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We investigate the spin excitation spectra in chiral and polar magnets by the linear spin-wave
theory for an effective spin model with symmetric and antisymmetric long-range interactions. In one
dimension, we obtain the analytic form of the dynamical spin structure factor for proper-screw and
cycloidal helical spin states with uniform twists, which shows a gapless mode with strong intensity
at the helical wave number. When introducing spin anisotropy in the symmetric interactions, we
numerically show that the stable spin spirals become elliptically anisotropic with nonuniform twists
and the spin excitation is gapped. In higher dimensions, we find that similar anisotropy stabilizes
multiple-@) spin states, such as vortex crystals and hedgehog lattices. We show that the anisotropy
in these states manifests itself in the dynamical spin structure factor: a strong intensity in the
transverse components to the wave number appears only when the helical wave vector and the
corresponding easy axis are perpendicular to each other. Our findings could be useful not only
to identify the spin structure but also to deduce the stabilization mechanism by inelastic neutron

scattering measurements.

I. INTRODUCTION

The helimagnetic orders are periodic spin states found
in a wide range of materials, from metals to insula-
tors, where the magnetic moments form twisting and
swirling textures, such as spin spirals and vortex crys-
tals (VCs) [1]. Of particular interest is the cases
where the spin textures define topologically nontrivial
objects [2-5]. There are many examples of such heli-
magnetic orders, e.g., one-dimensional (1D) proper-screw
helical spin (HS) state [Fig. 1(a)] [6], 1D cycloidal HS
state [Fig. 1(b)] [7], 1D chiral soliton lattice [8-14], two-
dimensional (2D) skyrmion crystal (SkX) [15-18], 2D
vortex crystal (VC) [19], and three-dimensional (3D)
hedgehog lattice (HL) [20-25]. These helimagnetic states
have been attracting a lot of attention since they induce
intriguing electronic and transport properties, such as
the magnetoelectric effect [26] and the topological Hall
effect [27], which would lay the cornerstone of future tech-
nology.
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FIG. 1. Helimagnetic orders: (a) proper-screw and (b) cy-
cloidal helical spin states. The latter is obtained by a /2
spin rotation of the former about the z axis.

Several mechanisms have been proposed for the sta-
bility of these helimagnetic spin textures, including the

Dzyaloshinskii-Moriya antisymmetric exchange interac-
tions [28-30], frustration among the competing exchange
interactions [31-33], four spin interactions [34-39], long-
range interactions via itinerant electrons [40-48], long-
range dipole interactions [49-51], and bond-dependent
anisotropic interaction [52-54]. To elucidate the relevant
mechanism, it is desired to clarify the microscopic infor-
mation of the magnetic interactions. Inelastic neutron
scattering is a useful experimental tool to obtain such
microscopic information from the analysis of the spin ex-
citation spectrum. It is, however, not always an easy
task, especially for the complex spin textures. For ex-
ample, while the SkXs and the HLs are stably obtained
for the models with either short-range [28, 31, 55, 56] or
long-range interactions [44-46, 57, 58], it remains yet to
be clarified which is the most relevant mechanism in each
substance. This is mainly due to less available informa-
tion on the spin excitations for the detailed comparison
between theory and experiment.

In this paper, we systematically study the spin ex-
citation spectra for spin models which stabilize various
types of helimagnetic spin textures, by tuning the range
of magnetic interactions in real space. Specifically, start-
ing from the effective spin model for spin-charge coupled
systems, which has infinite-range interactions [45, 57], we
extend it by including both symmetric and antisymmet-
ric exchange interactions with spatial decay, and obtain
the ground states and spin excitation spectra by varia-
tional calculations and the linear spin-wave theory, re-
spectively. We find that our models stabilize 2D VCs
and 3D HLs in addition to 1D HS states, by introduc-
ing spin anisotropy in the symmetric interaction. In the
1D case, we show that the dynamical spin structure fac-
tor for both proper-screw and cycloidal HS states has a
gapless mode with strong intensity at the helical wave
number in the isotropic case, but they are gapped in the
presence of the anisotropy which modulates the stable
spin spirals into elliptically anisotropic ones and makes
the twists nonuniform. We also clarify that the lowest-



energy excitation mode with the strongest intensity can
be regarded as a phase shift of the spin helix. In higher
dimensions, we find that while the system exhibits a HS
state in the isotropic case, the anisotropy can stabilize
multiple-Q) spin states which are composed of superpo-
sitions of multiple spin helices; we obtain four different
types of double-@ (2Q) VCs in two dimensions and three
different types of triple-Q (3Q)) HLs in three dimensions.
We find that the dynamical spin structure factor for the
multiple-Q) spin states exhibits a strong intensity in the
lowest-energy excitation mode when the helical wave vec-
tor is perpendicular to the easy axis of the corresponding
interaction. This means that the experimental identifi-
cation of such strong intensity by the inelastic neutron
scattering would provide the information of not only the
propagating direction and magnetic period of the helices
but also the anisotropy in the effective magnetic inter-
actions. In addition to the experimental relevance, our
present scheme provides a versatile theoretical framework
to investigate spin-wave excitations in a wide variety of
multiple-Q spin states, even beyond those treated in this
paper, such as SkXs and other multiple-QQ HLs.

The structure of this paper is as follows. In Sec. II, we
first introduce the effective spin model for chiral magnets
with infinite-range interactions. Several types of the sym-
metric and antisymmetric interactions are introduced for
the 1D, 2D, and 3D cases. Then, we extend the model by
introducing spatial decay in the interactions. In Sec. III,
we describe the methods used in the present study: the
variational method for the ground state and the linear
spin-wave theory for the spin excitations. In Sec. IV, the
results for the 1D, 2D, and 3D cases are shown. For the
1D case, we present the analytic results for the HS states
with spatially uniform spin twist in the isotropic case,
and the numerical results for the effect of the anisotropy.
For the 2D and 3D cases, we show the ground-state phase
diagrams while changing the anisotropy in the symmetric
interaction and the strength of the antisymmetric inter-
action. Then, we discuss the details of the stabilized spin
states, the spin-wave dispersion, and the dynamical spin
structure factor, which is relevant to the inelastic neu-
tron scattering experiments, for different types of VCs
and HLs. Section V is devoted to the summary and dis-
cussion.

II. MODEL
A. Effective spin model

We begin with a generic spin model for chiral magnets
whose Hamiltonian is defined in momentum space as

H= > Hq (1)

q€1BZ

with

Hq :_Z‘]gﬂsgséq_iDQ' (Sqx8S—q), (2)
a,B

where a, =, y, z; Sq = (Sg, 54, S5) is defined by the
Fourier transform of the spin in real space, S;, as

Sq=L"%Y Sie7iar. (3)

Here we define this model on a d-dimensional hypercu-
bic lattice with linear dimension L under the periodic
boundary condition; the lattice site r is denoted as

x (=4), (d=1
r= (), (=2 (@)
(#,9,2), (d=3)

with integers z, y, and z in [0,L). The sum »_ . p;

in Eq. (1) runs over all the wave numbers in the first
Brillouin zone (1BZ):

q= 2 ng, (d=1)
q= 9 (¢,9y) = T (na,n), (d=2) (5
( quy’qz) = 2L (nﬂ?anwnZ)v (d = 3)

with integers n, in [-L/2,L/2), that is, —7 < g, < 7.
The first term of H represents the symmetric exchange
interaction (JflYﬁ = Jga), while the second term repre-
sents the antisymmetric one of the Dzyaloshinskii-Moriya
type [7, 59]. For the former, we include only the diagonal
clements, namely, J$# = J§®0, 4, for simplicity (0a,s is
the Kronecker delta). Then, Eq. (2) is expressed as

Hg=—)_ SqTe’s’,, (6)
a,B
with
JeriDi  —iDY

Ja= |—iD; Ju iD:

DY DT zz
iDYy —iDZ JZ

=T (7)

B. Infinite-range limit

A particular case of the model in Eq. (1) was studied
for 2D VCs and SkXs [57], where J§* and Dq in Eq. (7)
are taken as

Jo = Z J& (0q.Q, +0q,-q,); (8)
n

Dq = Z DQT/ (5q1Q77 - 5‘17*Qn)' (9)
n

This corresponds to the model in the limit of infinite-
range interactions in real space. The summations in
Egs. (8) and (9) are taken for a particular set of the



TABLE I. Theoretical models in the present study: dimension d, target spin states, spin configurations, equations and schematics
of the symmetric and antisymmetric interactions, crystallographic point group, and corresponding sections for the results.

d target spin state spin configuration Jg‘;‘ Dq, schematic crystallographic point group results
proper-screw HS state Figs. 11(a)-11(c) Eq. (15) Eq. (14) Fig.2(a) orthorhombic Dy (222)

1D cycloid(I) HS state Eq. (16) Eq. (17) Fig. 2(b)  orthorhombic Ca, (mm2) Sec. IVA
cycloid(IT) HS state Eq. (18) Eq. (17) Fig. 2(c)  orthorhombic Co, (mm2)
proper-screw(I) VC Fig. 15(a) Eq. (22) Eq. (21) Fig. 3(a) tetragonal D, (422)

op cycloid(I) VC Fig. 15(b) Eq. (23) Eq. (24) Fig. 3(b) tetragonal Cy, (4mm) Sec. IVB
proper-screw(II) VC Fig. 15(c) Eq. (25) Eq. (26) Fig. 3(c)  tetragonal Dog (42m)
cycloid(II) VC Fig. 15(d) Eq. (27) Eq. (28) TFig. 3(d) tetragonal D2y (4m2)
proper-screw HL Fig. 19(a) Egs. (30) Eq. (29) Fig. 4(a) cubic T (23)

3D cycloid(I) HL Fig. 19(b) Eqs. (31) Eq. (32) Fig. 4(b) trigonal Cs (3) Sec. IVC
cycloid(IT) HL Fig. 19(c) Egs. (33) Eq. (34) Fig. 4(c)  trigonal C3 (3)

wave vectors Q,,, which is set at the nesting vectors of the (a) 0 (b)

Fermi surfaces when the model is constructed as an ef- 'y 0 Q ‘

fective model for itinerant electron systems of the Kondo HN\

lattice type [45, 57]. This infinite-range model was shown q

to stabilize VCs in two dimensions, which turn into SkXs &;

in an applied magnetic field [57]. It was also shown that
the models with an additional infinite-range biquadratic
interaction stabilize SkXs and HLs in two and three di-
mensions, respectively [58, 60, 61].

