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We compute the thermal conductivity of water within linear response theory from equilibrium14

molecular dynamics simulations, by adopting two different approaches. In one, the potential energy15

surface (PES) is derived on the fly from the electronic ground state of density functional theory16

(DFT) and the corresponding analytical expression is used for the energy flux. In the other, the17

PES is represented by a deep neural network (DNN) trained on DFT data, whereby the PES has an18

explicit local decomposition and the energy flux takes a particularly simple expression. By virtue19

of a gauge invariance principle, established by Marcolongo, Umari, and Baroni, the two approaches20

should be equivalent if the PES were reproduced accurately by the DNN model. We test this hy-21

pothesis by calculating the thermal conductivity, at the GGA (PBE) level of theory, using the direct22

formulation and its DNN proxy, finding that both approaches yield the same conductivity, in excess23

of the experimental value by approximately 60%. Besides being numerically much more efficient24

than its direct DFT counterpart, the DNN scheme has the advantage of being easily applicable to25

more sophisticated DFT approximations, such as meta-GGA and hybrid functionals, for which it26

would be hard to derive analytically the expression of the energy flux. We find in this way, that27

a DNN model, trained on meta-GGA (SCAN) data, reduce the deviation from experiment of the28

predicted thermal conductivity by about 50%, leaving the question open as to whether the residual29

error is due to deficiencies of the functional, to a neglect of nuclear quantum effects in the atomic30

dynamics, or, likely, to a combination of the two.31

I. INTRODUCTION32

Heat transport plays an important role in many areas33

of science, such as, e.g., materials and planetary sciences,34

with major impact on technological issues, such as energy35

saving and conversion, heat dissipation and shielding,36

etc. Numerical studies of heat transport at the molec-37

ular scale often rely on Boltzmann’s kinetic approach [1–38

4]. This is adequate when the relaxation processes are39

dominated by binary collisions, as in the case of dilute40

gases of particles, such as atoms or molecules, or of quasi-41

particles, such as phonons in crystalline solids. A more42

general approach to calculate the transport coefficients is43

provided by simulations of the molecular dynamics (MD),44

either directly via non-equilibrium MD [5–8], or in combi-45

nation with Green-Kubo (GK) theory of linear response46

[5, 6, 9, 10] via equilibrium MD.47

Much progress has been made in recent years to48

develop ab initio approaches to heat transport based49

on electronic density functional theory (DFT). Some50

schemes used ad hoc ingredients, such as a (rather arbi-51

trary) quantum-mechanical definition of the atomic en-52

ergies [11]. Other schemes used a definition of the en-53

ergy flux based on the normal-mode decomposition of54

the atomic coordinates and forces, which is only possible55

in crystalline solids [12]. In this work we follow the for-56

mulation of Marcolongo, Umari, and Baroni (MUB) [13],57

who derived a general DFT expression for the adiabatic58

energy flux, based on a gauge invariance principle for the59

transport coefficients [13, 14]. The MUB approach made60

ab initio simulations of heat transport possible, not only61

for crystalline materials, but also for disordered systems,62

like liquids and glasses, albeit at the price of lengthy and63

costly simulations. Progress in statistical techniques for64

the analysis of the flux time series [15, 16] made possi-65

ble to achieve 10% accuracy in the calculated thermal66

conductivity with simulations of a few dozen to a few67

hundred picoseconds. Still the computational burden of68

ab initio MD, where the potential energy surface (PES)69

is generated on the fly from DFT, is heavy and requires70

access to high performance computer platforms for sub-71

stantial wall-clock times (see, e.g., Appendix F of Ref.72

[17] for details on the computational cost of a MUB cal-73

culation).74

In the last decade, a combination of standard75

electronic-structure methods, based on DFT, and new76

machine-learning techniques have allowed the construc-77

tion of inter-atomic potentials possessing quantum me-78

chanical accuracy at a cost that is only marginally higher79

than that of classical force fields. All the machine learned80

potentials, which are represented either by a deep-neural81

network (DNN) [18–21] or by a Gaussian-process [22],82
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use a local decomposition of the total potential energy83

