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The paradigm of Floquet engineering of topological states of matter can be generalized into
the time-quasiperiodic scenario, where a lower dimensional time-dependent system maps into a
higher dimensional one by combining the physical dimensions with additional synthetic dimensions
generated by multiple incommensurate driving frequencies. Different than most previous works
in which gapped topological phases were considered, we propose an experimentally realizable, one
dimensional chain driven by two frequencies, which maps into a gapless Weyl semimetal in synthetic
dimension. Based on analytical reasoning and numerical simulations, we found the nonadiabatic
quantum dynamics of this system exhibit energy pumping behaviors characterized by universal
functions. We also numerically found such behaviors are robust against a considerable amount of
spatial disorder.

I. INTRODUCTION

The idea that topological phases of matter out of equi-
librium can be engineered with external time-dependent
drives has been thoroughly investigated over the past few
years in the Floquet paradigm [1–19], and was only re-
cently generalized to the time-quasiperiodic realm, where
a quantum system is driven by external drives at multiple
mutually incommensurate frequencies, under the frame-
work pioneered by Ref. [20]. The key insight of that
work is that each drive at a particular frequency maps
into a synthetic dimension of energy stored in that drive,
which is quantized in unit of its frequency. In fact, the
concept of synthetic dimensions has recently emerged as
a powerful way to emulate topological phases of mat-
ter, which are now of great interest across many areas of
physics [21]. Among various approaches to engineer syn-
thetic dimensions, the idea based on quasiperiodic drives
was pursued and generalized by several theorists [22–29],
as well as realized in experiments [30, 31].

In general, when a d-dimensional system is subject to n
quasiperiodic drives with mutually incommensurate fre-
quencies, quantum states are dressed by all harmonics of
the driving frequencies. The amplitudes for the harmon-
ics form new degrees of freedom, thereby effectively rais-
ing the dimensionality of the system from d to d+n. Fur-
thermore, different driving frequencies, if collected into a
vector, resemble a homogeneous electric field operating
in the synthetic space. In an extended system, when
the external drives are not homogeneous in the physical
dimensions, a synthetic magnetic field can also be real-
ized [22].

In response to the synthetic electromagnetic fields, the
system generates currents flowing along the synthetic di-
mensions, which can be interpreted as the energy current
pumped into each drive. In the adiabatic regime, i.e.,
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FIG. 1. Model illustrations. (a) A chain aligned along z
direction is quasiperiodically driven by two incommensurate
frequencies ω1 and ω2, which map into synthetic dimensions
of energy quanta in units of these frequencies, counted by
n1 and n2. Inset: each site should be effectively a two-level
system. (b) Apart from having a synthetic electric field, the
driven chain maps to a synthetic WSM, where the Brillouin
zone is parametrized by θjt = ωjt + θj0 with j = 1, 2 and
Bloch momentum kz, when periodic boundary condition along
z direction is assumed. The locations of the Weyl nodes are
indicated at ±k0, and the linear dispersion is shown along kz.
The model can be regarded as 2D systems characterized by
the Chern number C at each kz except for at kz = ±k0, where
the 2D system is gapless and C is undefined, as indicated by
red planes. The Chern number C = ±1 when −k0 < kz < k0,
and C = 0 elsewhere.

when these driving frequencies are much smaller than
the energy gap of the (d + n)-dimensional synthetic lat-
tice system, linear response theory can be applied. Based
on this, Ref. [20] considered a single spin-1/2 under two
incommensurate drives and demonstrated the quantum-
Hall-like topological energy pumping phenomenon, since
such a system can be mapped into a synthetic 2D Chern
insulator. Ref. [23] further generalized this by going be-
yond the adiabatic limit and showed that quantized en-
ergy pumping is a dynamical signature of quasienergy
states in the topological class of dynamics.

So far, synthetic-space topological phases considered
were exclusively gapped (such as the Chern insulator).
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In contrast, Ref. [25] considered the same driven spin-
1/2 model, but allowed the mapped synthetic 2D lattice
system to become gapless at the phase transition point
between a topologically trivial insulator and a nontriv-
ial Chern insulator. Despite the nonadiabatic nature of
this gapless system, it was shown that the energy pump-
ing power can be characterized by some universal scaling
forms, and the short-time topological energy pumping be-
comes half-integer quantized at the gapless point. This
result was even demonstrated experimentally [30].

From a practical perspective, the quasiperiodically
driven quantum systems exhibiting robust/universal en-
ergy pumping behaviors are potentially crucial for quan-
tum technological applications, especially for quantum
communications and quantum computing purposes, as
the energy flow between different subsystems can be well
controlled. Understanding the quantum dynamics be-
yond the adiabatic limit is important because it greatly
expands the parameter regime where the energy-pumping
device operates. On the other hand, an extended-system-
based device is favorable, as its energy pumping power
can be manipulated by changing the system size [22],
which adds more controllability.

Using this as a motivation, we propose a quasiperi-
odically driven 1D system which maps into a synthetic
gapless topological phase, in particular a Weyl Semimetal
(WSM). We show that a synthetic WSM can be realized
by driving a 1D extended chain with two external drives
at incommensurate frequnecies, as shown in Fig. 1(a).
Despite the system’s intrinsic gapless and hence nonadi-
abatic nature, we find both analytically and numerically
that this system exhibits robust (disorder insensitive) en-
ergy pumping behaviors characterized by universal scal-
ing functions.

The rest of the paper is organized as follows. In Sec. II,
we review the mapping between a d-dimensional system
under n drives and a d + n dimensional system, as well
as energy pumping in such driven systems. In Sec. III,
we introduce the model of a 1D chain driven by two in-
commensurate frequencies, and show that it maps to a
synthetic WSM (illustrated in Fig. 1(b)). Moreover, we
analytically derive the universal functional form charac-
terizing the energy pumping behavior in this system. In
Sec. IV, we provide numerical support for our analyti-
cal results. We also discuss the effects of the boundary
condition, as well as spatial disorder. In particular, we
find that our results are still valid even when the disor-
der strength is comparable to the overall energy scale of
the model. In Sec. V, we further discuss the timescale
at which spins decouple from the magnetic field. From
this, we derive the expected energy pumping behavior at
intermediate/long times. Finally, we conclude our work
in Sec. VII, where we also comment on the possible in-
teraction effects on our noninteracting system.