C. Helical wave number and anisotropy

In the present study, starting from the infinite-range
model, we consider its extension by introducing expo-
nential decay in the long-range interactions. Before go-
ing into the extension, we define the characteristic wave
numbers Q,, and the anisotropy in the magnetic interac-
tion in this section. With regard to Q,, for simplicity,
we take them being parallel to the principal axes of the
hypercube and |Q,| = Q:

Qx, (d=1)
Q= | Qx,Qy, (d=2) (10)
Qx,Qy,Qz, (d=3)

where X, y, and z are the unit vectors along the z,
y, and z axes, respectively. Meanwhile, regarding the
anisotropy, we introduce it in the symmetric part of the
interaction Jg, following Ref. [57]. In the following, we
describe the specific forms of the anisotropic interactions

in each spatial dimension.

1. One-dimensional case

In the 1D case (d = 1), we choose
Jg® = 5" (0g.0 +04.-q),
D, =Dq(0q,Q — 94,-q);

(1)
(12)

FIG. 2. Pictorial representations of the coupling constants
for the symmetric and antisymmetric interactions in the 1D
models for (a) proper-screw [Egs. (14) and (15)], (b) cycloid(I)
[Egs. (16) and (17)], and (c) cycloid(II) [Egs. (17) and (18)]
HS states. The blue ellipsoids represent J{g: the lengths
along the principal axes [100], [010], and [001] denote the
amplitudes of Jif, JY(,, and Jiy,, respectively. The red
arrows represent D4¢g. The axes for the spin space are shown
in (a).

with

2
Q="T. (13)
where A gives the period of the HS states. We consider
three sets of the coupling constants with different spin
anisotropy in J3% and the direction of D¢ as described
below. They are summarized in Table I, including the
crystallographic point group of the resultant models.

The first is the one which stabilizes a proper-screw HS
state shown in Fig. 1(a). In this case, to align the helical
plane perpendicular to the propagating direction, we set
Dg as

Do, = Dx. (14)

In addition, we introduce an anisotropy A in Jo* as

Jgé’li — JZZ

=J(1-A4), J¥=J1+24). (15)

As we will discuss later, this anisotropy modulates the
spin helix from circular to elliptical and makes the
twist angle between neighboring spins nonuniform, which



opens a gap in the magnetic excitation spectrum. The
pictorial representations of J** and D, are shown in
Fig. 2(a).

The second one is for realizing a cycloidal HS state,
whose spin structure is obtained by 7/2 spin rotation
of the proper-screw one about the z axis, as shown in
Fig. 1(b). To stabilize this, we rotate the spin axis in the
coupling constants as

JY = J5 =J(1—A), JF=J(1+24), (16)
Dq = Dy, (17)

as shown in Fig. 2(b). We call the spin state realized by
this model the cycloid(I) HS state.

The last one is for a different type of the cycloidal HS
state, which we call cycloid(II), obtained by additional
/2 spin rotation about the y axis. In this case, we set

Jo" = J%y = J& =

J(1— A), J(1+247),  (18)

with the same Dg as Eq. (17). This case is shown in

Fig. 2(c).

2. Two-dimensional case

FIG. 3. Similar pictorial representations to Fig. 2 for the 2D
models realizing the VCs of (a) proper-screw(I) [Egs. (21) and
(22)], (b) cycloid(I) [Egs. (23) and (24)], (c) proper-screw(II)
[Egs. (25) and (26)], and (d) cycloid(II) [Egs. (27) and (28)]
types. The notations are common to those in Fig. 2.

In the 2D case (d = 2), we choose

J§* =I5 (aq, +da-q,); (19)
n

Dq = Z DQW (6q7Q7) - 5q,—Qn)7 (20)
n

4

with Q; = Q% and Q2 = Qy [see Eq. (10)]. We consider
four sets of Jgi‘ and Dq, . The first is the one which can
stabilize a superposition of two proper-screw spirals. In
this case, to align each helical plane perpendicular to the
corresponding helical direction, we set Dq as

_JDbx (n=1)
Dq, = {Dy, 2" (21)

For the symmetric part, we introduce the anisotropy
compatible with C4 rotational or Sy rotoreflection sym-
metry about the z axis, that is,
rxr vy zZZ J—
(J, JQ77 J, ) =
[J(lfA)aJ(1+2A)7J(17A>]a (77: 1) ) (22)
[J(1+2A),J(1-A),J(1-A), (n=2)

The pictorial representations of Jg® and Dg are shown
in Fig. 3(a). We call the 2@ spin state stabilized in this
setting the proper-screw(I) VC.

The second one is for realizing a superposition of two
cycloidal spirals. Similar to the 1D case, we apply —m/2
spin rotation to the first case about the z axis and set

(I8 ) ) =

[J(142A),J(1—=A),J(1-A)], (n=1) (23)
[J(1—A),J(14+2A),J(1-A)], (n=2)"
Dq, = {_gi’ EZ _ ; . (24)

See Fig. 3(b). We call the 2Q) spin state stabilized in this
setting the cycloid(I) VC.

The third one is for realizing a superposition of two
proper-screw spirals which are different from the first
case. This is obtained by additional 7 spin rotation about
the [110] axis, and hence, we set

T Yy zZz\ _
(JQn’JQZ:’J n) -

[J(1—A),J(1+2A),J1-A)], (n=1) (25)
[J(1+24A),J(1 = A),J(1-A)], (n=2)
O et

as shown in Fig. 3(c). We call the 2Q) spin state stabilized
in this setting the proper-screw(II) VC.

The last one is for realizing a different superposition
of two cycloidal spirals from the second case. This is
obtained by additional 7/2 spin rotation to the third case
about the z axis, and hence, we set

I T 0 =

{[J(l — )70 428), 70 = A (=1) o
[7(1+24),7(1 - 4),J1 - A)], (n=2)
oo (3074



as shown in Fig. 3(d). We call the 2@ spin state stabilized
in this setting the cycloid(IT) VC.

The four sets of the coupling constants are summarized
in Table I, including the crystallographic point group of
the resultant models. See also Fig. 15 for the spin config-
urations of each 2(Q) spin state. We note that the proper-
screw(I) VC is categorized into the so-called Bloch-type
VCs, while the cycloid(I) VC is the so-called Néel-type.
In general, the Bloch- and Néel-type multiple-Q spin
states are realized under the Rashba- and Dresselhaus-
type spin-orbit couplings, respectively [57, 62]. Note that
these spin-orbit couplings are related with each other
through 7 rotation about the [110] or [110] axis in spin
space [63], being consistent with the relations among the
coupling constants above.

8. Three-dimensional case

FIG. 4. Similar pictorial representations to Fig. 2 for the 3D
models realizing the HLs of (a) proper-screw [Egs. (29) and
(30)], (b) cycloid(I) [Egs. (31) and (32)], and (c) cycloid(II)
[Egs. (33) and (34)] types. The notations are common to
those in Fig. 2.

In the 3D case (d = 3), we choose the same forms of
Jg® and Dq as Egs. (19) and (20), but with Q; = Qx,
Q2 = Qy, and Q3 = QZ [see Eq. (10)]. We consider three
sets of J§* and Dq, as described below; see Table L. See
also Fig. 19 for the spin configurations stabilized in each
model.

The first is the one which can stabilize a superposition
of three proper-screw spirals. In this case, to align the
helical plane perpendicular to the corresponding helical
direction, we set Dq as

Dx, (n=1)
Dq, = { Dy, (n=2). (29)
Dz, (n=3)

For the symmetric part, we introduce the anisotropy
compatible with Cj3 rotational symmetry about the [111]

axis, that is,

xTxT vy 2z
(J n’ JQ”7 J

n

)
(
(

[J(1—A), J(1+2A),J(1-A)], (=1
[T - A),J(1—A),J1+24), (4=2). (30)
[J(14+2A),J(1—-A),J1-A4)], (n=23)

The pictorial representations of Jg* and Dg are shown
in Fig. 4(a). We call the 3Q) spin state realized in this
setting the proper-screw HL.

The second one is for realizing a superposition of three
cycloidal spirals. This is obtained by —27 /3 spin rotation
of the proper-screw HL about the [111] axis, and hence,
we set

AV RCAR

[J(1+2A),J(1—-A),JA-A4)], (n=1)
[J(1—-A),J(1+2A),J(1-A4A)], (n=2), (31)
[J(1—A),J(1—-A),J(1+24)], (n=3)
Dz, (77: 1)
Dq, =1Dx%, (n=2). (32)
Dy, (n=3)

See Fig. 4(b). We call the 3Q spin state stabilized in this
setting the cycloid(I) HL.