of the system in terms of atomic contributions, which84

makes straightforward to define the energy flux, or cur-85

rent, from which to compute the heat conductivity via86

GK theory.87

Here we adopt the recently developed deep poten-88

tial (DP) framework [21, 23]. DP molecular dynam-89

ics (DPMD) simulations have been used successfully to90

study bulk thermodynamic properties beyond the reach91

of direct DFT calculations [24–30], as well as dynamic92

properties like mass diffusion in solid state electrolytes93

[31, 32], thermal transport properties in silicon [33], in-94

frared spectra of water and ice [34] and Raman spectra95

of water [35]. In the present work, we report calculations96

of the thermal conductivity (κ) of water, a molecular liq-97

uid, from both direct DFT and DPMD simulations. The98

close correspondence of the conductivities predicted with99

the two approaches validates DPMD against the results100

obtained from the MUB current. We adopt two popu-101

lar DFT approximations: the PBE generalized gradient102

approximation (GGA) [36] and the strongly constrained103

and appropriately normed (SCAN) meta-GGA [37]. The104

SCAN functional describes water more accurately than105

PBE, relative to which it reduces the covalent character106

of the hydrogen bond and correctly predicts that the liq-107

uid is denser than the solid [38]. However, expressions108

for the energy density and fluxes are not currently avail-109

able for the SCAN functional, and its inherent complex-110

ity makes hard to derive usable analytical expressions for111

these quantities. Because of that, we used PBE to vali-112

date our methodology. Our results show that direct DFT113

simulations based on the PBE functional, and simula-114

tions based on the corresponding DP model are in good115

agreement with each other, but distinctly overestimate116

the thermal conductivity relative to experiment. This117

outcome likely reflects the well known tendency of PBE118

to overestimate the strength of the hydrogen bonds, en-119

hancing short-range order and making liquid water more120

“solid-like” and prone to freezing [39]. DPMD simula-121

tions trained on SCAN-DFT reduce substantially the er-122

ror of the heat conductivity predicted by PBE, but do123

not eliminate it, thus leaving open the question as to its124

origin, which is possibly due to residual deficiencies of125

the functional, to nuclear quantum effects ignored in the126

MD equations of motion, or, likely, to a combination of127

the two.128

The paper is organized as follows. In Section II, we129

recall the main aspects of the GK theory, along with130

two basic invariance principles of thermal transport that131

allow us, among other things, to define the MUB-DFT132

energy flux. In Section III, we describe the DP model,133

derive the corresponding expression for the energy flux,134

and discuss the impact of the invariance principles within135

a DNN simulation framework. In Section IV, we bench-136

mark our DNN methodology against ab initio MD sim-137

ulations of liquid water at the PBE level of theory [36].138

Having proved that DPMD trustfully reproduces ab ini-139

tio results, in Section V, we take advantage of the simple140

DNN expression for the heat current to compute the ther-141

mal transport coefficients of liquid water at the SCAN142

meta-GGA level of theory. Section VI contains our con-143

clusions.144

II. THEORY145

GK theory of linear response [9, 10] provides a rigorous146

and elegant framework to compute the atomic contribu-147

tion to the thermal conductivity, κ, of extended systems,148

in terms of the stationary time series of the energy flux149

[40], Je, evaluated at thermal equilibrium with MD. For150

an isotropic system of N interacting particles, the GK151

expression for the heat conductivity reads:152

κ =
V

3kBT 2

∫ ∞
0

〈Je(Γt) · Je(Γ0)〉dt, (1)

where Γt indicates the time evolution of a point in phase153

space from the initial condition Γ0. The definition of the154

energy current in Eq. (1) is the key ingredient for the155

computation of κ. This definition relies in general on ex-156

tensivity, which allows the total, conserved, energy of an157

isolated system to be broken up into local contributions.158

In a classical setting, this is conveniently achieved by ex-159

pressing the total energy as a sum of atomic energies,160

εn = 1
2Mnv

2
n +wn, where Mn and vn are atomic masses161

and velocities, and wn are suitably defined atomic poten-162

tial energies, vide infra. When this is done, the energy163

flux can be written as164

Je(t) =
1

V

∑
n

[
vnεn −

∑
m

(rn − rm)
∂wm
∂rn

· vn

]
, (2)

where rn are atomic positions and n and m run over all165

the atoms in the system [14, 41, 42]. In the case of pair-166

wise interactions, for instance, it can be assumed that167

wn = 1
2

∑
m 6=n w(|rm−rn|). For a general many-body in-168

teraction, a similar partition of the total energy into local169

contributions is also possible. In a quantum-mechanical170

setting, it is not possible to uniquely define the atomic171

energies appearing in Eq. (2), and the total energy of a172

system can at most be expressed in terms of an energy173

density, which is also ill-defined. For instance, the elec-174

trostatic energy of a continuous charge-density distribu-175

tion can be expressed as either one half the integral of the176

density times the potential, or of 1
8π the squared modulus177

of the field; by the same token, the kinetic energy of a178

quantum particle can be expressed as the integral of the179

squared modulus of the gradient of its wave-function, or180

of the negative of the product of the wave-function and its181

Laplacian. For this reason, it has long been feared that182

no quantum-mechanical expressions for the heat conduc-183

tivity could be obtained from first principles [43]. Actu-184

ally, although not generally fully appreciated, this same185

problem arises with classical force fields as well, because186

classical atomic energies themselves are ill-defined. In the187

example of pair-wise interactions any different partition188
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of the interaction energy of the nm pair into individual189