II. TIME-QUASIPERIODIC QUANTUM
SYSTEMS

A. Synthetic dimensions from quasiperiodic drives

In this section, we follow Ref. [20] and review the map-
ping between a d-dimensional system under n mutually
incommensurate drives and a (d+n)-dimensional system.
Note that any two of the driving frequencies must not be
commensurate, otherwise they effectively act as one drive
with a longer period.

Consider a non-interacting Hamiltonian defined on a
lattice in d dimensions. In the second quantization for-
malism, it can be written as:

H =
∑
x,x′

Ψ†(x)H(x,x′)Ψ(x′) (1)

where Ψ†(x) (Ψ(x)) is the creation (annihilation) opera-
tor at position x, and the double sum runs over all lattice
sites.

Introducing n 2π-periodic variables of the form
θit(x) = ωit + θi0(x) to the on-site Hamiltonian,
namely H(x,x) → H(x,x;θt(x)), with θt(x) =
(θ1t(x), . . . , θnt(x)), and ωi corresponding to the fre-
quency of the ith external drive, we can write down the
general wave function as

|ψ(t)〉 = e−iEt
∑
x,m

Φm(x)e−im·ωt|x〉, (2)

where E is the quasi-energy of the state, m =
(m1,m2, ...mn) ∈ Zn, and ω = (ω1, ω2, ..., ωn) is the vec-
tor of all n driving frequencies.

Plugging the above ansatz into the Schrödinger equa-
tion, we obtain

(E + m · ω)Φm(x) =
∑
x′ 6=x

H(x,x′)Φm(x′)+

∑
q

Hq(x)e−iq·θi0(x)Φm−q(x′), (3)

where Hq(x) is defined via the Fourier decomposition

H(x,x;θt(x)) =
∑
q

Hq(x)e−iq·θt(x), (4)

and we also used the following fact about the Floquet
modes: e−iq·ωtΦm = Φm−q. Note that Eq. 3 is the
same eigenvalue equation describing an electron hopping
model on a d+n-dimensional lattice under a scalar poten-
tial A0(x,n) = −n · ω and a vector potential A(x,n) =
(0d,φ(x)), where 0d is the d-dimensional zero vector [22].
Equivalently, we have obtained the synthetic electromag-
netic fields emerging from the drives, given by E = (0,ω),
and B with component Bk =

∑
ij εijk∂φj(x)/∂xi, where

the index i is restricted to only physical-dimensional
directions, whereas j is restricted to only synthetic-
dimension directions.
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B. Energy pumping in a quasiperiodically driven
system

One peculiar feature of quasiperiodically driven sys-
tems is energy pumping: namely, energy currents can
flow between different external drives. The energy pump-
ing phenomena of the system can be described using the
following framework.

Consider a time-quasiperiodic Hamiltonian that de-
pends on time t through n 2π-periodic variables: H(t) ≡
H(θ1t, θ2t, . . . , θnt) ≡ H(θt), where θit = ωit+θi0. Let us
assume that the system consists of N noninteracting elec-
trons, and that they are initially (at t = 0) in equilibrium
at zero temperature. Such a system can be described by
the density matrix

ρ̂(t) =

N∑
j=1

|ψj(t)〉〈ψj(t)|, (5)

where |ψj(0)〉 is the jth eigenstate, sorted by eigenvalues
from low to high, of the Hamiltonian H at time t = 0.
Note that the {|ψj(t)〉} are not instantaneous eigenstates
of H(t) at finite time t. The evolution of an individual
state |ψj(t)〉 is described by the Schrödinger equation

i
d

dt
|ψj(t)〉 = H(t)|ψj(t)〉, (6)

or equivalently, the density matrix satisfies the Liou-
villevon Neumann equation

i
d

dt
ρ̂(t) = [H(t), ρ̂(t)]. (7)

Since the Hamiltonian is explicitly time-dependent, the
total energy of the system is not conserved. Instead, the
expectation value of the total energy can be expressed
as:

Etot(t) = Tr [ρ̂(t)H(t)] , (8)

where “Tr” denotes the operator/matrix trace. By taking
the time derivative of Etot(t), one can also define the rate
of the total energy pumped into the system as

Ptot(t) = Tr

[(
d

dt
ρ̂(t)

)
H(t)

]
+ Tr

[
ρ̂(t)

(
d

dt
H(t)

)]
.

(9)
In the above equation, the first term vanishes because

of Eq. (7) and the cyclic property of the trace. If we
further use

dH(t)

dt
=

n∑
l=1

ωl
∂

∂θlt
H(θ1t, θ2t, . . . , θnt), (10)

we can express the total energy pumping power as

Ptot(t) =

n∑
l=1

ωl Tr

[
ρ̂(t)

∂H

∂θlt

]

=

n∑
l=1

ωl

N∑
j=1

〈
ψj(t)

∣∣∣∣ ∂H∂θlt
∣∣∣∣ψj(t)〉 , (11)

where each term in the first sum can be interpreted as the
energy pumping power provided by an individual drive
(at a given frequency ωl).

Note that if we interpret H(θt) as a Bloch Hamilto-
nian, where θt is defined in the n-dimensional synthetic
Brillouin zone, we can regard v̂l = ∂H/∂θlt in the above
equation as the velocity operator in the lth direction on
the synthetic Floquet lattice.

