CFT with Lie-algebra symmetry, the WZW
CFT has the Virasoro generators {Ln} which are bilinear in
Jαn (Sugawara form) [100, 101]:

Ln =
1

|θ|2(g∨ + k)

∑
α

∑
m∈Z

: JαmJ
α
n−m : , (C10)

where the normal-ordering : · · · : is defined by

: JαmJ
α
n : =

{
JαmJ

α
n when m < 0

Jαn J
α
m when m ≥ 0 .

The number g∨ (the dual Coxter number), which is peculiar
to a given Lie algebra, is given by the structure constants as
−fαβµfαµγ = |θ|2g∨δβγ and is equal to N in su(N). By
a direct calculation, we can show that the above {Ln} satisfy
the Virasoro algebra

[Lm, Ln] = (m− n)Lm+n +
1

12
c(g, k)m(m2 − 1)δm+n,0

(C11)
with the central charge given by

c(g, k) =
k dim(g)

k + g∨
(k = 1, 2, . . .) , (C12)

which, for su(N), reads

c(su(N), k) =
k(N2 − 1)

N + k
. (C13)

On top of Eq. (C11), {Ln} satisfy the following commutation
relations with the generators {Jαn }:

[Lm, J
α
n ] = −nJαm+n . (C14)

In particular,

[L0, J
α
n ] = −nJαn , [L0, J

α
0 ] = 0 (C15)

implies that not only L−n (n > 0) but also Jα−n increase the
eigenvalue of L0 and that for each eigenvalue of L0 (i.e., for
each level of conformal towers) we have a reducible represen-
tation of su(N) (formed by {Jα0 }).

In CFTs with extended symmetries, it is convenient to de-
fine the primary states |φ〉 as those annihilated by all Jαn with
positive n:

Jαn |φ〉 = 0 (n > 0) . (C16)

Then, from (C10), |φ〉 automatically satisfy the primary con-
dition with respect to the Virasoro algebra [the converse is not
true; in that sense, (C16) is stronger than (C17)]:

Ln|φ〉 = 0 (n > 0)

L0|φ〉 =
1

|θ|2(g∨ + k)

∑
α

Jα0 J
α
0 |φ〉

=
1

|θ|2(g∨ + k)
C2|φ〉 = hφ|φ〉 ,

(C17)

where Jαφ is a matrix representation of Jα and C2 is the
quadratic Casimir of su(N). All these mean that the primary
states of the WZW model transform under the irreducible rep-
resentations R of the ordinary su(N) spanned by the subset
{Jα0 }:

|φ〉 = |R;µ(R)〉 (µ(R) : weights ofR)

Jα0 |R;µ(R)〉 = −Jα(R)|R;µ(R)〉
[Jα(R) : Jα in representationR]

(C18)

and that the conformal weights hφ are given essentially by the
quadratic Casimir C2 ofR:

h(R) =
C2(R)

|θ|2(g∨ + k)
(g∨ = N for su(N)) . (C19)

As in other CFTs, these are the lowest states in a given R-
sector and the higher-lying states are generated by applying
Jα−n (n > 0).

There is a selection rule about the allowed R for a given
level k, which, in terms of the Dynkin labels (d1, . . . , dr) [see
Eq. (C7)], reads for su(N)

N−1∑
i=1

d(R)i ≤ k . (C20)
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In the level-1 (k = 1) SU(N ) WZW model which is rele-
vant in this paper, only the vacuum [1; SU(N )-singlet with
d = (0, . . . , 0)] and the N − 1 antisymmetric represen-
tations aIRN (r0) [rank-r0 antisymmetric tensor with d =
(0, . . . , 0, 1︸︷︷︸

r0

, 0, . . . , 0); r0 = 1, . . . , N − 1] in Sec. II C are

allowed for primary states:

C2
(
r0

{ )
=
N + 1

2N
r0(N − r0)|θ|2

h
(
r0

{ )
=

1

2N
r0(N − r0) (r0 = 0, . . . , N − 1) .

(C21)

These N different primary states (fields) correspond to N
topologically degenerate ground states of SU(N )1 CSL on a
torus. For the selection rule for general g, see, e.g., Sec. 3.4
of Ref. [100].

3. Finite-size spectrum

For the clarity of the explanation, we assume g = su(N)

and normalize the generator as |θ| =
√

2 in this section. In
this normalization, the coefficient k̃ of the central term is equal
to the level k, and C2 is given simply by

C2(R) =

N−1∑
i,j=1

(d(R) + e)i(A
−1)ij(d(R) + e)j

− 1

12
N(N2 − 1) ,

e ≡ (1, 1, . . . , 1)︸ ︷︷ ︸
N−1

,

(C22)

where the matrix A is the Cartan matrix defined in (C4)
and d(R) is the Dynkin labels that characterizes the highest
weightλR of the representationR by Eq. (C7). When we nor-
malize the N -dimensional generators as Tr(JαJβ) = κδαβ ,
we need to multiply the right-hand side by κ.