atomic contributions would be equally acceptable and,190

yet, would lead to a different expression for the energy191

flux [14].192

This long-standing problem was solved for good only193

recently with the introduction of a gauge invariance prin-194

ciple for the transport coefficients [13, 14, 44], as ex-195

plained in the following subsections.196

A. Gauge invariance197

In order to introduce, and understand, the recently198

discovered gauge and convective invariance principles for199

the transport coefficients, it is useful to define the concept200

of diffusive flux. A flux is said to be diffusive if its GK201

integral, as defined in Eq. (1), is different from zero; the202

flux is said to be non-diffusive otherwise. Gauge invari-203

ance states that the addition of any linear combination204

of non-diffusive fluxes to a diffusive one does not affect205

the value of the conductivity calculated with the GK for-206

mula, Eq. (1). This principle got this name because it207

results from a kind of gauge invariance of conserved den-208

sities, according to which any such density is only defined209

up to the divergence of a bounded vector field. This is210

so because the volume integral of such a divergence is ir-211

relevant in the thermodynamic limit, and, thus, does not212

contribute to the value of the conserved quantity. This213

divergence would, in turn, result in the addition of a non-214

diffusive term to the flux of the conserved quantity, thus215

not affecting the value of the transport coefficient.216

B. Convective invariance217

In general, a system made of M atomic species (an M -218

component system) has M + 4 conserved quantities (the219

number of atoms of each species, the energy, and the220

three components of the momentum). The energy and221

atomic-number currents are vector quantities, whereas222

the momentum currents are 3× 3 (stress) tensors, which223

do not couple with the former in a rotationally invariant224

system. The total momentum is not only a conserved225

quantity by itself, but is also a linear combination of the226

volume integral of the atomic-number currents (atomic-227

number fluxes). This reduces the number of indepen-228

dent mass fluxes from M to M − 1. We conclude that,229

when dealing with an M -component system, the con-230

served quantities relevant to heat transport are the total231

energy and the total numbers (or masses) of each one232

of the M − 1 independent atomic components, which, in233

the linear regime, are related to each other by Onsager’s234

phenomenological relations:235

J i =

M−1∑
j=0

ΛijF j , (3)

where F j is the thermodynamic force associated to the236

j − th conserved quantity being transported. In Eq. (3)237

the energy flux is identified as the zero-th term, the re-238

mainingM−1 fluxes being any linearly independent com-239

binations of the mass fluxes, and the Λ coefficients are240

expressed by the GK integrals:241

Λij =
V

kB

∫ ∞
0

〈J i(Γt)J j(Γ0)〉dt. (4)

In the multi-component case, the heat conductivity is242

defined as the ratio between the energy current and the243

negative of the temperature gradient, when all the mass244

currents vanish. With some simple algebra, we arrive at245

the expression [16]:246

κ =
1

T 2

Λ00 −
M−1∑
i,j=1

Λ0i(Λ−1M−1)ijΛj0

 , (5)

where Λ−1M−1 is the inverse of the (M −1)× (M −1) mass247

block of the Onsager matrix. The expression in square248

brackets in Eq. (5) is called the Schur complement of the249

mass block in the Onsager matrix, and is nothing but the250

inverse of the 00 element of the inverse Onsager matrix.251

By combining the definition of Λ with Eq. (5), one can252

demonstrate by a straightforward substitution that the253

heat conductivity is invariant with respect to the addition254

of any linear combination of mass fluxes to the energy255

flux: J0 → J0 +
∑M−1
i=1 ciJ i. This is the transformation256

the energy flux undergoes when the energies of all the257

atoms of the same chemical species are shifted by the258

same amount, such as it occurs, e.g., when passing from259

an all-electron to a pseudo-potential representation of the260

electronic structure, or when changing pseudo-potentials.261

This property has been called convective invariance [16]262

Molecular fluids, such as undissociated water, deserve263

a special comment. In this case, one demonstrates that,264

as the atoms in each molecule do not diffuse relative to265

the center of mass of the molecule, all the independent266

atomic mass/number fluxes are non-diffusive. Therefore,267

energy can be assumed to be the only conserved flux268

relevant to heat transport, as it is the case for strictly269

one-component fluids [13].270

Notwithstanding gauge and convective invariance, the271

statistical noise affecting the estimate of the heat conduc-272

tivity does depend on the energy flux of the non-diffusing273

components that are added to the diffusive energy flux.274

Gauge invariance can then be leveraged to tune the op-275

timal linear combination of non-diffusive fluxes to min-276

imize the statistical error on the heat conductivity. In277

order to achieve this goal, it is expedient to consider the278

transport coefficient as the zero-frequency value of S(ω),279

the flux power spectrum, which is given, in the multi-280

component case, by:281

S(ω) =
V

2kBT 2

1

[S̄−1(ω)]00
, (6)
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where [S̄−1(ω)]00 is the 00 element of the inverse of the282

matrix defined by:283

S̄ij(ω) =

∫ ∞
−∞
〈J i(Γt)J j(Γ0)〉e−iωtdt. (7)