The last one is for realizing a different superposition
of three cycloidal spirals. This is obtained by additional
—2m/3 spin rotation about the [111] axis, and hence, we
set

(n=1)
[J(1+2A),J(1-A),J1-A)], (n=2), (33)
[J(1=A),J1+2A),J1-A4)], (n=
Dy, (n=1)
DQ =4 Dz, (n:2)a (34)
Dx, (UZS)

as shown in Fig. 4(c). We call the 3Q spin state stabilized
in this setting the cycloid(II) HL.

D. Finite-range model

As introduced in Sec. IIB, the model in Eq. (1) has
been studied in the limit of the infinite-range interac-
tions in Eqs. (8) and (9). In the following, we extend the
model by introducing spatial decay in the interactions.
After explaining the extension in detail for the 1D case in
Sec. ITD 1, we describe the 2D and 3D cases in Secs. II D 2
and IID 3, respectively. Throughout this section, we as-
sume the set of the coupling constants for the proper-
screw states firstly introduced for each dimensional case
in Sec. II C; the extensions to the other sets are straight-
forward by using the spin rotations introduced above.



1. One-dimensional case

/ - Jv.@y.0(a)
S dy,0%,.0(a)
& q

= - I x

FIG. 5. g dependences of j, g ,0(q) [Eq. (44)] and d, o+ ,o(q)
[Eq. (45)] in the 1D finite-range model. We take A = 16 and
v =0.2. Q% and Qp are set to Q5 = 0.396 and Q) = 0.390
so that Jg** and |Dg| take their maxima at ¢ = £Q = +n/8.

Let us begin with the real-space representation of the
1D infinite-range model with Eqgs. (11) and (12). By the
Fourier transformation, the Hamiltonian reads

2 (&3 e} —1 1
H=—7> > T SIS e, (35)

0,0 a,B

where the sum of ¢, runs over all the integers in the
range [—L/2,L/2). Here and hereafter, we assume that
the helix has a commensurate period to the lattice for
simplicity; namely, L/A is an integer. To introduce spa-
tial decay in the infinite-range interactions, we multiply
an exponential dumping factor as

1/ 2 af go B —iQl ,—|¢
H—)H:—Z%:E%JQ SgSy , e Qe 0l (36)
1 @y,

For sufficiently large L, the modified Hamiltonian H can
be expressed as

;q:_ = D Tssest el  (37)
qelBZ a,f

where
sinh y
coshy —cos(Q — q)°

frela) = (38)

This function f, (¢) for v < 1 is well approximated

near ¢ = ) by the Lorentzian function as
2y

72 +(Q —q)*

By symmetrizing the terms of +¢q, we end up with the

Hamiltonian in the form

> D IS, (40)

q€1BZ «,8

f“/ Q( ) (39)

72:

where
e {j f10@)+ fral-al, (@=5)
- he(@ - Fa(-al. (@#8

The model in Eq. (40) stabilizes a spin helix whose pe-
riod deviates from A = 27/Q) because the peaks of |j,f‘5|
are shifted due to the factors of f, o(£gq). To facilitate
the following analyses, we adjust the form of the interac-
tions so that \jqo‘5| have peaks exactly at ¢ = £ and the
period of the stable spin helix becomes A = 27 /Q. This is
achieved by replacing f, o(£q) by fy,0+(+q), where Q*
is determined so that the derivative of the correspond-
ing coupling constant with respect to ¢ becomes zero at
g = £Q. In addition, we rescale all the elements of jqaﬁ
individually so that they take the same values with the
infinite-range model at ¢ = £@. Then, finally we obtain
the Hamiltonian with the finite-range interactions in the
same form of Egs. (1) and (2) with

Jo = J5%.q05.0(q), (42)
D, =Dqdy,q;.0(0), (43)

where J3% and Dq are given in Egs. (15) and (14),
respectively, for the proper-screw HS case; j, g+ ¢ and
dvy,@%.q are defined as

fr.@5(@) + fr.oy(—q)

j, kT (q) = ’ (44)
T 16y (@) + ey (-Q)
fr.@p (@) = fr.op (—0)
dy.3.0(0) = 7—= 5 - (45)
TS @ - Frap (-Q)
Here, Q% and @7, are determined by solving
i oo
Jw,%J,Q(Q) o, (46)
q =Q
Od g+
77%D7Q(q) _ 07 (47)
4 9=Q
respectively.  Figure 5 exemplifies j, ¢+ o(q) and

dy.@+.q(q) for A = 16 and v = 0.2. The other cases
for the cycloidal HS states are obtained by the spin ro-
tations in Sec. IIC 1.



2. Two-dimensional case

x10)
- 0 —n 0 - 0 n-n 0 n
(e) q.'r, 0 05 10 15 20
2.0
--(a)
1.5 ()
(©
0 —(d)
05
s o 0.0 DE

FIG. 6. q = (g, gy) dependences of (a) Jg°, (b) J¥¥, (c) J&7,
and (d) |Dg| in the 2D finite-range model. The color bar is
common to (a—d), while |Dg| in (d) is plotted by multiplying
a factor of 10 for better visibility. (e) Profile of (a—d) along
the path (m,0)—(0,0)—(0, 7) [white dotted lines in (a—d)]. We
take A =16, v = 0.2, J =1, D = 0.2, and A = 0.3. The
values for Q% and Qp are the same as those in Fig. 5.

Following the 1D case, we can construct the finite-
range model in two dimensions. The Hamiltonian also
has the same form of Egs. (1) and (2). Using the func-

tions j,.0%.0(q) and d, gz o(g) in Egs. (44) and (45),
respectively, the coupling constants for the symmetric
interactions are given as

Jq" = JG,3v.0.05(4x) Jv.0.0(dy)

+ J(gzj%QO(Qw) j%Qny‘,(Qy)v (48)
ng = Jg{j%QQT} (qz) Jv,0,0(qy)

+ Jnyj'y,O,O(Qw) j’y,Q,Qf‘, (Qy)v (49)
I8 = 186,770,075 (@) Jy.00(ay)

+ J & J,0,0(d2) Jv.Q,0%(ay), (50)

with J&o in Eq. (22), and those for the antisymmetric
interactions are given as

q
Dy = Dy (51)

where

Dqg = D [|dy.q.3 (4)jv.0.0(ay)]
+ [77.00(42)dv.0.03 ()] (52)
for the case of the proper-screw(I) VC. Figure 6 exem-
plifies J2* and Dy for A =16, v = 0.2, J =1, D = 0.2,

and A = 0.3. The other cases are obtained by the proper
spin rotations in Sec. ITC 2.

8. Three-dimensional case

(x5)

Dl

(x5)

0 -7

(m 1.5 20
(m)
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(0,1, g)
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0.5
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FIG. 7. q = (¢« qy,q-) dependences of (a—c) Jg*, (d-f)
JEY, (g-1) J37, and (j-1) |Dgq| in the 3D finite-range model.
(a,d,g,j), (b,e,h,k), and (c,f,i,1) show the ¢, = 0, g, = 0, and
gy = 0 planes, respectively. The color bar is common to (a-1),
while |Dg| in (j,k,1) are plotted by multiplying a factor of 5
for better visibility. (m) Profile of (a-1) along the path (m,0)—
(0,0)—(0,7) [white dotted lines in (a-1)]. We take A = 12,
v=02,J=1,D=0.3,and A =0.3. Q% and Q}, are set to
Q5 =0.525 and Qp = 0.522 so that J* and |Dg| take their
maxima at ¢ = £Q = £7/6.

In a similar manner, we can obtain the forms of the
finite-range interactions for the 3D case as

Jq" = J&Jv.@.@4 (4z) Jv,00(ay) Jv,00(qz)
+ J8537.0,0(4z) 3v.@.0%(2y) Jv.00(qz)
+ J&4J7,00(8x) Jv,00(ay) Jv.0.05(2:), (53)
JY = J& 37,0.@% (4x) J+,0,0(ay) Jv,0,0(z)
+ J877,00(42) J7.0.05(@y) Jv.0,0(az)
+ J&,37,00(8x) Jv,00(ay) Jv.0.05(2:), (54)
I3 = J&, 370,05 (@) v.00(qy) Jv.00(a:)
+ Jézzj%(),o(qw) j%Q,Q’} (%) jv,O,O(Qz)
+ ‘]ézj%(),t)(qx) J,0,0(ay) j%Q»Qj(QzL (55)



Dgq=D Hd%Q,QB (QI)jW,O,O(Qy)jW,O,O(Qz)|
+ 15.0.0(¢)d.0.03 (2y)j+.0.0(4z)|
+ 174.0.0(¢2)d+.0.0(@)dy.0.05 (42)

], (56)

with J& in Eq. (30), where we use Eq. (51) for Dg in
the case of the proper-screw HL. Figure 7 exemplifies
J§* and Dg for A =12, v =0.2, J =1, D = 0.3, and
A = 0.3. The other cases are obtained by the proper spin
rotations in Sec. ITC 3.