If the single-particle gap between the occupied and un-
occupied states is much larger than the driving frequency
ωl, we can apply the adiabatic transport theory [32] to
obtain the energy current that arises due to the lth drive:

Jl = ωl Tr

[
ρ̂(t)

∂H

∂θlt

]

' ωl
N∑
j=1

∂El(θt)∂θlt
−
∑
k 6=l

ωkΩ
(j)
lk

 , (12)

where El(θt) is the lth instantaneous eigenvalue at θt =
(θ1t, θ2t, . . . ), and

Ω
(j)
lk (θt) = i

[〈
∂χj(θt)

∂θlt

∣∣∣∣∂χj(θt)∂θkt

〉
− (l↔ k)

]
(13)

is the Berry curvature tensor for the instantaneous eigen-
state χj(θt). When averaging over time (equivalently,
over θt), the first term in Eq. (12) vanishes as a con-
sequence of Bloch oscillations, whereas the second term
produces a robust topological energy pumping rate pro-

portional to the Chern number by sampling Ω
(j)
lk over the

two-dimensional closed manifold spanned by (θlt, θkt).
On the other hand, however, when there is no energy

gap, or when the gap is comparable to the driving fre-
quencies, the adiabatic transport theory will not be ap-
plicable. In this case, excited states will be populated
due to nonadiabatic transitions, and as a result, the ro-
bust topological energy pumping phenomena will not be
expected.

III. ENERGY PUMPING POWERS IN A
SYNTHETIC WEYL SEMIMETAL

In this section, we introduce a chain of two-level sys-
tems under two external drives with mutually incom-
mensurate frequencies. We show that such a time-
quasiperiodic system maps to a 3D Weyl semimetal
(WSM), under the approach outlined in Sec. II A.

Because the system hosts synthetic gapless points, i.e.
the synthetic Weyl nodes, it is expected that the adia-
batic condition can never be satisfied in the entire Bril-
louin zone (BZ). However, as we will show below, to a
large extent the energy pumping can still be analytically
characterized in terms of two universal functions corre-
sponding to the topological and the excitation compo-
nents of the energy pumping.
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In the following, before introducing the 1D driven
chain, we first review a simple model in which non-
adiabatic processes appear, following Ref. [25]. Un-
derstanding the properties of such a simpler model will
be helpful to the discussion of our more complicated ex-
tended system.

A. Driven spin-half near a gapless point

Consider a single spin subjected to two drives with
incommensurate frequencies, described by the following
Hamiltonian

H(t) = −1

2
B(t) · σ, (14)

where the magnetic field is quasiperiodic in time:

B(t) = B0(sin θ1t, sin θ2t, 2 + δ − cos θ1t − cos θ2t). (15)

Here, θlt = ωlt + θl0 is the phase of the l-th drive,
and ω1 and ω2 are the two driving frequencies. We can
assume the ratio between the frequencies is of order 1,
then ω :=

√
ω1ω2 is the single frequency scale on which

the spin-half is driven. σ = (σx, σy, σz) is the vector of
Pauli matrices.

Ref. [25] investigated the energy pumping power be-
tween the two drives, especially for the case δ ' 0, when
the time-quasiperiodic system maps to a 2D BHZ model
at the phase transition, with a gapless point (θ1t, θ2t) '
(0, 0) in the 2D (synthetic) BZ. Obviously, the adiabatic
condition breaks down in the vicinity of this point, and
the adiabatic energy current given by Eq. (12) should no
longer be valid.

To account for the non-adiabatic effects, Ref. [25] de-
composed the pumping power into two parts: a “topo-
logical” component and an “excitation” component. The
topological piece, denoted as PTs (where the subscript s
denotes quantities associated with the driven spin), arises
from the spin sampling the Berry curvature of the (syn-
thetic) band on which it stays. The excitation compo-
nent, denoted as PEs, comes from the non-adiabatic ex-
citations when the gap size is comparable to the driving
frequencies. To extract the scaling behaviors of these
two components, one needs to also consider the complex-
conjugated Hamiltonian, H ′, which can be physically im-
plemented by reversing the chirality of one of the drives.
Noting that under complex conjugation, the topological
component changes sign, whereas the excitation compo-
nent remains invariant, Ref. [25] was able to write PEs
and PTs as:

[PTs]θ0 =
1

2
([Ps]θ0 − [P ′s]θ0) (16)

[PEs]θ0 =
1

2
([Ps]θ0 + [P ′s]θ0) , (17)

where [·]θ0 denotes averaging over the initial phase vector
θ0 = (θ10, θ20), and Ps and P ′s are the pumping powers

of the driven spin and its complex-conjugated partner,
respectively.

Furthermore, it was also shown that these quantities
at short times have universal forms as [25]

[P̃Ts]θ0 :=
[PTs]θ0
ω2/2π

' 1

1 + eαx
; (18)

[P̃Es]θ0 :=
[PEs]θ0√
B0ω3/2

' Ce−βx
2

, (19)

where the dimensionless quantity x = −δ
√
B0/ω char-

acterizes the adiabaticity of the system. Here, α, β, and
C are dimensionless parameters that can be extracted
numerically. Note that for convenience, we have intro-
duced the rescaled version of the topological and exci-

tation pumping powers, [P̃Es]θ0 and [P̃Ts]θ0 , which are
dimensionless.

To gain further intuition, consider first when |x| is

large. Indeed, in the adiabatic regime, [P̃Ts]θ0 is effec-
tively 0 (1) for positive (negative) x, which is a conse-
quence of the spin uniformly sampling the Berry cur-
vature of the band it is initialized on. Over time, the
pumping power will be proportional to the band’s Chern
number, which is 0 (1) for negative (positive) gap size δ.
For the same reason, since there is effectively no transi-
tion between the two bands in the adiabatic regime and

thus no excited states, [P̃Es]θ0 can be treated as zero.
Near the gapless points, however, the driving frequen-

cies is comparable to the gap size i.e., |x| . 1, and one
needs to take the non-adiabatic heating of the spin into

account. Indeed, in this regime, [P̃Es]θ0 is Gaussian in x,
peaking at the gapless point x = 0. On the other hand,

as x increases from −1 to 1, [P̃Ts]θ0 smoothly crosses
over from 1 to 0 in a Fermi-function-like manner. Note
that at the gapless point, [P̃Ts]θ0 takes on the value of
1
2 .