In molecular fluids, all mass fluxes are non diffusive284

[13] and energy is the only conserved quantity relevant285

to heat transport. Therefore, we actually have S(0) =286

V
2kBT 2 S̄

00(0) and, strictly speaking, no multi-component287

analysis would be needed. However, data analysis is288

greatly facilitated when the power spectrum is as smooth289

as possible (to be precise, when the number of inverse290

Fourier coefficients of the logarithm of the spectrum are291

as few as possible [15]). For this reason, it may be con-292

venient to complement the diffusive energy flux with a293

number of non-diffusive ones, which, while not altering294

the value of the spectrum in Eq. (6) at ω = 0, decrease295

the total power, thus easing data analysis [16, 42, 44, 45].296

C. The MUB DFT adiabatic energy flux297

Gauge invariance solves the problem of the alleged in-298

determinacy of the quantum-mechanical adiabatic energy299

flux, thus providing a rigorous derivation of its expression300

within DFT, without introducing any ad-hoc ingredients301

[13]. Within the local density (LDA) and generalized302

gradient (GGA) approximations of DFT, the MUB ex-303

pression for the DFT energy flux [13, 17] is:304

JMUB = JKS + JH + J0 + Jn + JXC , (8)

where

JKS =
∑
v

(
〈ϕv|r̂ĤKS |ϕ̇v〉+ εv〈ϕ̇v|r̂|ϕv〉

)
,

J0 =
∑
nL

∑
v

〈
ϕv
∣∣(r̂ − rn −L)

(
vn · ∇nLv̂0

)∣∣ϕv〉 ,
Jn =

∑
n

vne0n −∑
L6=0

L
(
vn · ∇nLwZn

)
(9)

+
∑
m 6=n

∑
L

(rn − rm −L)
(
vm · ∇mLw

Z
n

)
JH =

1

4πe2

∫
v̇H(r)∇vH(r)dr,

JXC =

{
0 (LDA)

−
∫
n(r)ṅ(r)∂εGGA(r)dr (GGA),

where rn, vn, and wZn = 1/2
∑′

m 6=n(ZmZn/|rn − rm|)305

are ionic positions, velocities, and electrostatic energies,306

respectively, Zn are ionic charges, and
∑′

includes all307

the atoms in the cell and their periodic images; ĤKS
308

is the instantaneous Kohn–Sham (KS) Hamiltonian, ϕν309

and εν are the occupied eigenfunctions and correspond-310

ing eigenvalues, and ρ(r) =
∑
ν |ϕν(r)|2 is the ground-311

state electron-density distribution; vH , vXC are Hartree312

and exchange-correlation (XC) potentials; L is a lattice313

vector, ∇ = ∂/∂r and ∇mL = ∂/∂rmL represent, re-314

spectively, the gradients with respect to the space posi-315

tion r and with respect to the atom position at rm + L316

(that is an image if L 6= 0); ν̂0 represents the (possibly317

non-local) ionic (pseudo-) potential acting on the elec-318

trons; LDA and GGA indicate the local-density [46] and319

generalized-gradient [36] approximations for the XC en-320

ergy functional and ∂εGGA is the derivative of the GGA321

XC local energy per particle with respect to density gra-322

dients. All the terms in Eq. (8) are well defined under pe-323

riodic boundary conditions (PBC) [13]. Only the expres-324

sion of JKS depends on the choice of the arbitrary zero of325

the one-electron energy levels. A shift of this zero by ∆ε326

results in a KS energy flux shifted by ∆εJρ, Jρ being the327

adiabatic electronic flux [47], Jρ = 2
∑
v〈ϕ̇v|r̂|ϕv〉 (the328

factor 2 accounts for spin degeneracy in a singlet state),329

which is also well defined within PBC. The adiabatic elec-330

tronic flux is non-diffusive, being the difference between331

the total-charge flux, which is by definition non-diffusive332

in insulators [48], and its ionic component, non-diffusive333

in mono-atomic and molecular systems, because of mo-334

mentum conservation and the condition that molecular335

bonds do not break [13, 16]. Therefore, Jρ does not con-336

tribute to the heat conductivity, thus lifting this further337

apparent indeterminacy of the transport coefficient de-338

rived from the MUB energy flux.339

III. DEEP POTENTIAL MODEL340

To speed up equilibrium MD simulations, we trained
a DNN model according to the DP framework [23].
Consider a system of N atoms, whose configurations
are represented by the set of atomic positions, r =
{r1, r2, . . . , rN} ∈ R3N . For each atom, n, we consider
only the neighbours, {q}, such that rqn < rc, where rqn is
the modulus of the vector rqn = [xqn, yqn, zqn]

.
= rq−rn,

and rc is a pre-defined cut-off radius. Denoting with Nn
the number of neighbours of n within the cutoff radius,
we define the local environment matrices R̃n ∈ RNn×4 to
encode the local environment:

R̃n =


σ(r1n)
r1n

σ(r1n)x1n

r21n

σ(r1n)y1n
r21n

σ(r1n)z1n
r21n

σ(r2n)
r2n

σ(r2n)x2n

r22n

σ(r2n)y2n
r22n

σ(r2n)z2n
r22n

...
...