The Hamiltonian of the chiral CFT is given by [46, 102]:

Hchiral =
2π

l
v
(
L0 −

c

24

)
(l : system size) , (C23)

where v is the velocity parameter of the system. As L0 and
c in the level-k SU(N ) WZW CFT are given respectively by
(C10) and (C13), we obtain:

H
su(N)
chiral =

2πv

l

1

2(N + k)

∑
α∈SU(N )

{
Jα0 J

α
0 + 2

∞∑
n=1

Jα−nJ
α
n

}

− πv

12l

(N2 − 1)k

N + k
.

(C24)

The results in the previous section show that the Hilbert space
in the sector specified by an irreducible representation R of

su(N) [R obeys the selection rule (C20)] consists of the
ground (lowest) states with energy

2πv

l

C2(R)

2(N + k)
− πv

12l

(N2 − 1)k

N + k

and the equally-spaced excited states (with the level spacing
2π/l). All these states are labeled by the eigenvalues of L0

(energy) and {H1
0 , . . . ,H

N−1
0 } (weight µ of horizontal sub-

algebra {Jα0 }). As the action of the su(N)-generators Jα0
does not change the value of L0 (i.e., energy) [see Eq. (C15)],
each excited level decomposes into a direct sum of several ir-
reducible representations of su(N) (TABLES IV–C 3 shown
below give such decompositions).

There is a compact way of encoding the information on
the structure (i..e., energy, degeneracy, and the Lie-algebraic
structure) of the Hilbert space of the WZW CFT. Consider the
finite-temperature (T ) partition function of the system:

Z = TrR e−
2π
Tl v(L0− c

24 ) = q−
c
24 TrR qL0 ≡ ZR(q)

(q ≡ e− 2π
Tl v) ,

(C25)

where the subscript R means that the trace is taken over all
the excited states within the R-sector. Since L0 takes values
h(R)+N (withN being non-negative integers), if we expand
ZR(q) in a power-series

ZR(q) = qh(R)− c
24

∞∑
N=0

D(N)qN , (C26)

it immediately gives the degeneracyD(N) of theN -th excited
state.

In order to know the Lie-algebraic structure, it is convenient
to introduce the “fugacities” {zi} for the weight and consider
the following generalized partition function:

Z̃R(q; {zi}) = q−
c
24 TrR

{
qL0

N−1∏
i=1

z
Hi0
i

}
, (C27)

where
∏
i is over all the N − 1 Cartan generators {Hi

0} of the
su(N) subalgebra {Jα0 }. Now the coefficient of qN+h(R)− c

24

is a polynomial of zµ1

1 zµ2

2 · · · z
µN−1

N−1 that gives the multiplicity
of the weight µ in the N -th excited level. In fact, the general-
ized partition function Z̃R(T, L) is nothing but the character
of the affine Lie algebra and its expression using the general-
ized theta function is known explicitly (see, e.g., section 14.4
of Ref. [46] for more details). TABLES IV–C 3, which show
the contents of irreducible representations appearing at the ex-
cited levels of a given R-sector, are obtained in this manner.
For example, TABLE V shows the structure of the Hilbert
space of the level-1 SU(2) WZW CFT in the sector of spin-
1/2 representation [h(j = 1/2) = 1/4] and “Order” denotes
qL0 . The degeneracy 2 of the first entry (q1/4) is a direct con-
sequence of the doublet level (primary states) constitutes the
j = 1/2 representation of su(2). The third entry from the
top implies that the second excited level (q9/4 = q1/4+2) is
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six-fold degenerate and decomposes into one j = 1/2 ( ) and
one j = 3/2 ( ) representations:

2( )⊕ 4( ) .