B. Chain of two-level systems under two drives

In the following, we consider a chain of two-level sys-
tems aligned in the z-direction, driven by two external
drives at mutually irrational frequencies; see Fig. 1(a).
The Hamiltonian for such a system can be written as

H =
∑
z

Ψ†zH(t)Ψz + (Ψ†zVΨz+1 + h.c.), (20)

where the sum runs over all sites and Ψz = (ψz,↑, ψz,↓)
T

is the spinor consisting the annihilation operators of the
two orbitals (labeled by ↑, ↓) at site z. Similarly, Ψ†z is the
creation spinor. The onsite, time-dependent potential
due to the two external drives has the form

H(t) = −1

2
B0

[
sin θ1tσx + sin θ2tσy

+
(
2 + γ − cos θ1t − cos θ2t

)
σz

]
, (21)
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where θit = ωit + θi0, and ω1, ω2 are the two (incom-
mensurate) driving frequencies. Throughout this work,
we take the frequency ratio to be the golden ratio, i.e.,

ω2/ω1 =
√

5+1
2 ≈ 1.618. For simplicity, we assume that

all sites are initialized with the same phase (θ01, θ02).
The time-independent hopping term is chosen to be

V = −B0

4
σz. (22)

To derive the system in synthetic space based on the
mapping introduced in Sec. II A, we can simply make
the substitution, θit = ωit + φi → ki [20], to obtain
the two additional Bloch momenta k1, k2 (or kx, ky). If
we further impose periodic boundary condition along the
physical (z) direction of the chain, we may introduce the
third Bloch momentum kz.

Thus, we obtain the following 3D Bloch Hamiltonian
with inversion symmetry on a cubic lattice, where the
lattice spacing is taken to be 1:

H(k) = −1

2
B0

[(
2 + γ − cos(kx)− cos(ky)− cos(kz)

)
σz

+ sin(kx)σx + sin(ky)σy

]
. (23)

The parameter γ controls the phase that the Hamil-
tonian Eq. (23) describes [33]. For γ < −1 and γ > 1,
it describes a trivial insulator and a topological insula-
tor, respectively. For intermediate values −1 < γ < 1,
Eq. (23) describes a WSM phase, with two gapless points,
called the Weyl nodes, at ±k0 = (0, 0,±k0), where
k0 = arccos(γ). Thus, for −1 < γ < 1, the adiabatic con-
dition for the time-quasiperiodic 1D chain breaks down
near ±k0.

One important perspective to understand the WSM
is that it can be thought of as a stacking of 2D Chern
insulators [33]. Indeed, if we fix kz in Eq. (23) and com-
pute the Chern number C(kz) associated with each of the
two-dimensional planes in momentum space, we find that
C(kz) = 1 for |kz| < |k0|, and C(kz) = 0 for |kz| > |k0|,
i.e., the planes corresponding to fixing kz = ±k0 can be
regarded as the phase transition points between the 2D
nontrivial Chern insulators and the trivial insulators.

C. Non-adiabatic energy pumping

In the following, we shall derive the energy pumping
power that characterizes the synthetic WSM phase by
considering the contribution from each of the 2D (syn-
thetic) Chern insulators (the BHZ model) at fixed kz,
based on the perspective described above. In particular,
we consider the chain of N sites with periodic boundary
conditions at half filling. This enables us to apply the
known results for non-adiabatic energy pumping in the
quasiperiodically driven spin 1/2 introduced in Sec. III A.

As discussed in Ref. [25], the non-adiabatic energy
pumping can be decomposed into the topological and ex-
citation components (referred to as T and E components

FIG. 2. Illustrations of the (a) topological component and
(b) excitation component of the pumping power of a syn-
thetic Chern insulator labelled by kz. As illustrated in (a),
the “shortage” in the topologically nontrivial region (Area
A) is filled by the “surplus” in the topologically trivial re-
gion (Area B), and the pumping power is therefore propor-
tional to the range with nontrivial pumping (2 arccos γ). The
width of the crossover region in (a) and the excitation re-

gion in (b) both are of order
√
ω/B0. The parameter used is

γ = 0→ k0 = π/2.

hereafter). Using the short-time results for the driven
single spin in Eqs. (18) and (19), we obtain both compo-
nents of the phase-averaged energy pumping power (per
site) of the driven 1D chain

[P̃T ]θ0 =
2π

N

∑
kz

[P̃Ts]θ0(kz) '
ˆ π

−π
dkz[P̃Ts]θ0(kz)

' 2k0 (24)

[P̃E ]θ0 =
2π

N

∑
kz

[P̃Es]θ0(kz) '
ˆ π

−π
dkz[P̃Es]θ0(kz)

' C
√
π

β

(
erf
(γ + 1√

ω

)
− erf

(γ − 1√
ω

))
(25)

where k0 := arccos γ, erf(·) denotes the Gaussian error
function, defined as erf(x) = 2√

π

´ x
0

exp(−t2)dt, and the

prefactor of 2 arises because of the inversion symmetry
of the model.

To understand the topological contribution, recall from
Sec. III A that the intergrand of Eq. (24) takes on
the value of 0 (1) for sufficiently large (small) kz and
smoothly crosses from 1 to 0 as kz approaches the Weyl
point k0 from below. The crossover region exhibits
an approximate symmetry about the Weyl point ±k0:

[P̃Ts]θ0(kz ∓ k0) ' 1− [P̃Ts]θ0(±k0 − kz). Therefore, we
can fill the “shortage” of pumping power in the suppos-
edly topological regime (Area A in Fig. 2(a)) with the
“surplus” of pumping in the supposedly trivial regime
(Area B in Fig. 2(a)). Thus, when computing the topo-
logical component, we can effectively treat it as if the sys-

tem is driven adiabatically: namely, P̃Ts = 1 for |kz| <
|k0|, and P̃Ts = 0 for |kz| > |k0|. Therefore, the rescaled
topological component is equal to the range of kz associ-

ated with nontrivial pumping, or [P̃T ]θ0 = 2 arccos γ.
To derive the excitation component in Eq. (25), we

have used the fact that P̃Es is Gaussian in cos kz, with
its peak at kz = k0 and a width of

√
ω/B0. Note that in
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the limit ω → 0, erf
(
γ±1√
ω

)
→ ±1, and the above result re-

duces to [P̃E ]θ0 = 2C
√
π/β. For this particular system,

the parameters extracted by Ref. [25] are C = 0.105 and
β = 2.13, which will be used throughout the rest of this
paper. With these parameters, for small ω, we expect

[P̃E ]θ0 ' 0.25.
We remark that our results above are true even beyond

the small ω limit. As long as the WSM phase is not
too close to a topological insulator or a trivial insulator
(more precisely, as long as

√
ω/B0 < 1− |γ|), we expect

our treatments above to be valid.