...
...

 , (10)

where σ(rqn) is a smoothing function (see Appendix A).341

Then, symmetry-preserving descriptors (extensive details342

in [23]) are constructed and fed to the DNN, which re-343

turns the local energy contribution wn in output. We344

denote by W the full set of parameters that define the345

total potential energy, E. Thus, as illustrated in Ref. 23,346

the extensive property of E is ensured by its decomposi-347
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tion into “atomic contributions”:348

EW ({R̃}) =
∑
n

wWαn (R̃n) ≡
∑
n

wn (11)

where αn denotes the chemical species of atom n. We
use the notation (. . . )Wαn to indicate that the param-
eters used to represent the “atomic energy”, wn, only
depend on the chemical species αn of the n-th atom. Be-
ing wn a well defined and easy to compute function of
the atomic positions, the atomic forces and their breakup
into individual atomic contributions, ∂wm∂rn

(needed in the

definition of the energy flux in Eq. (1)), can be easily
computed as the gradients of E and wn, respectively. In
particular, the computation of the latter can be divided
into two contributions by applying the chain rule:

∇rnwm =
∂wm
∂rn

=
∑
i,j

∂wm

∂R̃ijm

∂R̃ijm
∂rn

(12)

where i, j identifies an element of the matrix R̃m. The349

first terms can be easily computed with TensorFlow [49],350

while the second must be handled separately and coded351

explicitly [21, 23]. A more detailed description of the cal-352

culation can be found in Appendix A. The local energy353

and its derivatives are the key elements in the computa-354

tion of the energy flux, Eq. (2). The parameters of the355

model are determined by minimizing the loss function:356

L = pE∆E2 +
pf
3N

∑
n

∆F 2
n (13)