III. METHODS

A. Variational method

In this study, we investigate the spin excitation spec-
trum of the stable ground state for each model introduced
in the previous section. For this purpose, we first deter-
mine the ground state by using variational calculations
in the classical limit where S, is regarded as a 3D vector
with fixed length of |S,| = 1. In the case of the isotropic
symmetric interactions (A = 0), we perform the varia-
tional calculation analytically by assuming a 1Q) HS state
with a uniform twist in all dimensions, as we do not find
any other lower-energy state in the numerical variational
calculation described below. Meanwhile, in the presence
of the spin anisotropy with A # 0, we employ the numer-
ical variational calculation, as the 1Q HS state is mod-
ulated in a nontrivial manner and other multiple-@ spin
states may have lower energy. In the numerical calcula-
tion, starting from several different initial spin configura-
tions (see below), we determine the lowest-energy state
by optimization of the individual spin orientation taking
into account the internal magnetic field from the other
spins and the single-ion anisotropy (S&)? appearing in
the real-space form of the Hamiltonian. As the initial
spin configurations, we take into account a 1Q) HS state
with a uniform twist for the 1D case, the 1@ state and
a 2Q VC [57] for the 2D case, and the 1Q and 2Q) states
and a 3¢Q) HL [58] for the 3D case; in each state, we set
an appropriate helical plane depending on the type of
Dy, namely, the proper-screw type (Dgq || q) or cycloid
type (Dq L q). We first perform the numerical calcula-
tions for the infinite-range model with v = 0, and then,
study the finite-range model with v > 0 starting from the
solution for the infinite-range model as the initial state.

B. Linear spin-wave theory

For the stable spin configuration obtained by the vari-
ational method, we study the spin excitation by using
the linear spin-wave theory. For the 1D 1@ HS states
with uniform twists, we obtain the analytic form of
the excitation spectra regardless of the range of interac-
tions (Sec. IVA 1). Meanwhile, for the anisotropic cases
(A > 0) as well as the 2D and 3D cases, we perform the

spin-wave calculations numerically as follows. For each
stable spin configuration, we introduce new local spin
axes at each site so that all the spins point to the z di-
rection. We denote the spins in the new spin frame as S;.
Then, the stable spin configuration is regarded as a fer-
romagnetic state, namely, S, = z for all r. We apply the
Holstein-Primakoff transformation to the Hamiltonian in
the new spin frame, leaving the lowest order of bosonic
operators:

SE = Y3t —ah | 67)

where a, and al represent the annihilation and creation
operators of magnon at site r, respectively; S is the spin
quantum number of S;.

We denote the spatial coordinate r as r = R + rg,
where R and r( are the position vectors of each mag-
netic unit cell and the sublattice site within the unit
cell, respectively: {R|R* = AN# N* € [0,L/A)} and
{ro|rfy € [0,A)}, where N* and r{ are integers. The
Brillouin zone is folded from {q|] — 7 < ¢ < 7} to
{K|—n/A < K* < w/A} under the magnetic order with
period of A. Using the Fourier transformation

AN? ,
a’K,ro = (L> ZGR+rO€+1K.R, (58)
R

we obtain the linear spin-wave Hamiltonian expressed as
S 1
Hsw = 533 OkAxok. (59)
K

where
aI( = [aK+> a_ K+, aKk—, a—Kf} 5 (60)
with
t i
O g ,aK7(A_17,.,)] 5 (61)

a‘lK,(Aq,.--)] . (62)

aK+ = [GL,(o,m)’”'

aK-— = |:G/K$(O’...)7 e aaK,ru e

In Eq. (59), Ak is a 4A? x 4A? matrix for generic K,
while it becomes a 2A? x 2A¢ matrix for K = 0 or on the
zone boundary; each term in the sum of K includes all
the contributions from a g ., and aTiK)rO, and the sum
S~k runs over a half of the folded Brillouin zone (e.g.,
K* > 0). By the Bogoliubov transformation [64], the
Hamiltonian is diagonalized as

/
Hsw = > expbk, bk, + const., (63)
K »p

where ek, > 0 represents the pth spin-wave dispersion
(p=1,---,dim[Ak]/2), and by, and bkp represent the



annihilation and creation operators of a bosonic quasipar-

ticle, respectively, which are given by linear combinations
T

of aiy ., and ajg . -

By using the linear spin-wave theory, we evaluate the
dynamical spin structure factor given by

!’

St _|Kp)(Kp|SY
S (q) - (q| P)(Kp|S vac)

w—eKp)? + €2

, (64)

SR

EK: Z (vac|

where |vac) is the vacuum of the quasiparticles b, |Kp) =
pr|vac>, and e corresponds to the relaxation rate. In
inelastic neutron scattering experiments, the transverse
components to the incident wave number q are ob-
served [65]. Thus, we study the transverse component
of the dynamical spin structure factor defined as

Si(qw) =St (quw) + 822 (quw),  (65)

where /1| 1 and p o are the two orthogonal directions
perpendicular to q, e.g., 11 =y and ;| o = z for q ||
X. Furthermore, using a polarized neutron beam, two
transverse components can be decomposed by measuring
the spin-flip and non-spin-flip cross sections.

IV. RESULTS
A. One-dimensional magnetic helices

First, we present the results for the 1D HS states. In
Sec. IV A 1, we discuss the case of the isotropic symmetric
interaction, where the stable state has a uniform twist.
In this case, we can derive the analytic forms of the spin-
wave dispersion and the dynamical spin structure factor.
We discuss their dependences on the interaction range
v, including the limit of D — 0. In Sec. IVA2, we
numerically show that the anisotropy A makes the twist
of the HS state nonuniform, accordingly, modulates the
excitation spectra. Finally, in Sec. IV A 3, we study the
lowest-energy excitation mode.

1. Uniform helical spin state in the isotropic case

gq/(JS)

4

—¢=0
q==Q
] -q=%2Q
- other
D/J
0 02 04 0.6 0.8 1.0

FIG. 8. D dependence of the spin excitation energy e, of
the infinite-range model (y = 0) with the isotropic symmetric
interactions (A = 0) in one dimension for ¢ = 0 (blue), ¢ =
+Q (orange), ¢ = £2Q (green), and the other generic ¢ (red)
[Eq. (78)].

(a) gl (b) Dy/D

—_ -z z
Y4 2 5 s

FIG. 9. Interaction range v dependences of (a) the symmetric
interaction J, = Jg', (b) the antisymmetric interaction D,
and (c,d) the spin-wave dispersion e, for the isotropic case
(A = 0) with A = 16 in one dimension. The antisymmetric
interaction is set to (¢) D/J = 0.2 and (d) D/J = 0. The
black dots and lines in (c) and (d) represent the results in the
infinite-range limit of v — 0; see also Fig. 8.



We begin with a HS state in one dimension which
is stable when the symmetric interactions are isotropic,
namely, A = 0 in Eq. (15). We here consider a proper-
screw spin state given by

S¢ = [0,sin(Q¢), cos(QL)]', (66)

and derive the analytic forms of the dispersion of spin
excitation and the dynamical spin structure factor.
The Hamiltonian in Eq. (1) reads

Mo =—[J4Sq-S_q+iDy (SYS7, — S:5Y,)]
1
=— 7> [JSe-Se
0.0

+ iDy (SYSZ — SzSY) e =) (67)

with J, = J&* and D, in Egs. (42) and (43), respectively.
By substituting Eq. (66) with the rotation of the local
spin axes, namely,

0 1 0
Se=| —cos(Q0) 0 sin(Qf) |Se, (68)
sin(Qf) 0 cos(QY)

and applying the Holstein-Primakoff transformation in
Eq. (57)], we obtain the linear spin-wave Hamiltonian as

J
Hsw =5 > {;(aq— al)(a,— al ,)+2(J + D)ala,

q€1BZ
Jg+ Dy + +
- 4 [a—(q—Q) + aq—QHaq—Q + a—(q—Q)]
J,— D
T i
- 4 q[a(q+Q)+aq+QHaq+Q+a(q+Q)]}
I T a
:Z lal a_,J Ay | | + const., (69)
q A—q
where
1 _
T T,—iql
al =——= aze , 70
A (70)
-1 1 10
A, =S |J 2(J+D
: qll +2(7+ >01]
_Jeret Dyt Ji-@ = Dy—q |1 1
5 L1l (71)

and the sum Z; in Eq. (69) runs over a half of the first

Brillouin zone (e.g., ¢ € [0,7])!. Note that no term lin-
ear to the bosonic operators appears as long as the HS

1 Strictly speaking, special treatment is required when ¢ = 0 or
q = m, but in reality, the same result is obtained by considering
the limit of ¢ — +0 or ¢ — 7w — 0.
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state in Eq. (66) is energetically stable. Using the Bo-
goliubov transformation, the Hamiltonian in Eq. (69) is
diagonalized as

gq O
quqZ/[q - (;1 ] ) (72)
€q
with
U — cosh§, sinh¢, (73)
1 sinh &, cosh¢, ’
where
1
&g = 1 (InB; — InC,], (74)
By,=J+D—-J,, (75)
C,=J+D— Jir@ + Dyr@ +J4-@— Dy—q (76)
5 .

The excitation spectrum is obtained as

g = 29/B,C,. (77)

Let us first consider the infinite-range limit (y = 0)
[Egs. (11) and (12)]. In this limit, ¢, becomes ¢ inde-
pendent as ¢, = 25(J + D), except for the §-functional
changes at ¢ = 0, +Q, and +2Q), namely,

0, (¢=0)
£, — 25\/ D(J+D)7 (q:iQ) (78)
) SV(T+D)(J+3D), (¢=+2Q)°

25(J + D), (other q)

The results are plotted as functions of D/J in Fig. 8.
We note that the flat dispersion with excitation energy
25(J + D) originates from the term 2S(J + D)}, azaz,
indicating that the corresponding excitations are the lo-
cal ones with reduction of the S} component at every
site [see Eq. (57)]. This is a pathological feature of the
infinite-range model.