For level-1 su(N) WZW CFT (for level-1 simply-laced g,
in general), there is a simple way of constructing the Hilbert
space in terms ofN−1 (i.e., rank-g) free bosons (Frenkel-Kac
construction). First we note that the central charge (C13) of
level-1 (k = 1) su(N) WZW CFT is c = N−1, which clearly
suggests its close relation to a system of N − 1 free bosons.
Below, we quickly sketch how we derive the partition function
of the SU(N )1 WZW CFT. To begin with, we prepare a set of
N − 1 bosons φi(z) (i = 1, . . . , N − 1) which are normalized
as:

〈φi(z)φj(w)〉 ∼ −δij log(z − w) . (C28)

The key properties of these bosons are the following operator-
product expansions (OPE) [46, 102]:

∂zφi(z)∂wφj(w) ∼ −δij
(z − w)2

∂zφi(z) : eiv·φ(w) : = ∂zφi(z) : ei
∑
j vjφj(w) :

∼ −ivi
z − w

: eiv·φ(w) :

T (z) : eiv·φ(w) :

= −1

2

N−1∑
i=1

: (∂zφi(z))
2 : eiv·φ(w) :

∼ v2/2

(z − w)2
: eiv·φ(w) : +

1

z − w
∂w : eiv·φ(w) : + · · · ,

(C29)

where v = (v1, . . . , vN−1) and φ = (φ1, . . . , φN−1). There-
fore, if we identify

Hi(z) = i∂zφi(z) , Eα(z) = : eiα·φ(w) : (C30)

(all the roots α have the length |α| =
√

2), they satisfy the
OPEs expected for the generators of k = 1 su(N) (with scal-
ing dimension 1) [46, 100]:

Hi(z)Hj(w) ∼ δij
(z − w)2

Hi(z)Eα(w) ∼ αi
z − w

Eα(w)

Eα(z)Eβ(w)

∼ (z − w)α·βEα+β(w)

+ i(z − w)α·β+1α·∂wφ(w)Eα+β(w)

(C31)

[in su(N) with |α| =
√

2, α·β = −1 when α + β is a
root and α 6= −β, and α·β = −2 when α = −β]. This
suggests that we can construct the Hilbert space of the k =

1 SU(N ) WZW CFT by applying Hi(z) = i∂zφi(z) (i =
1, . . . , N − 1) repeatedly to the bosonic primary states |µ〉 ≡
|µ1, . . . , µN−1〉 =: eiµ·φ(0) : |0〉 [with µ being the weights
of su(N) ], that has the eigenvalue L0|µ〉 = µ2/2|µ〉. The
summation over all the possible excited states (with the mode
En = (2π/l)n being occupied with Nn bosons) of the i-th
linearly-dispersive boson above the primary state |µ〉 yields
the partial partition function

e−
2πv
Tl

1
2µ

2
i zµii

∞∏
n=1

{ ∞∑
Nn=0

e−
2πv
Tl nNn

}
= q

1
2µ

2
i zµii /

∞∏
n=1

(1−qn) ,

which is to be combined together for allN−1 bosons yielding
q

1
2µ

2 ∏N−1
i=1 zµii

∏∞
n=1(1− qn)N−1. As the application of the

other generators Eα(z) changes the “weight” of the primary
states as |µ〉 → |µ + α〉, all these bosonic conformal towers
specified by weights µ that are related to each other by trans-
lation by α must be regarded as belonging to the same WZW
conformal tower. In su(3), for instance, the weights µ on the
root lattice all together constitute a single WZW tower of the
identity representation 1 (see Fig. 15). Summing up the par-
tial partition functions for those “equivalent” µ, we obtain the
partition function of k = 1 SU(N ) WZW CFT (see section
15.6 of Ref. [46] for more details):

Z̃R(q; {zi})

≡ q−
N−1
24∏∞

n=1(1− qn)N−1

 ∑
µ∈λR+Λr

q
1
2µ

2

(
N−1∏
i=1

zµii

) ,

(C32)

where λR is the highest weight of the representation R and
the summation is taken over all the points µ of the weight
lattice Λw which are equivalent to λR modulo the root lattice
Λr spanned by the simple roots {α(i)}. Since suchµ are given
explicitly as

µ = λR +

N−1∑
i=1

niα
(i) , (C33)

we can trade the sum over µ ∈ λR + Λr with that over the
N − 1 integers {ni}. By construction, the representations R
allowed as primary in the SU(N )1 WZW CFT, which is rel-
evant in this paper, are restricted to the points of Λw within
the unit cell of Λr. As all those R have the Dynkin labels∑N−1
i=1 d(R)i = 0, 1, this selection rule is consistent with the

general one (C20). For instance, in order to obtain the parti-
tion function for R = 3 ( ) of su(3), we sum over all the red
points in Fig. 15 connected to the point ω(1) (i.e., the highest
weight of 3) by the translation generated by two simple roots
α(1) andα(2) (red and blue arrows, respectively); the three in-
equivalent points in the hatched “unit cell” correspond to the
three primary fields φ1 (singlet vacuum), φ3, and φ3 allowed
in level-1 su(3).
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TABLE IV. SU(2)1 WZW model – Tower of states starting from
1•.