where ∆E2 and ∆F 2
n are the squared deviations of the357

potential energy and atomic forces, respectively, between358

the reference DFT model and the DNN predictions. The359

two prefactors, pE and pf , are needed to optimize the360

training efficiency and to account for the difference in361

the physical dimensions of energies and forces.362

We remark that gauge invariance is instrumental in en-363

suring the uniqueness of the heat conductivity in a DNN364

framework. In fact, the roughness of the loss-function365

landscape implies that equally good representations of366

the potential-energy surface and atomic forces may be367

reached with very different representations of the atomic368

contributions to the total energy. Gauge invariance im-369

plies that, if the total energies resulting from two dif-370

ferent local representations were identical, the resulting371

transport coefficients would also be identical, thus mak-372

ing them in practice dependent on the overall accuracy373

of the DNN model, but not on the details of its local374

representation.375

IV. RESULTS376

A. Ab initio Molecular Dynamics377

We performed four ab initio MD simulations of wa-378

ter, corresponding to different temperatures and phases,379

using the PBE functional approximation of DFT, the380

plane-wave pseudopotential method, and periodic bound-381

ary conditions. Hamann-Schlüter-Chiang-Vanderbilt382

(HSCV) norm-conserving pseudopotentials [50] were383

used with a kinetic-energy cutoff of 85 Ry. All the simula-384

tions were performed with the Car-Parrinello extended-385

Langrangian method [51] using the cp.x component of386

Quantum ESPRESSO™ [52–54] and setting the fic-387

titious electronic mass to 25 physical masses and the388

timestep to dt = 0.073 fs. Liquid water simulations were389

done with 125 water molecules inside a cubic computa-390

tional box of side l = 15.52 Å, hexagonal ice-Ih simu-391

lations used 128 water molecules inside an orthogonal392

cell, with sides: l1 = 18.084 Å, l2 = 15.664 Å and393

l3 = 14.724 Å. It is known that within the PBE XC394

functional approximation, liquid water exhibits enhanced395

short-range order [55, 56] and a melting temperature that396

is more than 100 K higher than in experiment [39, 57],397

while solid ice has higher density than liquid water at co-398

existence. In order to compensate for this shortfall, it is399

customary to offset the simulation conditions by increas-400

ing the temperature by ≈ 100 K. We performed simula-401

tions of the liquid at three temperatures (521 K, 431 K402

and 409 K), and of ice in the hexagonal Ih structure at403

260 K. Each simulation was 100 ps long. Then, using404

the QEHeat [17] code, we computed the MUB flux ev-405

ery 3.1 fs. The statistical noise affecting the estimates406

of the GK integrals is larger when the spectral power of407

the flux time series is larger. Because of gauge invari-408

ance, different representations of the energy current may409

carry a very different spectral power, and still yield the410

same conductivity, which is the zero-frequency limit of411

the flux power spectrum. The MUB energy flux turns412

out to carry an impractically large spectral power, which413

can be tamed to some extent by leveraging gauge and414

convective invariance. Gauge invariance is first exploited415

by the velocity renormalization technique of Ref. 45.416

In a nutshell, it can be demonstrated that subtracting417

to each atomic velocity the average velocity of all the418

atoms of the same chemical species, results in a current419

with a much reduced spectral weight but the same con-420

ductivity. Further spectral weight can be subtracted by421

adding to the resulting effective flux any linear combina-422

tion of non-diffusive fluxes. This can be effectively done423

by treating the (possibly renormalized) energy current424

as one component of an M -component system, where all425

the other currents are non-diffusive ones [16]. Here, we426

choose M = 2 and take the electronic adiabatic current427

as the auxiliary non-diffusive one. In all cases, the trans-428

port coefficients are obtained from the cepstral analysis429

[15, 16] of the power spectrum of the relevant currents,430

using the SporTran [58] code.431

Fig. 1 displays the (window-filtered) power spectrum of432

the MUB flux from one of our Car-Parrinello MD simula-433

tions of liquid water at an average temperature of 431 K,434

using renormalized velocities (orange line), and further435

removing the contribution of the adiabatic electron cur-436

rent from the energy flux (blue line). In the inset we see437
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FIG. 1. Comparison of the (window-filtered) spectrum of the
velocity renormalized MUB flux (orange) and of the velocity
renormalized MUB flux decorrelated with the adiabatic elec-
tronic flux (blue). Both spectrum are filtered with a moving
average of 0.1 THz. The renormalized MUB flux has a higher
power but close to zero the two spectra converge to the same
value. The two dashed lines in the inset represent the cepstral
filters of the power spectra.

that the two spectra converge to the same value when438

ω = 0. The decorrelation decreases the power of the439

spectrum and flattens the spectrum near ω = 0 facilitat-440

ing data analysis by reducing the number of the required441

cepstral coefficients.442

B. DPMD benchmark against GGA results443

In order to appraise the ability of DP models to accu-444

rately describe heat transport phenomena, we have gen-445

erated one such model, by training it on a set of DFT-446

PBE data extracted from Car-Parrinello trajectories at447

different temperatures in the [400K – 1000K] tempera-448

ture range. The loss function in Eq. (13) was optimized449

with the Adam stochastic gradient descent method [59].450

The details of the training protocol are given in Ap-451

pendix B. The generated DNN potential was then used452

to run equilibrium MD simulations of water at the same453

conditions explored in the previous subsection by ab ini-454

tio techniques. One of the resulting energy-flux power455

spectra is displayed in Fig. 2 (orange), together with the456

corresponding ab initio spectrum (blue). The thermal457

conductivities corresponding to the two spectra are ob-458

tained as before through cepstral analysis. Notice that,459

in spite of the much larger weight of the ab initio spec-460

trum relative to that of the DNN model, the two spec-461

tra have the same low-frequency limit, indicating that462

the two simulations predict the same conductivity within463

statistical errors. The difference between the two spectra464

stems much more from the different local representations465

of the potential energy than from a different dynamics.466

The latter is, in fact, very well mimicked by the DNN po-467

tential, which gives forces in close agreement with those468

of the ab initio model (see Appendix B 3).469
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15
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ab initio
DeepMD

FIG. 2. Power spectrum of a water simulation. The orange
line is obtained from 360 ps of DPMD simulation of a peri-
odic cubic cell containing 125 water molecules at 407 K. The
blue line is obtained from an ab initio MD simulation of 125
water molecules with the same cubic box and an average tem-
perature of 409 K. Both spectrum are filtered with a moving
average of 0.1 THz. The dashed lines in the inset represent
the cepstral-filtered spectra. Even though the two spectra
have very different intensities the values at zero frequency are
the same.

In Table I we display the thermal conductivities com-
puted from ab initio MD and DPMD for all the simula-
tions that we performed, together with the atomic diffu-
sivities, DH and DO. The latter are computed from the
ω = 0 value of the power spectrum of the velocity:

D̄α(ω) =
1

6Nα

Nα∑
n

∫ ∞
−∞
〈vn(0) · vn(t)〉 eiωtdt (14)

where α represents the atomic species (oxygen and hy-470

drogen here) and n runs over all the atoms of species α.471

The diffusivities are obtained from a block analysis of a472

100 ps long trajectory. The DP model was capable of re-473

producing accurately the three transport coefficients. In474

particular, it allowed us to perform longer simulations in475

order to reduce the statistical uncertainty on κ. While476

≈ 100 ps long trajectories suffice for errors of about 10%477

in liquid water and of about 20% in ice Ih, we found that478

≈ 360 ps long trajectories with the DP model reduced479

these errors to 5% and 8%, respectively. These errors480

could be reduced even further because trajectories last-481

ing tens of ns or more would be possible with DPMD.482

The calculated heat conductivities with DPMD and483

ab initio MD, based on PBE-DFT, agree closely among484

them, but differ substantially from experiment (κexpt ≈485
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phase T DH DO κ
K Å2/ps Å2/ps W/(mK)