IV. NUMERICAL RESULTS

A. Periodic boundary condition

We first present results from simulations of the driven
1D chain under periodic boundary condition, whose
Hamiltonian is given by Eq. (20). In particular, we nu-
merically compute the energy current pumped by drive
1, which is given by

J1(t,θ0) = ω1 Tr

(
ρ̂(t)

∂H(θ0)

∂θ1t

)
(26)

under the general formalism described in Sec. II B, where
the density matrix ρ̂(t) is as defined in Eq. (5). Note that
J1 depends on the initial phase θ0 explicitly.

We simulate the two components of the phase-averaged
energy pumping power, [PT ]θ0 and [PE ]θ0 , in the fol-
lowing way. We first randomly choose a point θ0 =
(θ01, θ02) ∈ (0, 2π)2 on the torus as our initial phase vec-
tor of the two drives and fix the time-dependent Hamil-
tonian H(t,θ0) given by Eq. (20). Next, we initialize the
system in its ground state at half-filling, described by the
density matrix ρ̂(t = 0). Then we perform time evolution
on the system using H(t,θ0). At each time, we compute
the expectation value of the energy current according to
Eq. (26). Upon integrating over time, we obtain the total
work done by drive 1.

Starting from the ground state of the complex-
conjugated Hamiltonian H ′(t,θ0), we follow the same
steps and compute the energy current J ′1(t,θ0) in the
complex-conjugated system. Note that this conjugation
can be physically implemented by reversing the chiral-
ity of one of the polarizing drives [25]. Similar to the
driven spin-half system reviewed in Sec. III A, we can
extract the (rescaled) topological (T) and excitation (E)
components as:

[P̃T ]θ0(t) =
π

N

1

ω2/2π

[
J1(t,θ0)− J ′1(t,θ0)

]
θ0

; (27)

[P̃E ]θ0(t) =
π

N

1√
B0ω3/2

[
J1(t,θ0) + J ′1(t,θ0)

]
θ0
. (28)

We simulate the driven chain and its complex-
conjugated partner up to time T0 := 1.72ω−3/2. Fur-
thermore, we compute the time-averaged pumping power

FIG. 3. A plot of time- and phase-averaged, rescaled pump-

ing powers, [P̃T ]θ0,t and [P̃E ]θ0,t, vs. the position of the Weyl
node k0 = arccos γ. The expected behaviors for the topologi-
cal and excitation components, shown in orange and blue, are
linear and constant in k0 respectively. The parameter used
are ω/B0 = 0.1, N = 40.

FIG. 4. A log-log plot of time- and phase-averaged pumping
powers vs. the frequency scale ω/B0. To retain the frequency
dependence, the powers are not rescaled. The topological and
excitation components are expected to be linear with slopes 2
and 3/2 (shown by the blue and orange lines respectively.) For
illustration purposes, the expected and simulated topological
piece has been shifted up by log(2π). The parameter used for
all data points is γ = −0.454. The number of sites N is 120
for ω/B0 = 0.01, 80 for ω/B0 = 0.03, and 40 for the rest of
the frequencies.

by dividing the total work done by drive 1 by the total
evolution time T0:

[P̃T,E ]θ0,t =
1

T0

ˆ T0

0

dt′[P̃T,E ]θ0(t′). (29)

In Fig. 3, we show the simulation results of the time-
averaged pumping power as a function of k0 := arccos γ.
The expected behaviors, given by Eqs. (24) and (25), are
shown in solid lines in Fig. 3 for comparison. Here the
parameters used are ω/B0 = 0.1, N = 40. For each k0,
we average over 400 initial phases.

We next numerically investigate the frequency depen-
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FIG. 5. A plot of the pumping power difference between a
driven chain and a driven ring, averaged over time and the
same initial phases. As the number of sites increases, the
finite-size effect diminishes. Note that even for N = 20, the
difference is considerably small, meaning that one can replace
a driven ring with a driven ring in a realistic experimental
setting. The other parameters used are ω/B0 = 0.1, γ =
−0.309.

dence. While the rescaled pumping powers do not explic-
itly depend on the frequency ω, the unrescaled topologi-
cal and excitation components are proportional to ω2 and√
B0ω

3/2, respectively. Therefore, in a log-log plot, we
expect the T and E components to be lines with slopes

2 and 3/2, and intercepts log (2k0) and log P̃E , respec-
tively. In Fig. 4, we show the simulated and expected
results. The parameter used are γ = −0.454 and 400
initial phases. The number of sites used are N = 120 for
ω/B0 = 0.01, N = 80 for ω/B0 = 0.03, and N = 40 for
the rest of the frequencies. We remark that there has to
be more sites for smaller frequencies because the width of
the “nonadiabatic region” scales as

√
ω/B0, so one needs

a denser sampling of the physical Brillouin zone to fully
capture the Fermi-function-like and Gaussian functions
of the T and E contributions near the transition point.

B. Open boundary condition

After showing results for the chain under periodic
boundary condition, we next discuss the case with open
boundary condition along the z-direction, which is more
naturally prepared in the laboratory.

In Fig. 5, we plot the difference in the pumping powers
(per site) of a driven chain (open boundary condition)
and a driven ring (periodic boundary condition) vs. the
number of sites N . To better control the variables, for
each site number N , we simulated the pumping powers of
a driven ring and a driven chain with the same 200 initial
phases. We see that the finite-size effect indeed vanishes
as the site number increases. Moreover, note that the
difference is small even for N = 20, which means that
practically, one can experimentally realize the synthetic
WSM phase with desired pumping powers in a driven

chain.