Next, let us consider the finite-range model while
changing the interaction range v [Egs. (42) and (43)].
Figures 9(a) and 9(b) show v dependences of J, = J&*
and D, = |D|, respectively, for A = 16 and D/J = 0.2.
While increasing <, the distributions of J, and D, in
q space get wider and qualitatively approach those of
the model with the nearest-neighbor interactions only:
Jq; = Jcosq and Dy = Dsing. Figure 9(c) shows the
excitation spectrum ¢, at D/J = 0.2. We find that the
spikes at ¢ = 0, +Q, and +2Q) for v = 0 are broadened by
increasing +; €4 is always zero at ¢ = 0, accompanied by
a linear dispersion around the gapless point for nonzero
.
Meanwhile, as indicated in Fig. 8, the spikes at ¢ = £Q
for v = 0 also come down to zero energy when D — 0.
Figure 9(d) shows ¢, in this limit. In this case, the broad-
ening by nonzero vy gives rise to gapless linear excitations
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FIG. 10. Anisotropy dependence of the dynamical spin structure factor S**(q,w)/S for the proper-screw HS state in one
dimension. The anisotropy A is set to (a—c) A = 0 (the isotropic case), (d—f) A = 0.1, (g-i) A = 0.2, and (j-1) A = 0.4.
(a,d,g,j), (b,e,h,k), and (c,f,i,]) show the 4 = x, y, and z components, respectively. The color bar is common to all plots whereas
the data for A = 0.4 in (j-1) are plotted by multiplying a factor of 5 for better visibility. The parameters are taken as A = 16,

D/J=02,v=0.3, and e =0.1.

at not only ¢ = 0 but also ¢ = £@Q. These three gapless
modes are commonly seen in the HS states appearing in
spin models without the antisymmetric interactions, such
as a J1-J2 model in one dimension [66, 67].

Lastly, we derive the analytic form of the dynamical
spin structure S*#(q,w) defined by Eq. (64). Within the
linear spin-wave theory, by using Egs. (57) and (68), we
replace the spin operators S}’ by linear combinations of
the bosonic operators as

% /S ] 1 %(?_q o i

SV 2 j?m4mﬁy+%—Q+a4wa+%+@

S; Z(a*(q*Q) TQ T (g4Q) U +qQ)
(79)

Then, using the Bogoliubov transformation [Egs. (72)-
(76)], we obtain the diagonal components of the dynam-

ical spin structure factor as

e %
57 (g, ) ] , (80)

_ Se

_%{(w —€q)? + €2
S¥(q,w) =57 (q,w)

e26a+Q

Se 62£q—Q
ey 52
87| (w—eq4Q)* +€

@ ot
(s1)

where &, is given by Eq. (74). Noting

o2 _ |2+ D)= Jorq = Dorg — Jo-@ + Dy—q
2(J+D—J,)

2% 14,

(82)



we can show the asymptotic behaviors:

57 (g,w) =% |q], (83)
9 (q,w) = 57 (q,w) 2L g F QI (84)

Figures 10(a), 10(b), and 10(c) show S%*(q,w),
S¥¥(q,w), and S#*(q,w), respectively, for the model with
A =16, D/J = 0.2, and v = 0.3; we take ¢ = 0.1 in
Eq. (64). Note that S**(g,w) vanishes as ¢ — 0, while
SY(q,w) = S%%(q,w) diverge as ¢ — @, as shown in
Eqgs. (83) and (84). These spectra are observable in
the inelastic neutron scattering experiments, but only
the transverse components to the wave number q = ¢x,
namely, S¥Y(¢,w) and S%#(q,w), can be observed, as men-
tioned below Eq. (64). This means that for the proper-
screw HS state the divergent behaviors at ¢ — +@Q in
S¥¥(q,w) and S**(q,w) are observable, but the g-linear
mode around g = 0 with increasing intensity for larger
q in S7*(q,w) cannot be observed. Note that when we
consider a cycloidal HS state, in which the spins are ro-
tated by /2 about the z axis from the proper-screw one
(Fig. 1), S**(¢q,w) and S¥¥(q,w) are interchanged, and
hence, the g¢-linear mode with increasing intensity for
larger ¢ is observed in the S¥Y(q,w) component. Thus,
the neutron scattering spectra are sensitive to the direc-
tion of the helical plane. Similar behaviors were discussed
for short-range models [68, 69].

2. Effect of magnetic anisotropy

When we introduce the anisotropy A in the symmet-
ric interactions as Eq. (15), the proper-screw HS state
is modulated from Eq. (66). Figures 11(a)-11(c) show
our numerical results for the stable spin configurations
obtained by the variational calculation in Sec. IITA. We
find that the twist of the helix is modulated and becomes
spatially nonuniform in the presence of the anisotropy A,
as more clearly shown in Fig. 11(d). This is because the
spins tend to align to the £y direction to gain energy
for A > 0. Indeed, we find that the ratio of the Fourier
components of spins, Rs = |S§|/|S3], monotonically de-
creases while increasing A, as shown in Fig. 11(f). We
note that similar HS states with inhomogeneous twist
were studied for a short-range model [70] and observed
in CuB2Oy4 [71] and TbMnOs [72].

Figure 11(e) shows how the spin-wave dispersion is
changed by A. When A > 0, the gap opens at K =0 (K
represents the wave number in the folded Brillouin zone
as defined in Sec. III B) and monotonically increases with
increasing A. The A dependence of Ag,;, is plotted in
Fig. 11(f).

Figure 10 displays the dynamical spin structure fac-
tor for the modulated proper-screw HS states with sev-
eral values of A. The spectra for A > 0 are gapped
reflecting the spin-wave excitation, although the gap is
small and hardly seen in the spectra for A = 0.1 and
0.2. In addition, while increasing A, the intensities at
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FIG. 11. Effect of the anisotropy A in the symmetric inter-
actions [Eq. (15)] for the 1D finite-range model with A = 16,
D/J = 0.2, and v = 0.3. (a—c) Stable spin configurations
for (a) A = 0.1, (b) A = 0.2, and (c) A = 0.4. The color
of arrows indicates the z component of spin according to the
color bar in (¢). (d) Inner product of nearest-neighbor spins,
S¢-Se41, representing the spatial modulation of the spin twist.
(e) Spin excitation spectra for different A. (f) A dependence
of the spin excitation gap Ag.p and the ratio of the Fourier
components of spins, Rs = [S3[/[S4].

q = +Q become weaker and the overall spectra become
diffusive. Looking more closely, we find that a nonzero
A makes S¥(q,w) different from S%*(q,w); S¥¥(q,w) be-
comes larger than S##(¢,w) in the low-energy part around
q = £Q. This is more clearly seen in the w dependence
at ¢ = @ shown in Fig. 12. The results are consis-
tent with Rg being smaller than 1 while increasing A
[Fig. 11(f)]. On the other hand, unlike S¥Y(Q,w) and
S#(Q,w), S™(Q,w) takes the largest value at a higher
energy around w/(JS) = 0.7 as shown in Figs. 10 and
12, whose energy scale roughly corresponds to €4 in
the infinite-range limit [Eq. (78)]. The transverse com-
ponent of the dynamical spin structure factor, S, (q,w)
in Eq. (65), for the proper-screw HS state is obtained
by setting 4 = y and v = z as discussed in the end of
Sec. IVA 1, and then the results for the other HS states
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FIG. 12. The dynamical spin structure factor S**(q,w)/S at
g=Q for (a) A =0.1, (b) A =0.2, and (¢) A = 0.4. The
model and parameters are the same as Fig. 11.

are obtained by using the corresponding rotations in spin
space:

S = (5%,5Y,5%), proper-screw HS state

S =(—95Y,57,5%), cycloid(I) HS state (85)
S = (57%,8%,8Y),  cycloid(II) HS state -

Since S%*(g,w) is (not) observed in the proper-screw (cy-
cloidal) HS state, the presence or absence of the higher-
energy intensity around w ~ e1+g at q = @X in the in-
elastic neutron scattering experiments can be an indica-
tor for distinguishing the proper-screw and cycloidal HS
states. In addition, it is worth noting that the spectra
for A > 0 exhibit higher harmonics at ¢ = +3@Q), orig-
inating from the modulation of the spin configurations
by the anisotropy. Such satellite peaks were observed
in a neutron scattering experiment of CuB204 [71] and
ThbMnOs [72].

3. Mode analysis

Let us discuss the nature of the lowest-energy excita-
tion mode. For this purpose, we consider a wave function

o) = Ivac) + e~ fex), (86)
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FIG. 13. Time evolution of the lowest-energy excitation mode
at K =0 for (a) A = 0.1, (b) A =0.2, and (¢c) A = 0.4.
The data connected by the solid, dotted, and dashed lines
indicate the spin configurations obtained by Eq. (87) with
eext = 0, w/4, and 7/2, respectively, for A = 0.1. The model
and parameters are the same as Fig. 11. Inset of (a) shows
a schematic view of a spin precession motion (black arrow)
around the ground state (gray arrow).

where A denotes a mixing between the ground state |vac)
(vacuum of magnons) and the lowest-energy excited state
lex) at K = 0: |ex) = |K = 0,p = 1) with excitation
energy of ecx = ex=o,p=1 [see Eq. (63)]. For simplicity,
in this section, we assume the large S limit, in which
(vac|Sf|vac) = S. Then, in the linear spin-wave theory,
the expectation values of spins are computed as

{157 0) =(vac| Sy vac)
+ A [e_ise"t<vac|§f|ex> + h.c.} +0(\)

~S0,.. + %Re [e*isext<vac|55|ex>} = (S,
(87)

Figure 13 shows the results of numerical calculations
for A = 0.1, 0.2, and 0.4 with A = 0.1. At ¢t = 0,
all the spins for the excited state ¢ are in the helical
plane, namely (S7) = 0. While increasing ¢, each spin
shows an elliptically distorted precession, as schemati-
cally shown in the inset of Fig. 13(a). After the precession
by eoxt = 7/2, the yz components of spins are indistin-



guishable from those of the ground state, and only the
x component is different from the ground state. These
feature are commonly seen regardless of A.