L
0

O
rd

er

Irreps / Multiplicities

0 q0 1
1•

1 q1 1
3

2 q2 1
1• ⊕ 1

3

3 q3 1
1• ⊕ 2

3

4 q4 2
1• ⊕ 2

3

⊕ 1
5

5 q55 2
1• ⊕ 4

3

⊕ 1
5

6 q6 4
1• ⊕ 5

3

⊕ 2
5

7 q7 4
1• ⊕ 8

3

⊕ 3
5

TABLE V. SU(2)1 WZW model – Tower of states starting from
2

.

L
0

O
rd

er

Irreps / Multiplicities

0 q1/4 1
2

1 q5/4 1
2

2 q9/4 1
2

⊕ 1
4

3 q13/4 2
2

⊕ 1
4

4 q17/4 3
2

⊕ 2
4

5 q21/4 4
2

⊕ 3
4

6 q25/4 6
2

⊕ 4
4

⊕ 1
6

7 q29/4 8
2

⊕ 6
4

⊕ 1
6
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TABLE VI. SU(3)1 WZW model – Tower of states starting from
1•.

L
0

O
rd

er

Irreps / Multiplicities

0 q0 1
1•

1 q1 1
8

2 q2 1
1• ⊕ 2

8

3 q3 2
1• ⊕ 3

8

⊕ 1
10

⊕ 1
10

4 q4 3
1• ⊕ 6

8

⊕ 1
10

⊕ 1
10

⊕ 1
27

5 q5 4
1• ⊕ 10

8

⊕ 3
10

⊕ 3
10

⊕ 2
27

6 q6 8
1• ⊕ 16

8

⊕ 5
10

⊕ 5
10

⊕ 5
27

7 q7 10
1• ⊕ 27

8

⊕ 9
10

⊕ 9
10

⊕ 8
27

⊕ 1
35

⊕ 1
35

TABLE VII. SU(3)1 WZW model – Tower of states starting from
3

(resp.

3̄

by conjugation of all IRREPs).

L
0

O
rd

er

Irreps / Multiplicities

0 q1/3 1
3

1 q4/3 1
3

⊕ 1
6̄

2 q7/3 2
3

⊕ 1
6̄

⊕ 1
15

3 q10/3 3
3

⊕ 3
6̄

⊕ 2
15

4 q13/3 6
3

⊕ 4
6̄

⊕ 4
15

⊕ 1
24

5 q16/3 9
3

⊕ 8
6̄

⊕ 1
15′

⊕ 7
15

⊕ 2
24

6 q19/3 15
3

⊕ 12
6̄

⊕ 1
15′

⊕ 13
15

⊕ 4
24

⊕ 1
42

7 q22/3 22
3

⊕ 21
6̄

⊕ 3
15′

⊕ 21
15

⊕ 8
24

⊕ 2
42
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TABLE VIII. SU(4)1 WZW model – Tower of states starting from
1•.

L
0

O
rd

er

Irreps / Multiplicities

0 q0 1
1•

1 q1 1

15

2 q2 1
1• ⊕ 2

15

⊕ 1
20′

3 q3 2
1• ⊕ 4

15

⊕ 1
20′

⊕ 1
45

⊕ 1

45

4 q4 4
1• ⊕ 7

15

⊕ 4
20′

⊕ 2
45

⊕ 2

45

⊕ 1

84

TABLE IX. SU(4)1 WZW model – Tower of states starting from
4

(resp.

4

by conjugation of all IRREPs).

L
0

O
rd

er

Irreps / Multiplicities

0 q3/8 1
4

1 q11/8 1
4

⊕ 1

20

2 q19/8 2
4

⊕ 2

20

⊕ 1

36

3 q27/8 4
4

⊕ 1

20′′

⊕ 4

20

⊕ 2

36

⊕ 1
60

4 q35/8 7
4

⊕ 1

20′′

⊕ 8

20

⊕ 5

36

⊕ 2
60

⊕ 1

140
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TABLE X. SU(4)1 WZW model – Tower of states starting from

6

.
L

0

O
rd

er
Irreps / Multiplicities

0 q1/2 1
6

1 q3/2 1
6

⊕ 1
10

⊕ 1

10

2 q5/2 3
6

⊕ 1
10

⊕ 1

10

⊕ 1

64

3 q7/2 4
6

⊕ 3
10

⊕ 3

10

⊕ 3

64

4 q9/2 9
6

⊕ 5
10

⊕ 5

10

⊕ 1
50

⊕ 6

64

⊕ 1

70

⊕ 1

70

TABLE XI. SU(5)1 WZW model – Tower of states starting from
1•.