DPMD

liquid 516 1.07 ± 0.05 1.08 ± 0.05 0.99 ± 0.05
liquid 423 0.41 ± 0.02 0.42 ± 0.02 1.03 ± 0.05
liquid 408 0.29 ± 0.02 0.32 ± 0.02 1.11 ± 0.05
ice Ih 270 - - 1.9 ± 0.2

ab initio

liquid 521 1.13 ± 0.05 1.11 ± 0.05 0.98 ± 0.19
liquid 431 0.45 ± 0.03 0.45 ± 0.03 1.06 ± 0.11
liquid 409 0.325 ± 0.018 0.29 ± 0.02 1.12 ± 0.17
ice Ih 260 - - 1.8 ± 0.4

TABLE I. Comparison of some properties of water from ab initio MD and DPMD simulations based on PBE-DFT. All liquid
simulations used 125 H2O molecules inside a cubic box of side l = 15.52 Å. The ice Ih simulations used 128 H2O molecules
inside an orthogonal cell with sides: l1 = 18.084 Å, l2 = 15.664 Å and l3 = 14.724 Å. T is the mean temperature of the
simulations; DH and DO are the diffusivities of hydrogen and oxygen, respectively; while κ is the thermal transport coefficient.
The diffusivities of ice Ih are compatible with zero and are not reported.