The amplitude of the precession motion, however,
strongly depends on A. When A is small, the spin
components in the helical plane, (S7) and (S7), show
large motions, while the perpendicular component (S7)
changes much smaller, as exemplified in Fig. 13(a); the
excitation mode can be regarded as a phase shift of
the helix. With an increase of A, the changes of (S})
and (S7) ((S7)) are suppressed (enhanced), as shown in
Fig. 13(b). For larger A, the spins are almost pinned in
the +y directions and the amplitude of the precession be-
comes small, as shown in Fig. 13(c); (S}) and (S7) show
almost no change, while (S7) oscillates near the regions
where (S7) changes its sign.

B. Two-dimensional vortex crystals

Next, we present the results for the 2D VCs. In
Sec. IVB 1, we show the ground-state phase diagram for
the 2D model in the limit of infinite-range interactions
computed by the variational calculations. In the phase
diagram, we find that the anisotropy A favors the 2D
VCs. In Sec. IVB2, we examine the details of the 2D
VCs and their stabilization mechanism. In Sec. IV B 3,
we discuss the dependence of the spin-wave dispersion
on the interaction range . Finally, in Sec. IVB4, we
discuss the dynamical spin structure factor computed by
the linear spin-wave theory.
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FIG. 14. Variational results for the infinite-range model in
two dimensions. We take A = 16. (a) Phase diagram, includ-
ing the 1Q state, the anisotropic 2@ state with |Sq, | # |Sq.|,
and the isotropic 2Q state with |[Sq,| = |Sq,|- (b) The ratio
of the Fourier components of spins, Rs = |SS::X\ / |Sg:’:x|,
representing the ellipticity of the constituent spin helix; see
the text for the definition.

Figure 14(a) shows the ground-state phase diagram for
the infinite-range model in two dimensions (Sec. IIC2)
obtained by the variational calculations (Sec. IIT A) while
changing A and D/J. We take A = 16. The result is
common to all the settings of the proper-screw and cy-
cloidal VCs listed in Table I. We find three phases: the
1Q state, the anisotropic 2@Q) state where [Sq,| # [SQ.|,
and the isotropic 2() state where |Sq,| = [Sq,|- All the
phase transitions among the three states look continuous.
In the isotropic case (A = 0), the system always stabilizes
the 1Q state for D > 0; it remains stable against nonzero
A, and the range becomes wider for larger D, as shown in
Fig. 14(a). In the larger A region, the system stabilizes
the 2@Q) states, whose spin configurations are noncoplanar
except for D = 0. In the 2(Q) states, the constituent two
spin helices are deformed from circular. To evaluate the
ellipticity, we extend the ratio Rg defined in Sec. IV A 2
to the present situation as Rg = |S(’3::X| / \Sg:’:x\7 where
Qmax is Q,, for larger [Sq, |, and p 1 and 1) » denote the
x, y, or z directions perpendicular to Dq,, . satisfying
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FIG. 15. Isotropic 2@ spin states stabilized in the infinite-
range model in two dimensions with D/J = 0.2, A = 0.3,
and A = 16: (a) proper-screw(I) VC, (b) cycloid(I) VC, (c)
proper-screw(II) VC, and (d) cycloid(II) VC. The forms of
JQ, and Dq,, in each case are summarized in Table I. The
configurations of Dq, as well as Q,, are shown in each fig-
ure. The color of arrows indicates the z component of spin
according to the color bar in (a).

|Sg::x| > |Sgtix| (for instance, | 1 =z, and g2 =y
when Dq,., || X and [Sg | > [S§ . [). Note that
Rg = 0 in the isotropic 2Q) state at D = 0 and A > 1.6
because the spin state becomes coplanar (Sa7 =0), com-
posed of a superposition of two sinusoidal spin density
waves with equal weight. The calculated result of Rg is
plotted in Fig. 14(b). We find that Rg increases while
increasing D and decreasing A.

2. Vortex crystals

While the phase diagram is common to all the settings
of the proper-screw and cycloidal VCs listed in Table I,
the actual spin configuration in the 2@ state depends
on the type of interactions. We present the variational
results in Fig. 15, focusing on the isotropic 2@Q) state at
D/J=0.2and A =0.3 (Rg ~0.31). Figure 15(a) shows
the stable spin configuration when taking Jgj and Dq,
as Eqgs. (22) and (21), respectively. This is the proper-
screw(I) VC. On the other hand, Fig. 15(b) shows the
spin configuration obtained for Eqgs. (23) and (24), which
is the cycloid(I) VC. Likewise, Figs. 15(c) and 15(d) dis-
play the spin configurations for Eqs. (25) and (26) and
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Egs. (27) and (28), which are the proper-screw(II) and
cycloid(IT) VCs, respectively. Note that the VCs of type
(I) [(IT)] can be regarded as square lattices with a stag-
gered arrangement of merons and antimerons with vor-
ticity +1 (—1) [73]. Similarly, the spin configurations of
the anisotropic 2@ state also form VCs where the vortices
are deformed (not shown).

These VCs are stabilized by the anisotropy A in the
symmetric interactions, as suggested in the phase di-
agram in Fig. 14(a). This can be directly confirmed

by calculating the spin components of Sq,. We find
that all the VCs have large values of [Sg | = |Sg,|
and |SG,| = [SQ,| for the proper-screw and cycloidal

VCs, respectively: For example, at D/J = 0.2 and
A = 03, we find (1S3,],154,],155,)) =~ (0,7.4,2.3)
and (|Sg,,196,1;15§,]) =~ (7.4,0,2.3) for the proper-
screw VCs, while (15§ [,154,],198,1) =~ (7.4,0,2.3)
and (58, 1,154,1:15,1) =~ (0,7.4,2.3) for the cycloidal
VCs. This leads to the energy gain in the interaction
terms, —J(1 4 2A)Sg 5Yq, and —J(1 + 2A)S8,5%q,
in Egs. (22) and (25), for the proper-screw VCs,
while —J(1+2A)Sg, 5% q, and —J(1+2A)5¢, 5%, in
Egs. (23) and (27) for the cycloidal VCs.

3. Interaction range dependence

| (a) v=0.01 |(b)
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FIG. 16. Spin excitation spectra in the isotropic 2@} spin
states in two dimensions while changing the parameter for
the interaction range: (a) v = 0.01, (b) v = 0.1, and (c)
v = 0.2. We take D/J = 0.2, A = 0.3, and A = 16, as in
Fig. 15. (d) Symmetric lines in the folded Brillouin zone, used
for the plots in (a—c).



Let us consider the finite-range model in two dimen-
sions while changing the parameter for the interaction
range, 7. We perform the variational calculations for
~ > 0 starting from the stable spin configuration for the
infinite-range limit of v = 0, which results in the solu-
tions retaining the type of each VC with modulated spin
configurations; while this procedure does not ensure that
the resultant solution is the ground state, but it is, at
least, a metastable state, for which we can compute the
spin excitations by the linear spin-wave theory. Figure 16
shows the spin-wave dispersion ek in the folded Brillouin
zone for three different values of . The results are com-
mon to all the VCs in Fig. 15. When + is small enough,
the excitation spectra are almost flat except around the I
point. The multiple values of excitation energy arise from
a nonuniform twist in VCs. As in the 1D case (Fig. 9),
while increasing «, the dispersion becomes more disper-
sive, whereas the bandwidth is barely changed.

4. Dynamical spin structure factor

We discuss the transverse component of the dynamical
spin structure factor, S, (q,w) in Eq. (65), for each VC,
which is related to the observable in the inelastic neu-
tron scattering experiment. Note that the direction of q
is fixed along the z direction in the 1Q) case in Sec. IV A,
where we discussed S¥Y(q,w) and S**(q,w), but in the
2D case the q direction is rotated and the relevant spin
components change with the direction. In the calcula-
tion, we first compute (Kp|Sk|vac) in Eq. (64) using the
model for the proper-screw(I) VC, and then obtain the
results for the other VCs by using the corresponding ro-
tations in spin space:

S =(5%,5Y,5%), proper-screw(I) VC
S =(SY,-5%,5%), cycloid(I) VC
— 98 =(5",-5Y,-5%), proper-screw(II) VC .
S = (9Y,5% —-5%), cycloid(IT) VC
(88)

Figure 17 shows S, (q,w) for the four types of VCs
obtained at D/J = 0.2, A = 0.3, A = 16, and v = 0.2.
Here, we take ¢ = 0.05 in Eq. (64). The overall spectra
look similar among the different VCs. In particular, as
expected from the above calculation scheme, the spectra
along the I'-X line are common to the two types of the
proper-screw VCs [Figs. 17(a) and 17(c)]; this holds also
for the cycloid(I) and (IT) VCs [Figs. 17(b) and 17(d)]. In
the same way, the spectra along the M—T" line are common
to the proper-screw(I) and cycloid(II) VCs [Figs. 17(a)
and 17(d)], and to the cycloid(I) and proper-screw(II)
VCs [Figs. 17(b) and 17(c)]. In addition, we note that
the spectra along the X—M line are common to the two
types of VCs for both proper-screw and cycloidal cases
(see Appendix A).