L
0

O
rd

er

Irreps / Multiplicities

0 q0 1
1•

1 q1 1

24

2 q2 1
1• ⊕ 2

24

⊕ 1

75

3 q3 2
1• ⊕ 4

24

⊕ 2

75

⊕ 1

126

⊕ 1

126
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TABLE XII. SU(5)1 WZW model – Tower of states starting from
5

(resp.

5

by conjugation of all IRREPs).

L
0

O
rd

er

Irreps / Multiplicities

0 q2/5 1
5

1 q7/5 1
5

⊕ 1

45

2 q12/5 2
5

⊕ 2

45

⊕ 1

50

⊕ 1

70

3 q17/5 4
5

⊕ 5

45

⊕ 1

50

⊕ 2

70

⊕ 1

105

⊕ 1

280

TABLE XIII. SU(5)1 WZW model – Tower of states starting from

10

(resp.

10

by conjugation of all IRREPs).

L
0

O
rd

er

Irreps / Multiplicities

0 q3/5 1
10

1 q8/5 1
10

⊕ 1
15

⊕ 1

40

2 q13/5 3
10

⊕ 1
15

⊕ 2

40

⊕ 1

175

3 q18/5 5
10

⊕ 3
15

⊕ 1

35

⊕ 4

40

⊕ 3

175

⊕ 1

210
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TABLE XIV. SU(6)1 WZW model – Tower of states starting from
1•.

L
0

O
rd

er

Irreps / Multiplicities

0 q0 1
1•

1 q1 1

35

2 q2 1
1• ⊕ 2

35

⊕ 1

189

3 q3 2
1• ⊕ 4

35

⊕ 1

175

⊕ 2

189

⊕ 1

280

⊕ 1

280

TABLE XV. SU(6)1 WZW model – Tower of states starting from
6

(resp.

6

by conjugation of all IRREPs.

L
0

O
rd

er

Irreps / Multiplicities

0 q5/12 1
6

1 q17/12 1
6

⊕ 1

84

2 q29/12 2
6

⊕ 2

84

⊕ 1

120

⊕ 1

210

3 q41/12 4
6

⊕ 5

84

⊕ 2

120

⊕ 2

210

⊕ 1

336

⊕ 1

840
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TABLE XVI. SU(6)1 WZW model – Tower of states starting from

15

(resp.

15

by conjugation of all IRREPs).

L
0

O
rd

er
Irreps / Multiplicities

0 q2/3 1
15

1 q5/3 1
15

⊕ 1
21

⊕ 1

105

2 q8/3 3
15

⊕ 1
21

⊕ 1

105′

⊕ 2

105

⊕ 1

384

3 q11/3 5
15

⊕ 3
21

⊕ 1

105′

⊕ 5

105

⊕ 1

210′

⊕ 3

384

⊕ 1

1050

TABLE XVII. SU(7)1 WZW model – Tower of states starting from
1•.

L
0

O
rd

er

Irreps / Multiplicities

0 q0 1
1•

1 q1 1

48

2 q2 1
1• ⊕ 2

48

⊕ 1

392

3 q3 2
1• ⊕ 4

48

⊕ 2

392

⊕ 1

540

⊕ 1

540

⊕ 1

784
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TABLE XVIII. SU(7)1 WZW model – Tower of states starting from
7

(resp.

7

by conjugation of all IRREPs).

L
0

O
rd

er
Irreps / Multiplicities

0 q3/7 1
7

1 q10/7 1
7

⊕ 1

140

2 q17/7 2
7

⊕ 2

140

⊕ 1

189

⊕ 1

588

3 q24/7 4
7

⊕ 5

140

⊕ 2

189

⊕ 1

490′

⊕ 2

588

⊕ 1

840

⊕ 1

2016

TABLE XIX. SU(7)1 WZW model – Tower of states starting from

21

(resp.

21

by conjugation of all IRREPs).

L
0

O
rd

er

Irreps / Multiplicities

0 q5/7 1
21

1 q12/7 1
21

⊕ 1
28

⊕ 1

224

2 q19/7 3
21

⊕ 1
28

⊕ 2

224

⊕ 1

490

⊕ 1

735

3 q26/7 5
21

⊕ 3
28

⊕ 5

224

⊕ 2

490

⊕ 3

735

⊕ 1

756

⊕ 1

3402
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TABLE XX. SU(7)1 WZW model – Tower of states starting from

35

(resp.

35

by conjugation of all IRREPs).
L

0

O
rd

er

Irreps / Multiplicities

0 q 1

35

1 q 1

35

⊕ 1
112

⊕ 1

210

2 q 3

35

⊕ 2
112

⊕ 1

196

⊕ 2

210

⊕ 1

1323

3 q 6

35

⊕ 1
84

⊕ 4
112

⊕ 1

196

⊕ 5

210

⊕ 1

378

⊕ 1

1260

⊕ 3

1323

⊕ 1

3024

TABLE XXI. SU(8)1 WZW model – Tower of states starting from
1•.