C. Spatial disorder

Thus far, we have assumed the chain is ideal in that
the onsite driving potentials are the same for all sites.
In reality, however, the chain is likely to contain some
type of spatial disorder. For example, each site may feel
a slightly different time-dependent potential. Therefore,
in the following, we introduce real-space onsite disorder
to the driven chain to study the disorder effects on the
energy pumping phenomena in the synthetic WSM. In
particular, for each of the N sites, we add a disorder
term to the overall driving amplitude by modifying the
onsite driving term in Eq. (21) to

Hi(t) = −1

2
(1 + εi)B0 [sin θ1tσx + sin θ2tσy

+ (2 + γ − cos θ1t − cos θ2t)σz] (30)

where i, running from 1 to N , is the site index, and εi
is the drawn from a uniform distribution on the interval
[−η/2, η/2]. The parameter η characterizes the strength
of the onsite disorder; in the following, we will consider
three values of η, η = 0.01, 0.1, 0.5, which correspond to
the cases where the onsite disorder strength is much less
than, less than, and comparable to the driving amplitude,
respectively.

In Fig. 6, we show the (un-rescaled) simulated energy
pumping behaviors of the topological and excitation com-
ponents as a function of time in solid lines. The quantity
shown is defined as

[WT,E ]θ0(t) =

ˆ t

0

dt′[PT,E ]θ0(t′). (31)

Importantly, we remark that the pumping behaviors
in Fig. 6 are without spatial disorder averaging (they
are, however, averaged over the initial phase vectors as
before). It is clear that both components of the pumping
power are surprisingly robust against onsite disorder –
even for η = 0.5, in which case the disorder strength is
comparable to the driving strength.

V. UNLOCKING TIME AND ENERGY
PUMPING

In this section, we first give a more detailed analysis
of the timescale at which an average spin-1/2 decouples
from the driving magnetic field (hereafter referred to as
the unlocking time tu). Understanding how tu, the most
important timescale, scales with various quantities of the
system in turn allows us to derive the expected energy
pumping behaviors of the synthetic WSM.

Let us begin by considering a spin-1/2 introduced in
Sec. III A, where the two driving frequencies are of scale
ω, the gap size is B0δ, and the magnetic field is given by
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FIG. 6. The (a) topological and (b) excitation components of
the energy pumped as a function of time. The expected be-
haviors of the two components, given by Eq. (35), are shown
in dashed lines. The simulated pumping behaviors in the pres-
ence of disorder are given by Eq. (31) and shown in solid lines.
The parameter η characterizes the onsite disorder strength.
We numerically confirm that both components are surpris-
ingly robust against spatial disorder, and the simulated re-
sults are in good agreement with the expected ones. All plots
are not rescaled by ω or B0, and in the presence of disorder,
they are without disorder averaging. The parameter used are
ω/B0 = 0.1, N = 40, γ = −0.454, t0 = 5.41

√
B0/ω3 (for a

discussion of the unlocking time, see Sec. V).

Eq. (15). After some characteristic time tu, the dynamics
of the driven spin unlocks from the driving field, and the
pumping power effectively becomes zero in a statistical
sense. More precisely, at late times t & tu, the popu-
lations in the ground and excited states become equal.
The topological component of pumping vanishes because
the Chern numbers of the ground and excited bands sum
up to zero, whereas the excitation component vanishes
because an average spin in the ensemble ceases to absorb
energy [25]. Using the Landau-Zener formula [34, 35],
we have the probability that a spin in the ground state
would enter the excited state scales as

pexc ∼ exp

(
−(B0δ)

2
/
B0

√
ω2

1 + ω2
2

)
, (32)

θ1

θ2

λ

4θ∗
2θ∗

(ω1, ω2)

FIG. 7. An illustration for a typical spin trajectory in θ-
space. Note that due to periodic boundary conditions, we
have extended the phase-space trajectory from a 2-torus to
the full 2D plane. In the figure, the squares denote (synthetic)
Brillouin zones, and the gray circles denote excitation regions,
which have diameters 2θ∗. The arrow in black denotes the
spin’s trajectory along the (ω1, ω2) direction. Note that for
a given trajectory, the only possible excitation regions that
the trajectory can enter will be enclosed inside a stripe of
width 4θ∗, broadened symmetrically from the trajectory, as
indicated in light blue. The mean free path of the trajectory
λ is indicated in red, such that the area 4θ∗λ contains one
excitation region in average.

where δ is the gap size in 15. The above equation states
that the spin unlocks from the magnetic field when the
square of the gap is comparable to the rate of change of
the field. We note in passing that since the excitation

component of the pumping power P̃Es is proportional to
the excited population and thus to pexc, Eq. (32) accounts

for the Gaussian shape of P̃Es. Eq. (32) also immediately
implies that the timescale at which the spin unlocks will
take the form [20]:

tu ∼
1

pexc
= t0 exp

(
(B0δ)

2
/√

ω2
1 + ω2

2

)
, (33)

where t0 is the unlock time at δ = 0. Ref. [25] was able to

write down t0 ∼
√
B0/ω3. Here, we take the argument a

step further and obtain a good prefactor for t0. By com-
bining the explicit form of the magnetic field, Eq. (15),
with the Landau-Zener formula, we can write down the
condition of unlock as B2

0(θ2
1t + θ2

2t) . B0

√
ω2

1 + ω2
2 , or

|θ(t)|2 .
√
ω2

1 + ω2
2/B0, where θ(t) = (θ1t, θ2t) is a vec-

tor containing the phases of the two drives. It is thus
helpful to define a circular “excitation region” in the θ-
space with a center at (0, 0) and a radius of θ∗, such that
a spin unlocks from the driving field when its trajectory
in phase space first enters this region [25]. For our partic-

ular choice of frequency ratio ω2/ω1 =
√

5+1
2 , we expect

θ∗ ≈ 1.22
√
ω/B0.