On the other hand, a stark difference between the
proper-screw and cycloidal VCs is found along the I'-X
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FIG. 17. Transverse component of the dynamical spin struc-
ture factor, S1(q,w) in Eq. (65), for (a) proper-screw(I), (b)
cycloid(I), (c) proper-screw(II), and (d) cycloid(II) VCs, plot-
ted along the symmetric lines in the first Brillouin zone shown
in (h). (e) and (f) Enlarged views of the dotted areas in (a,c)
and (b,d), respectively. (g) w dependence at q = Qi. The
interaction range and the relaxation rate are taken as v = 0.2
and e = 0.05, respectively. The other parameters are A = 16,
D/J =02, and A =0.3 as in Fig. 15.

line, especially in the vicinity of q = Qi: The inten-
sity of the lowest-energy excitation mode is much larger
for the proper-screw VCs [Fig. 17(e)] than the cycloidal
VCs [Fig. 17(f)]. This is more clearly shown in the w de-
pendence at q = Q; in Fig. 17(g). The large difference



is consistent with the small Rg plotted in Fig. 14(b),
since the ratio between the intensities at q = Q; and
w = €q, p=1 is well approximated by R%. The reason is
as follows. The intensity is computed from the dynam-
ical spin structure factor as S, (Q1,w) = S¥¥(Q1,w) +
S5%%#(Qq,w) for the two types of the proper-screw VCs,
while 51 (Q1,w) = S™(Q1,w) + S**(Qq,w) for those
of the cycloid. At w = eq, p=1, 51 (Q1,w) is dominated
by S¥Y(Q1,w) [S**(Q1,w)] for the proper-screw (cycloid)
VCs. Since the frequency integral of the dynamical spin
structure factor corresponds to the static spin structure
factor, ie., [S*(q,w)dw oc |SK|?, the intensity ratio
is approximately given by |Sg [|*/|S8,|* = R%. For the
present parameter set, Rg ~ 0.31 as shown in Sec. IV B 2,
leading to R% ~ 0.10. The value well explains the peak
difference in Fig. 17(g). Thus, such a difference around
q = Q1 could be useful to distinguish the proper-screw
and cycloid types of VCs in experiments.

We note that it is rather difficult to distinguish the
type (I) and (II) from the spectra, in both proper-screw
and cycloidal cases. There is, however, a noticeable dif-
ference near (q,w) =~ (Q1 + Q2,1.8JS) along the M-T'
line, as shown in Figs. 17(a)-17(d).

C. Three-dimensional hedgehog lattices

Lastly, we present the results for the 3D HLs. The
structure of the following sections is similar to that in
Sec. IV B for the 2D case: the variational phase diagram
in Sec. IV C 1, the details of the 3D HLs and their stabi-
lization mechanism in Sec. IV C 2, the spin-wave disper-
sion while changing the interaction range in Sec. IV C 3,
and the dynamical spin structure factor in Sec. IV C4.

1. Phase diagram

Figure 18(a) shows the ground-state phase diagram for
the infinite-range model in three dimensions (Sec. 11 C 3)
obtained by the variational calculations (Sec. IIT A) while
changing A and D/J. We here take A = 12. The
phase diagram is common to all the settings of the
proper-screw and cycloid HLs listed in Table I. We find
three phases: the 1@ state, the anisotropic 2() state
where one of three [Sq, | is zero and the other two have
nonzero different values, and the isotropic 3@Q) state where
ISq,| = [Sq@,| = |Sq,|- The phase transition between
the 3Q and 2@Q) states is discontinuous, while that be-
tween 2Q) and 1@ looks continuous. Similar to the 2D
case, the system stabilizes the 1Q state for D > 0 and
small A, as shown in Fig. 18(a). In the larger A region,
the system stabilizes the 2Q) and 3@Q) states, whose spin
configurations are noncoplanar except for D = 0. In the
3Q state, the constituent three spin helices are elliptical,
as in the isotropic 2@ case in Sec. IV B 1. The calculated
Rg, whose definition is the same as that in Fig. 14(b), is
plotted in Fig. 18(b). Note that Rg = 0 in the isotropic
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FIG. 18. Variational results for the infinite-range model in
three dimensions. We take A = 12. (a) Phase diagram,
which includes the 1Q state, the anisotropic 2@ state with
[Sq.| > |Sq,| # 0 and Sq, = 0 (the cyclic permutations of
Q,, are energetically degenerate) and the isotropic 3Q state
with |Sq,| = |Sq,| = [Sqs|- (b) The ratio of the Fourier
components of spins, Rs, defined in Sec. IVB 1 and Fig. 14.

3Q state at D = 0 where the coplanar spin state is a
superposition of three sinusoidal spin density waves with
equal weight. We find that Rg increases while increasing
D and decreasing A.

2. Hedgehog lattices

While the phase diagram is common to all the set-
tings in Table I, the actual spin configuration in the 3Q
state depends on the type of interactions. We present the
variational results in Fig. 19, focusing on the isotropic
3Q state at D/J = 0.3 and A = 0.3 (Rg ~ 0.22). Fig-
ure 19(a) shows the stable spin configuration when taking
Jg. and Dq, as Egs. (30) and (29), respectively. This
is the proper-screw HL. On the other hand, Fig. 19(b)
shows the spin configuration obtained for Egs. (31) and
(32), which is the cycloid(I) HL. Likewise, Fig. 19(c) dis-
plays the spin configuration for Eqgs. (33) and (34), which
is the cycloid(IT) HL. Figure 19(d) shows the positions
of the topological defects, i.e., hedgehogs and antihedge-
hogs, which are identified as sources and sinks, respec-



FIG. 19. Isotropic 3Q spin states in the infinite-range model
in three dimensions with D/J = 0.3, A = 0.3, and A = 12:
(a) proper-screw HL, (b) cycloid(I) HL, and (c) cycloid(II)
HL. The forms of Jg; and Dq,, in each case are summarized
in Table I. Insets show Dq,, as well as Q,, for each case. The
color of arrows indicates the z component of spin according
to the color bar in (a). (d) Positions of the hedgehogs (ma-
genta spheres) and the antihedgehogs (cyan spheres), which
are common to all the HLs in shown (a—c). The dashed lines
are the guides for eyes.

tively, of the emergent magnetic field defined by a solid
angle formed by neighboring three spins [58]. The po-
sitions of the hedgehogs and antihedgehogs are common
to the three HLs, since the spin configurations are mutu-
ally transformed by 27/3 rotations about the [111] axis
in spin space as described in Sec. II C 3.

These HLs are stabilized by the anisotropy A in the
symmetric interactions, as suggested in the phase dia-
gram in Fig. 18(a). Similar to the 2D case in Sec. IVB 2,
this can be confirmed by calculating the spin components
of Sq,. We find that all the HLs have the large ampli-
tudes for \S(%1| = 18§, = 15,1, 15§, = |S(y92| =S4,
and [S§,| = [S§,] = |5§,| for the proper-screw, cy-
cloid(I), and cycloid(II), respectively, which gain the in-
teraction energy in the presence of A in each case.
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3. Interaction range dependence

FIG. 20. Spin excitation spectra in the isotropic 3@ spin
states in three dimensions for (a) v = 0.01, (b) v = 0.1, and
(¢c) v = 0.2. We take D/J = 0.3, A = 0.3, and A = 12, as
in Fig. 19. (d) Symmetric lines in the folded Brillouin zone,
used for the plots in (a—c).

Let us discuss the finite-range model in three dimen-
sions. As in the 2D case, we perform the variational
calculations for v > 0 starting from the solutions for
v = 0, and find stable but modified spin configura-
tions. Figure 20 shows the spin-wave dispersion ek in
the folded Brillouin zone for three different values of v
at D/J =0.3, and A = 0.3 with A = 12; the results are
common to all the HLs in Fig. 19. Similar to the 1D and
2D cases, the excitation spectra are almost flat in most
regions in momentum space for small v, but they become
more dispersive while increasing ~.

4.  Dynamical spin structure factor

Figure 21 shows the transverse component of the dy-
namical spin structure factor, S, (q,w) in Eq. (65), for
the three types of HLs obtained at D/J = 0.3, A = 0.3,
A =12, and v = 0.2. We take e = 0.05 in Eq. (64). The
calculations are done in a similar manner to the 2D case
in Sec. IVB4, by using the spin rotation as

S = (57,8Y,5%), proper-screw HL

{s = (8¥,8%,5%), cycloid(I) HL

. 89
S =(S5%,5%,8Y), cycloid(IT) HL (89)
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FIG. 21. Transverse component of the dynamical spin struc-
ture factor, S.(q,w) in Eq. (65), for (a) proper-screw, (b)
cycloid(I), and (c) cycloid(II) HLs, plotted along the sym-
metric lines in the first Brillouin zone shown in (h). (d), (e),
and (f) Enlarged views of the dotted areas in (a), (b), and
(c), respectively. (g) w dependence at q = Q1. The interac-
tion range and the relaxation rate are taken as v = 0.2 and
e = 0.05, respectively. The other parameters are A = 12
D/J =0.3, and A = 0.3 as in Fig. 19.