L
0

O
rd

er

Irreps / Multiplicities

0 q0 1
1•

1 q1 1

63

2 q2 1
1• ⊕ 2

63

⊕ 1

720

3 q3 2
1• ⊕ 4

63

⊕ 2

720

⊕ 1

945

⊕ 1

945

⊕ 1

2352
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TABLE XXII. SU(8)1 WZW model – Tower of states starting from
8

(resp.

8̄

by conjugation of all IRREPs).

L
0

O
rd

er

Irreps / Multiplicities

0 q7/16 1
8

1 q23/16 1
8

⊕ 1

216

2 q39/16 2
8

⊕ 2

216

⊕ 1

280

⊕ 1

1344

TABLE XXIII. SU(8)1 WZW model – Tower of states starting from

28

(resp.

28

by conjugation of all IRREPs).

L
0

O
rd

er

Irreps / Multiplicities

0 q3/4 1
28

1 q7/4 1
28

⊕ 1
36

⊕ 1

420

2 q11/4 3
28

⊕ 1
36

⊕ 2

420

⊕ 1

1280

⊕ 1

1512
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TABLE XXIV. SU(8)1 WZW model – Tower of states starting from

56

(resp.

56

by conjugation of all IRREPs).

L
0

O
rd

er

Irreps / Multiplicities

0 q15/16 1

56

1 q31/16 1

56

⊕ 1
168

⊕ 1

504

2 q47/16 3

56

⊕ 2
168

⊕ 2

504

⊕ 1

1008

⊕ 1

2800

TABLE XXV. SU(8)1 WZW model – Tower of states starting from

70

.

L
0

O
rd

er

Irreps / Multiplicities

0 q1 1

70

1 q2 1

70

⊕ 1

378

⊕ 1

378

2 q3 3

70

⊕ 1

336

⊕ 1
336

⊕ 2

378

⊕ 2

378

⊕ 1

3584
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FIG. 17. Energy difference between the ground state of the antisym-
metric IRREP aIRN (r0) and the completely symmetric (ferromag-
netic) state for θ = π/4, N = 4 (red) and N = 8 (blue), φ = π/2
(filled symbols) and φ = π (open symbols). In all cases, the en-
ergy difference scales approximately linearly with Ns, revealing a
macroscopic energy difference.

Appendix D: Notes on finite size effects in ED of periodic
clusters

1. Antisymmetric vs completely symmetric IRREPS

In the range φ ∈ [0, π] both J1 and J2 couplings are an-
tiferromagnetic but the amplitude JR of the (real) 3-site per-
mutation changes sign, from positive to negative, at φ = π/2.
Although a negative JR equally favors both, the completely
symmetric multiplet (ferromagnetic) as well as the completely
antisymmetric multiplet on any triangle (see App. A), on fi-
nite (periodic) clusters (with Ns > N ), it strongly favors the
ferromagnetic state with respect to the antisymmetric (antifer-
romagnetic) states of aIRN (r0). In fact, a 3-site permutation
on a triangle with JR < 0 cannot accommodate the compli-
cated sign structure of antiferromagnetic states. Note also that
the energy difference is macroscopic, in the sense that it scales
with the number of sites Ns. At φ = π/2 where JR vanishes
and the antiferromagnetic couplings J1 and J2 are finite, we
observe the reverse, namely a macroscopic energy penalty for
the ferromagnetic state with respect to the antiferromagnetic
states. This is clearly evidenced in Fig. 17, showing the en-
ergy difference Ea(Ns) − EF (Ns) vs Ns, for θ = π/4, and
N = 4 and N = 8. Then, one can argue that a transition
from a spin liquid phase (or several spin liquid phases) and
the ferromagnetic phase should occur between φ = π/2 and
φ = π.