To obtain an estimation of t0, we can use the idea of
“mean free path” of spin trajectories, which is the av-
erage distance that a spin travels in the (synthetic) BZ
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before entering an excitation region. Note first that since
θ̇lt = ωl, the spins move along the (ω1, ω2) direction in
θ-space. Furthermore, since θ1, θ2 are 2π-periodic vari-
ables, we may extend the phase’s trajectory from a 2-
torus to the entire 2D real plane; see Fig. 7. In this
figure, each square denotes a Brillouin zone, the circle at
the square center denotes the excitation region, and the
black arrow denotes the spin trajectory.

For a given trajectory, the only possible excitation re-
gions that the trajectory can enter will be enclosed inside
a stripe of width 4θ∗, broadened symmetrically from the
trajectory. Thus, the mean free path λ, should be defined
such that the area 4θ∗λ contains one excitation region in
average. This leads to λ = (4θn)−1, where λ is the mean
free path, and n is the number of excitation region per
unit area. Here, n = (4π2)−1 because there is one exci-
tation region per BZ, which has area (2π)2. Therefore,
λ ≈ π2/θ∗, from which we obtain the estimated t0 as:

t0 =
λ√

ω2
1 + ω2

2

≈ 5.41
√
B0/ω3. (34)

Next we turn to the expected energy conversion behav-
ior of a synthetic WSM. Recall from Sec. III that we can
view a synthetic WSM as a stack of synthetic Chern in-
sulators i.e., as a stack of driven spin-1/2’s. These driven
spins are labelled by kz and have gap sizes δ = γ−cos kz.
For t < t0, we expect that all of the spins remain locked to
the driving field. As the evolution time goes past t0, how-
ever, spins with B0δ ' 0, i.e. spins labelled by kz ' k0,
start to unlock. More precisely, From Eq. (33), we expect

that at time t, spins with gap size B0δ .
√
B0ω log(t/t0)

cease to pump energy. From this, we can write down:

[P̃T,E ]θ0(t′) =

ˆ π

−π
dkz[P̃Ts,Es]θ0(t′; kz), (35)

where

[P̃Ts]θ0(t′; kz) '
1

1 + eαx
Θ(tu(γ − cos kz)− t′), (36)

[P̃Es]θ0(t′; kz) ' Ce−βx
2

Θ(tu(γ − cos kz)− t′), (37)

are the pumping powers for the T and E components of
a driven spin labelled by kz, as a function of time. Here
x := (cos kz − γ)

√
B0/ω is the adiabaticity parameter as

before, and Θ(t) := 1t>0 is the Heaviside step function.
From the above results, we can understand what to ex-

pect for the pumping power of a synthetic WSM phase.
Prior to t0, since all spins maintain their fidelity, the
T and E components should both be ideal, given by
Eqs. (24) and (25) respectively. The components’ long-
time behaviors, however, differ considerably. Consider
first the T component. We expect that this compo-
nent remains nontrivial for exponentially long times, be-
cause spins with a large gap (relative to the driving fre-
quency) maintain their fidelity – and therefore contribute
to pumping – for exponentially long times. On the other
hand, since [PE ]θ0 is nontrivial for δ .

√
ω/B0 only,

we expect from Eq. (33) that after tu ≈ et0, the excita-
tion region will fully unlock, and the E component will
vanish. This is indeed what we see from the simulation
results Fig. 6(b) – after tu ∼ 2.7t0, the excitation com-
ponent effectively becomes flat, corresponding to a fully
unlocked excitation region. Importantly, we note that
this is true for all disorder strengths. From the analysis
above, we can numerically compute the expected T and
E components of energy using Eq. (31); see the dashed
lines in the two panels in Fig. (6). Note that while we
expect [PT ]θ0 → 0 as t/t0 → ∞, our finite-time simula-
tions is not able to capture this behavior, as some spins
pump for exponentially long times. It is clear from the
concave shape of WT (t), however, that the topological
pumping power decreases as time goes due to more spins
unlocking.

VI. EXPERIMENTAL REALIZATION

We propose a concrete experimental setup to realize
our 1D model based on ultracold atoms in optical lattices,
which appear as promising candidates for simulating in-
triguing phenomena and phases [36], such as the topo-
logical Thouless pumping [37], and the 3D topological
insulator with axion electrodynamics [38]. Here, we pro-
pose to use fermionic atomic gases (e.g. 6Li, 40K atoms)
in optical lattices to engineer a gauge transformed version
of the quasiperiodically driven 1D chain proposed previ-
ously. The setup is inspired by the similar one proposed
in Ref. [22].

By introducing a gauge tranformation Ψ̃z = UzΨz with
some z-dependent unitary matrix Uz, we can rewrite the
Hamiltonian in Eq. (20) as

H =
∑
z

Ψ̃zH̃z(t)Ψ̃z + (Ψ̃†zUzV U
†
z+1Ψ̃z+1 + h.c.), (38)

where H̃z(t) = UzH(t)U†z .
If we choose

Uz =

(
1 0
0 eiπz

)
, (39)

the hopping term becomes UzV U
†
z+1 = −B0σ0/4 which

is spin-independent, and the onsite Hamiltonian becomes

H̃z(t) = −1

2
B0 [(−1)z (sin θ1tσx + sin θ2tσy)

+(2 + γ − cos θ1t − cos θ2t)σz] . (40)

Note that here z ∈ Z is the site index of the 1D chain,
and this term corresponds to a magnetic field in the xy
plane alternating between even and odd sites.