The overall spectra look similar among the different
HLs. In particular, as expected from the above calcula-
tion scheme, the spectra along the R-I" line are common
to all the three types of HLs.

On the other hand, similar to the 2D case, a stark dif-
ference among the three HLs is found in the vicinity of
dq = Q1: The large intensities of the lowest-energy exci-
tation mode are seen in the proper-screw and cycloid (II)
HLs [Figs. 21(d) and 21(f)], whereas not in the cycloid(I)
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HL [Fig. 21(e)]. This is more clearly shown in the w de-
pendence at q = Q; in Fig. 21(g). As in the 2D case,
this large difference is consistently understood from R%:
For the present parameter set, Rg ~ 0.22 as shown in
Sec. IV C2, leading to R% a 0.048. Since the intensity
for the cycloid(I) is particularly smaller than the other
two, this difference could be useful to distinguish the cy-
cloid(I) HL from the proper-screw and cycloid(II) HLs in
experiments.

Although it is rather difficult to distinguish the proper-
screw and cycloid(IT) HLs solely form the spectra in
Fig. 21, it would be useful to separately measure the spin-
flip and non-spin-flip cross sections in inelastic neutron
scattering experiments. We expect a larger (non-)spin-
flip component for the proper-screw [cycloid(IT)] HL since
it has a larger intensity in S¥¥(Q1,w) [S**(Q1,w)].

V. SUMMARY AND DISCUSSION

We have investigated the spin excitation spectra for
various types of helimagnetic states in the spin mod-
els with long-range exchange interactions. Starting
from the model with infinite-range interactions, we have
studied the models with long- but finite-range interac-
tions including the symmetric diagonal ones with spin
anisotropy and the antisymmetric off-diagonal ones of the
Dzyaloshinskii-Moriya type. While changing the range
of the interactions, we clarified the ground state and the
spin excitation by the variational calculation and the lin-
ear spin-wave theory, respectively. For the spin excita-
tion, in addition to the spin-wave dispersion, we com-
puted the transverse component of the dynamical spin
structure factor, S, (q,w), which is relevant to the in-
elastic neutron scattering experiments.

In the 1D case, we obtained the analytical solution
for the spin excitation in the isotropic HS states with a
spatially uniform twist angle, for both proper-screw and
cycloid types. We showed that the spin-wave dispersion
is completely flat in the infinite-range model except for
qg =0, £@Q, and +2Q), where @ is the helical wave num-
ber, but it becomes dispersive for the finite-range case.
Irrespective of the spatial range of interactions, there is
a gapless excitation mode, which results in strong inten-
sities at ¢ = +@Q in the dynamical spin structure factor.
Meanwhile, we also obtained the numerical results for
the effect of the spin anisotropy in the symmetric diag-
onal interactions. We found that the anisotropy makes
the twist angle of the stable spin texture inhomogeneous,
and accordingly opens a gap in the spin-wave disper-
sion. We also showed that, as long as the anisotropy is
weak, the lowest-energy excitation mode can be regarded
as a phase shift of the helix. In addition, we found a
discernible difference between the proper-screw and cy-
cloid HS states in the high-energy spectra of S, (q,w) at
q = Qx. We also found additional intensities in S, (q, w)
for the higher harmonics at ¢ = £3@) in the presence of
the spin anisotropy.



Extending the analyses to the 2D case, we have dis-
cussed the stability and excitations of 2Q) VCs. By using
the variational calculation, we found that the 2Q VCs are
stabilized by the spin anisotropy. More specifically, while
increasing the spin anisotropy, the 1Q HS state stabi-
lized by the antisymmetric interactions turns into the 2Q
VCs through the apparently continuous phase transition.
There are two different 2¢) VC phases: the anisotropic
one with a superposition of two spin helices with differ-
ent amplitudes and the isotropic one with equal ampli-
tudes. The latter appears for larger anisotropy than the
former. While the phase diagram is common, the stable
spin configurations of the VCs depend on the form of the
interactions in the model, that is, the easy axes of the
spin anisotropy and the directions of the Dzyaloshinskii-
Moriya vectors. We obtained four types of VCs: two of
them are superpositions of proper screws and the other
two are of cycloids. By using the linear spin-wave the-
ory, we showed that the spin-wave dispersion, which is
common to the four VCs, becomes dispersive upon in-
troducing the spatial decay of the interactions, similar to
the 1D HS case. Meanwhile, we found discernible differ-
ences in S (q,w) among the four types of VCs at q ~ Q;
and q ~ Q1 + Q2. The finding could be useful to deter-
mine the type of VCs as well as the relevant effective spin
model in inelastic neutron scattering experiments.

In the 3D case, we have examined the stable spin con-
figurations and the spin excitation spectra for three types
of 3Q) HLs: one proper-screw type and two cycloid types.
In the variational phase diagram, which is common to
the three HLs, we found that the HLs are stabilized in
the presence of the spin anisotropy, similar to the 2Q)
VCs in the 2D case. In this 3D case, however, while in-
creasing the spin anisotropy, the 1Q) HS state first turns
into the anisotropic 2QQ VC, and then into the isotropic
3@ HL; the phase transition between the 2¢) VC and the
1Q) HS state looks continuous, while that between the
3@ HL and the 2Q) VC is discontinuous. With regard to
the spin excitation spectra, we found qualitatively simi-
lar behaviors to the 2Q) VC cases. Thus, in this case also,
the differences in S, (q,w) would be useful to distinguish
the type of HLs and to identify the relevant interactions
in experiments.

Finally, we discuss candidate materials to which our re-
sults are potentially relevant. As discussed in Sec. IV A 2,
the 1D HS states in CuB2O4 and ThMnOj3 could be ac-
counted for by our 1D model with the spin anisotropy,
which predicts higher harmonics at ¢ = +3Q in the dy-
namical spin structure factor as observed in the exper-
iments [71, 72]. For the 2D (3D) models, the magnetic
metals with the crystallographic point groups Dy, Cly,,
and Doy (T and C3) can be candidate materials, for
example, a Mn-Pt-Sn inverse Heusler compound (Ds,)
where an antiskyrmion crystal has been found [74], and
MnSiy . Ge, of B20 structure (T') where the magnetic
HLs have been found [20-25]. To the best of our knowl-
edge, inelastic neutron scattering experiments have not
been performed systematically for the multiple-Q) spin
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states of VC and HL thus far. We hope that our results
stimulate such experiments and the detailed comparison
between theory and experiment provides a hint for under-
standing of the microscopic mechanism of the multiple-Q
states.

In addition to the above substances, recently, multiple-
() spin states in centrosymmetric systems, for which
the antisymmetric interactions of the Dzyaloshinskii-
Moriya type are inactive, have been attracting consid-
erable attentions, for example, GARuaSiz (Dyp) [19, 75],
GngdSlg (DGh) [76*81], Gngu4A112 (D@h) [82, 83], and
SrFeO3 (Oy,) [84-87]. In our model, however, when the
antisymmetric interactions are absent, the ground states
are always given by superpositions of sinusoidal spin den-
sity waves, inconsistent with the experimental observa-
tions. Thus, for these multiple-Q) spin states, further
extensions of the model are necessary, e.g., additional bi-
quadratic interactions [58, 60, 61]. This interesting issue
is left for future research.

ACKNOWLEDGMENTS

The authors thank Y. Fujishiro, N. Kanazawa, and T.
Nakajima for fruitful discussions. This work was par-
tially supported by Japan Society for the Promotion
of Science (JSPS) KAKENHI Grant No. JP18K03447,
JP19HO01834, and JP19H05825, JST CREST Grant No.
JPMJCR18T2, and JST PRESTO (JPMJPR20LS).

Appendix A: Symmetry argument for S, (q,w) along
the X—M line in 2D VCs

In this Appendix, we explain why S (q,w) along the
X-M line are common to the two types of VCs for both
proper-screw and cycloidal cases as shown in Fig. 15,
from a symmetry argument. Let qg be any wavenumber
on the X-M line. S, (q,w) at g = qqp for the type (I)
VCs are computed by using Eq. (64) as

Si_(q(%w) = Szz<q0aw) + S'u'u<q07w)7 (Al)

where the spin component in the second term is taken
along ﬁ’ = (_qg,qg’o)’ herea qo = (ngqué) = qO/‘q0| On
the other hand, those for the type (II) VCs, S'(qq,w),
are computed by replacing ft by it/ = (4§, ¢%,0) because
the type (I) and (II) VCs are connected each other by =
rotation about [100] axis in spin space. Denoting q( =
(—q8.q8) L (@/*,/¥), which is connected to qo by a
reciprocal vector [qj = qo — (27, 0)], we obtain

ST (qo,w) = SIL(OIBM) (A2)
In addition, the following relation holds:
SIL(qO»w) = Sli(qéjaw)v (A?’)

because the Hamiltonian and the ground-state spin con-
figurations are invariant under 7 rotation about the [010]



axis in both coordinate and spin spaces for the proper-
screw(I) VC and under a combined operation of 7 rota-
tion about the [010] axis in coordinate space and 7 rota-
tion about the [100] axis in spin space for the cycloid(I)
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VC. Finally, from Egs. (A2) and (A3), we find
SIL(C](),CU) = SILI(q07w)7 (A4)

where qg is in the X—M line.
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