2. Finite size effects in low-energy spectra

As seen in App. App. A, for a given system size Ns (mul-
tiple of N ), the spectrum of the SU(N ) model includes all
SU(N ′) spectra, N ′ < N . In the frustrated antiferromag-
netic regime where a SU(N ) chiral spin liquid (or a singlet
cluster state) is expected, SU(M ) singlets (forming a higher

FIG. 18. Low-energy spectra of the SU(4) model computed on 8-site
(a) and 16-site (b) periodic clusters at θ = π/4, plotted vs φ. A
few of the lowest energies of the SU(4) singlet subspace are shown
(in blue) on both panels as well as the lowest energy (in red) within
the subspace of the higher Casimir [4400] (or 105) (a) and [8800]
(or 825’) (b) IRREPs, which can also be viewed as SU(2) singlets.
Other lowest-energy excitations are also shown for completeness.

quadratic Casimir SU(N ) IRREP), M < N also divider of
Ns, may compete with the expected SU(N ) singlet GS of
the SU(N ) model. We have observed this effect in Fig. 2 for
N = 8, 9, 10 (with Ns = 16, 18, 20 and M = 4, 6, 5, respec-
tively) for θ = π/4 and small φ. For instance, for Ns = 16
and N = 8, the high Casimir IRREP [44440000] has energy
given by Fig. 2 (c) which is smaller at φ = 0 than the one of
the SU(8) singlet subspace in Fig. 2 (g).

Here we argue that such a behavior is in fact a finite size
effect occuring when Ns < N2. To illustrate it we com-
pare in Fig. 18 the low-energy spectra of the N = 4 model
at θ = π/4, versus φ, on 8-site and 16-site clusters. For
Ns = 8, we observe that the lowest energies of the SU(4)
singlets and those of the higher Casimir IRREP [4400] (also
SU(2) singlets) are comparable. In contrast, for Ns = 16,
a clear energy separation is seen between the lowest energy
states of the higher Casimir [8800] IRREP (also SU(2) sin-
glets) and the lowest SU(4) singlets.

Appendix E: Details on MPO–MPS implementation

This section describes how to cast a Slater determinant,
|Ψ〉 =

∏
k,σ d

†
kσ |0〉, into an MPS with conserved spin sym-

metry. We elaborate our implementation for N = 2; the
generalization to larger N is straightforward. For spin-1/2
fermions, the standard approach to express a single-particle
operator d†kσ is to map the L-site spinful fermions onto a 2L-
site pseudospin-1/2 chain using the Jordan–Wigner transfor-
mation [67, 103, 104], namely,

c†`,↑ → σz1 · · ·σz2`−2σ
+
2`−1

c†`,↓ → σz1 · · ·σz2`−2σ
z
2`−1σ

+
2`.

(E1)
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And, d†kσ =
∑
m,nAm,n(k)c†m,n,σ =

∑
` Ãkσ,`c

†
`σ can be read as an MPO acting on the spin-1/2 chain

d†kσ =
(
0 1

) [ 2L∏
`=1

(
1` 0

Ãkσ,`σ
+
` σz`

)](
1
0

)
. (E2)

For our purpose, we would like to block 2`− 1 and 2` sites together, which leads to

d†kσ =
(
0 1

) L∏
j=1

(
12j−1 ⊗ 12j 0

Ãkσ,2j−1σ
+
2j−1 ⊗ 12j + Ãkσ,2jσ

z
2j−1 ⊗ σ

+
2j σz2j−1 ⊗ σz2j

)(1
0

)
. (E3)

We can identify σ+
2j−1⊗12j with c†j,↑, σ

z
2j−1⊗ σ

+
2j with c†j,↓,

and Fj = σz2j−1 ⊗ σz2j with the parity operator to account
for anticommutation of different sites. In fact, we can always
write the MPO in this spinful fermion basis, regardless of the
number of fermion species, i.e.,

d†kσ =
(
0 1

) L∏
j=1

(
I 0

Ãkσ,jc
†
σ F

)(1
0

)
. (E4)

This facilitates working with U(1) or SU(N) spin symmetry
as each tensor index can be associated with a specific quantum
number (see Fig. 19). With U(1) spin symmetry, one can fuse
the virtual indices at boundaries of each pair of MPOs to be
Sz = 0 (see Fig. 20), the resulting MPS |Ψ〉 also has Sz = 0.
In the same way, one can easily impose SU(2) spin symmetry
to target spin-singlet states, provided an efficient tensor net-
work implementation to handle Clebsch-Gordan coefficients
[82, 105–107]. We use QSpace for this purpose [82, 83].

(-1/2,0,1/2)

(-1/2,0,1/2)

(0)(0)

(-1/2,0,1/2)

(-1/2,0,1/2)

(1/2,-1/2)(1/2,-1/2)

(1/2)

(0)

(0)(-1/2)

(-1/2)

(0)

(0)(1/2)

FIG. 19. Graphical representation of MPO matrix elements with
U(1) spin symmetry for spin-1/2 fermions. Numbers in brackets
indicate the possible values of Sz quantum numbers, 0,−1/2 and
1/2 representing the |〉, |↓〉 and |↑〉 at each physical site, respectively.
Double occupancy, |↑↓〉, is excluded.