This Hamiltonian can be realized with ultra cold
atoms, such as 6Li, trapped in an optical lattice. Each
atom can be described by a two-level system, due to the
hyperfine ground-state manifold with total angular mo-
mentum F = 1/2. The optical lattice potential V pro-
jected to this ground state manifold can be written as



10

[36, 39]

V (r) = V0(r) +Beff(r) · σ + gBext · σ, (41)

where the Pauli matrices σ = (σx, σy, σz) act on this two
dimensional ground state manifold. Here the first two
terms

V0(r) = us(Ẽ
∗(r) · Ẽ(r)) (42)

Beff(r) = iuv(Ẽ
∗(r)× Ẽ(r)) (43)

are determined by the complex electric field Ẽ, whose

components are defined as Ẽj = Ej cos(φj) with j =
x, y, z of an electric field E(t) =

∑
j Ej cos(φj − ωt)ej ,

where ex,y,z are unit vectors in x, y, z directions. Bext is
the external magnetic field applied, while g is gyromag-
netic ratio.

Let us choose

Ẽ(r) = (cos kLy, cos kLx, i[ε1 cos kLx+ ε2 cos kLy]) ,
(44)

where kL is the wave vector of the laser. This gives

V0(r) = us
[
(1 + ε21) cos2(kLx) + (1 + ε22) cos2(kLy)

+ 2ε1ε2 cos(kLx) cos(kLy)] (45)

and the effective magnetic field

Beff(r) = −2uv cos(kLx) [ε1 cos kLx+ ε2 cos kLy] ex

+ 2uv cos(kLy) [ε1 cos kLx+ ε2 cos kLy] ey. (46)

With us < 0, and |ε1,2|, |uvε1,2| � 1, the atoms
will be trapped at the local minima of V0 at (x, y) =
(nx, ny)λL/2, with nx, ny ∈ Z, and λL = 2π/kL is the
laser wave length. The effective magnetic field at the
potential minima becomes

Beff(nx, ny) = −2uv[ε1 + (−1)nx+nyε2]ex

+ 2uv[ε2 + (−1)nx+nyε1]ey. (47)

By choosing gBext = (2uvε1,−2uvε2, gBz), the con-
stant term in Beff can be canceled out, and we obtain
optical lattice potential on the ground state manifold as

V (nx, ny) = uv(−1)nx+ny (−ε2σx + ε1σy) + gBzσz. (48)

If we apply an additional confining potential in y and
z direction, we can obtain a 1D optical lattice along x
direction with nx ∈ Z and ny = 0, with an alternat-
ing magnetic field in the xy plane between even and odd
sites, as in Eq. (40). We further require ε1 ∼ sin θ2t,
ε2 ∼ sin θ1t, and Bz ∼ (2 + γ − cos θ1t − cos θ2t) are
time dependent, oscillating at frequencies ω1, ω2. The
spin-independent hopping term −B0σ0/4 is given by the
overlap of the Wannier functions centered at neighboring
minima of the potential [36]. Thus, we have shown all
terms in the gauge transformed Hamiltonian in Eq. (40)
can be realized using ultracold atoms such as 6Li in op-
tical lattices.

With such an experimental setup based on ultra cold
6Li fermions, with red-detuned laser of wave length
around 1000nm, the energy scale of the effective Zee-
man field due to optical potential can be of order 10 to
100kHz, which also requires the external magnetic field at
the scale of 10mG (milliGauss). The driving frequencies
ω1,2 should then be . 10kHz. With these parameters,
the unlocking time t0 can be of order 1ms. The topolog-
ical component of the energy pumping power per site, at
short time (t < t0), can be of order 100kHz/ms.

VII. CONCLUSION

In this work, we proposed a potential quantum device,
a 1D chain quasiperiodically driven by two frequencies,
which maps to a synthetic Weyl semimetal. We demon-
strate that this device exhibits robust and universal en-
ergy pumping/flow that scales linearly in system size, and
is able to operate in a relatively large parameter regime
without the assumptions of adiabaticity. In other words,
our proposed system goes beyond the ones proposed in
previous works, which are either extended but gapped
in synthetic dimensions [22], or gapless but only of zero
dimension (single spin) [25].

In particular, as we showed both analytically and nu-
merically, the energy pumping power has simple and uni-
versal scaling forms, given in Eqs. (24) and (25) at short
times, and in Eq. (35) at intermediate/long times. These
behaviors are robust even in the presence of reasonable
amount of spatial disorder.

Regarding physical realizations, we proposed an ex-
perimental setup based on ultracold atoms such as 6Li in
optical lattices.

Finally, we want to comment on the possible interac-
tion effects resulting in heating, which also absorbs en-
ergies from the quasiperiodic drives, in addition to the
nonadiabatic excitations. It is known that for smooth
driving protocols (as the harmonic drives used in our
model), when the interactions are local, there exists a
slow heating regime when the driving time is less than
typical time t∗ [40], which is bounded for any ε > 0, as

t∗ ≥
C ′

J
exp

[
C
(ω
J

)1/(m+ε)
]
, (49)

where ω is the norm of the frequency vector, J is the lo-
cal interaction energy scale, m is the number of external
drives, and C,C ′ are dimensionless constants depending
on the number-theoretic properties of the ratio between
the frequencies. Because of this, the universal energy
pumping behavior discussed in this work for noninter-
acting system should be detected in a short time window
before reaching t∗ in realistic systems (such as in our
proposed cold-atom setup) where interactions do occur.
Since our results do not have the restriction of adiabatic-
ity, which may limit the magnitude of ω, we expect to
be able to host a relatively large t∗, making the universal
energy pumping behavior described in this work more
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accessible than the simple topological energy pumping
discussed in the previous works [20, 22] which do require
small frequency compared to the driving amplitude.

Apart from potential applications, finding the corre-
sponding signatures in synthetic systems for nontrivial
phenomena in physical systems is of importance on its
own. We would like to point out two possible future
directions beyond the current work. First, the nodal-
line semimetals are another type of gapless systems with
sets of 1D gapless points in Brillouin zone. It has been
also shown that these systems can be tuned into Weyl
semimetals with circularly polarized light [41]. It would
be intersting to see the synthetic analog of thses systems
and their nonadiabatic energy pumping phenomena. Sec-
ond, as is known that the Weyl semimetal has topolog-
ically protected Fermi arcs on its boundaries. Whether
or not the physics of Fermi arcs can result in any intrigu-

iing quantum dynamics of the quasiperiodic systems in-
troduced in this work, should be addressed in the future.
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