In Fig. 21 (b,c), we plot the ESs obtained from the parton
construction on a 4 × 12 cylinder. This demonstrates the ef-
ficacy of our parton approach, as we are able to prepare trial
states in distinct topological sectors for iDMRG using a rela-
tively small size cylinder. Additionally, imposing SU(2) sym-
metry constraint leads to an intriguing consequence: if the
state is in the topologically nontrivial sector, there are mul-
tiple degenerate branches in the ES (see Fig. 21(c)). This

(0)

(0)

(1/2)

(-1/2)

(0)(0)

FIG. 20. Graphical representation of fusing edge virtual indices of 2
MPOs, d†k↑ and d†k↓.

has also been observed in the SU(2) iPEPS simulations previ-
ously [44, 52, 90], and was attributed to the so-called “dressed
mirror symmetry” within the virtual degrees of freedom [90].
The parton approach offers a more direct understanding — the
degeneracy equals to the number of parton states required to
form a singlet superposition state.

FIG. 21. (a) Illustration of the parton Hamiltonian of the SU(2)
CSL. The phase of nearest neighbor hopping is 0 (π) along the solid
(dashed) edges. The phase of next-nearest-neighbor hopping is π/2
(−π/2) along the green (red) arrows. (b,c) The entanglement spec-
tra on a 4× 12 cylinder for the parton wave function.
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Appendix F: Modified WZW SU(N )1 chiral towers of states

We list here, for N = 3 and 4, the predicted ToS corre-
sponding to the SU(N ) DMRG cylinders investigated and dis-
cussed in the main text.
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“Systematic construction of spin liquids on the square lattice
from tensor networks with SU(2) symmetry,” Phys. Rev. B 94,
205124 (2016).

[86] Tomotoshi Nishino and Kouichi Okunishi, “Corner transfer
matrix renormalization group method,” Journal of the Phys-
ical Society of Japan 65, 891–894 (1996).
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TABLE XXVI. SU(3)1 WZW model – The direct product of the conformal tower of the
3

primary (left - see Table VII in App. C) with

3̄

gives a new tower (right) with a tripling of the number of states in each Virasoro level indexed by L0.

L0

3

tower
3

tower⊗

3̄

0 1
3

1 1• ⊕ 1
8

1 1
3

⊕ 1
6̄

→
1 1• ⊕ 2

8

⊕ 1
10

2 2
3

⊕ 1
6̄

⊕ 1
15

2 1• ⊕ 4
8

⊕ 1
10

⊕ 1
10

⊕ 1
27

3 3
3

⊕ 3
6̄

⊕ 2
15

3 1• ⊕ 8
8

⊕ 2
10

⊕ 3
10

⊕ 2
27

TABLE XXVII. SU(4)1 WZW model – The direct product of the conformal tower of the
4

primary (left - see Table IX in App. C) with

4̄

gives a new tower (right) with a quadrupling of the number of states in each Virasoro level indexed by L0.

L0

4

tower
4

tower⊗

4̄

0 1
4

1 1• ⊕ 1

15

1 1
4

⊕ 1

20

→
1 1• ⊕ 2

15

⊕ 1
20′

⊕ 1

45

2 2
4

⊕ 2

20

⊕ 1

36

2 1• ⊕ 5

15

⊕ 2
20′

⊕ 1
45

⊕ 2

45

⊕ 1

84

3 4
4

⊕ 1

20′′

⊕ 4

20

⊕ 2

36

4 1• ⊕ 10

15

⊕ 5
20′

⊕ 1

35

⊕ 3
45

⊕ 5

45

⊕ 1
60

⊕ 2

84

⊕ 1

175
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TABLE XXVIII. SU(4)1 WZW model – The direct product of the conformal tower of the

6

primary (left - see Table X in App. C) with

6

gives a new tower (right) with a multiplicative factor 6 of the number of states in each Virasoro level indexed by m.

L0

6

tower

6

tower⊗

6

0 1
6

1 1• ⊕ 1

15

⊕ 1
20′

1 1
6

⊕ 1
10

⊕ 1

10

→
1 1• ⊕ 3

15

⊕ 1
20′

⊕ 1
45

⊕ 1

45

2 3
6

⊕ 1
10

⊕ 1

10

⊕ 1

64

3 1• ⊕ 6

15

⊕ 4
20′

⊕ 2
45

⊕ 2

45

⊕ 1

84

⊕ 1

175

3 4
6

⊕ 3
10

⊕ 3

10

⊕ 3

64

4 1• ⊕ 13

15

⊕ 7
20′

⊕ 6
45

⊕ 6

45

⊕ 3

84

⊕ 3

175
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