0.6 W/(mK) vs. κPBE ≈ 1 W/(mK) for water at near486

ambient conditions [60]), indicating that the distribution487

of the energy density resulting from the PBE functional488

adopted here is likely inadequate to accurately describe489

adiabatic energy transport in water. This prompted us490

to try more advanced functional approximations, like the491

meta-GGA SCAN framework, to cope with this short-492

coming.493

V. EXTENDED SIMULATIONS WITH A SCAN494

BASED DEEP POTENTIAL MODEL495

Meta-GGA functionals like SCAN depend on the elec-496

tronic kinetic energy density, in addition to the density497

and its gradient, making significantly more complicated498

than in the PBE case the derivation of an analytic ex-499

pression for the energy flux to use in ab initio MD studies500

of heat transport. However, this is not necessary, as the501

DPMD methodology not only gives us a framework for502

molecular simulations having quantum-mechanical accu-503

racy at a cost close to that of empirical force fields, but504

also offers us the capability of easily deriving a practi-505

cal expression for the energy flux, in situations where it506

would be difficult to obtain it directly from first princi-507

ples. To follow this route, we trained a DP model using508

the SCAN-DFT dataset of Ref. 61. The thermal con-509

ductivity predicted by this model, at T ≈ 430 K and at510

the same density used in our previous PBE simulations,511

is κ = 0.88 ± 0.05W/(mK), which is closer to experi-512

ment, but still not in perfect agreement with it. Recent513

studies [24, 62] found that the melting temperature of514

SCAN-DP ice Ih models is around 310 K, a value very515

close to the corresponding DFT temperature, according516

to perturbative estimates [62]. While still not perfect,517

this result is far superior to PBE, whose estimated ice Ih518

melting temperature should be around 400 K or higher519

[39, 57]. Thus, one might argue that the 100 K tem-520

perature offset used in our PBE-DFT simulations would521

be inappropriate here, but the rather broad temperature522

range displayed in Fig. 3 shows that the thermal con-523

ductivity of water is rather insensitive to temperature at524

near ambient pressure.525

The simulations reported in Fig. 3 have been per-526

formed by fixing the size of the simulation-box in or-527

der to match the experimental density [63] at each re-528

ported temperature. At each temperature, we first per-529

formed an NVT simulation lasting for a few dozen ps, in530

which the system was coupled to a Nosé-Hoover thermo-531

stat, followed by a 880 ps long NVE simulation, in order532

to compute the thermal transport coefficient. The solid533

line in Fig. 3 connects PBE data at temperatures below534

400 K, i.e., below the estimated freezing temperature of535

this model [39, 57]. At these temperatures PBE water is536

sluggish and difficult to equilibrate.537

SCAN overestimates κ less than PBE, consistent with538

the better representation of the covalent bond length of539

the water molecule in the liquid provided by this func-540

tional [38]. The experimental data show a broad maxi-541

mum around 400 K, while PBE exhibits a sharp max-542

imum around 360 K, i.e., below the estimated freez-543

ing point of this model. The SCAN results are closer544

to experiment and are consistent with a broad maxi-545

mum of the thermal conductivity in the explored region.546

Whether the residual discrepancy between DFT-SCAN547

simulations and experiment is due to a residual inaccu-548

racy of the XC functional or to neglect of quantum effects549

on the nuclear motion is an issue that would require fur-550

ther work to be clarified.551

VI. CONCLUSIONS552

In this work we have shown that DNN potentials gener-553

ated according to the DP framework and properly trained554

on DFT data are a powerful tool to study the transport555

properties of water, and likely of other material systems,556

with quantum-mechanical accuracy at a nearly empirical557

force field cost. An important byproduct of this technol-558

ogy is that it allows one to derive numerically practical559

expressions for the energy current, even in cases where560

analytical derivations from the DFT functional would be561

hard, as we have shown in the case of the SCAN func-562

tional. Our results show that PBE-DFT overestimates563
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FIG. 3. Temperature dependence of the thermal conductivity
κ of water between 300 K and 500 K. The blue line repre-
sents the experimental data from the NIST website [63]. The
orange and green lines result from (classical) DPMD simu-
lations trained on PBE and SCAN data, respectively. The
simulations use a periodically repeated cubic box with 128
water molecules. In the simulations the box size is fixed to
the experimental density [63] at each given temperature. Rel-
ative to PBE, SCAN overestimates less the experimental val-
ues, and varies less with temperature, consistent with exper-
iment. PBE exhibits a relatively sharp conductivity maxi-
mum at around 360 K, whereas experiment shows a broad
maximum at ≈ 400 K. The sharp PBE maximum may be an
artifact of imperfect equilibration in a metastable liquid. The
continuous line connects data points below the freezing tem-
perature at ≈ 400 K, where the PBE liquid is metastable. In
the Supplementary Material [64] the reader can find the files
containing the data points for the DPMD-PBE and DPMD-
SCAN simulations shown in the figure

.

the thermal conductivity by ≈ 60%. The SCAN meta-564

GGA functional reduces this error by approximately a565

factor of two, which is not quite negligible. Whether this566

residual discrepancy should be ascribed mostly to resid-567

ual inaccuracies of the XC energy functional or to neglect568

of nuclear quantum effects in the particle dynamics, is569

an issue that deserves further study. As a final remark,570

we would like to stress that the method presented here571

should be useful in fields, such as, e.g., the geosciences572

and the planetary sciences, where the transport proper-573

ties of different phases of matter at extreme pressure and574

temperature conditions, that are difficult to reproduce in575

the laboratory, are a key ingredient in quantitative evo-576

lutionary models of the earth and/or other planets. The577

reliability of such models stands in fact on the accuracy578

of the relevant conductivities under the thermodynamic579

conditions of interest [65, 66].580

DATA AND CODE AVAILABILITY581

In the Supplementary Material [64] the reader582

can find two files, kappa T DPMD-PBE.dat and583

kappa T DPMD-SCAN.dat, containing the data points584

shown in Fig. 3 for the DPMD-PBE and DPMD-SCAN585

simulations, respectively.586

In the latest versions of DeePMD-kit the authors re-587

leased a code to compute the heat current with the588

method presented in this paper. This code extends589

the LAMMPS [67–69] interface of DeePMD-kit allowing590

the computation of the heat current via the command591

compute heat/flux. For more info see the documenta-592

tion on DeePMD-kit [70].593
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Appendix A: Derivatives605

The derivative of the local energy, ∂wm
∂rn

, is a key com-606

ponent in the computation of the energy flux, Eq. (2).607

As already mentioned in Section III, it is composed of608

two terms, i.e., ∂wm
∂R̃m

and ∂R̃m
∂rn

. Since wn is a well defined609

and easy to compute function of the local environment610

matrices R̃m [23], the first term can be easily obtained611

from TensorFlow [49] using the same back-propagation612

approach that is commonly used during the training of a613

DNN [71, 72]. The second term must, instead, be com-614

puted explicitly [21, 23]. Given the definition in Eq. (10)615

and the following smoothing function:616

σ(rmn) =


1 rmn < rc1
−6Ω5 + 15Ω4 − 10Ω3 + 1 rc1 < rmn < rc
0 rc < rmn

(A1)

where rc1 is the smoothing cut-off radius and Ω =617

rmn−rc1
rc−rc1 , we get by applying the chain rule:618

∂R̃m
∂rτn

=
∂R̃m
∂rγql

∂rγql
∂rτn

(A2)

where sums on repeated indices are implied, and τ, γ =619

1, 2, 3 ≡ x, y, z denote Cartesian coordinates. We find:620
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∂rγql
∂rτn

= δγ,τ (δn,q − δn,l) (A3)

∂R̃m
∂rγql

=
∂R̃m
∂rγqm

δl,m +
∂R̃m
∂rγml

δq,m (A4)

where δnm is the Kronecker delta.621

Using i, j to represent line and column indices of the622

element of R̃m to be differentiated, a general element of623 [
∂R̃m
∂rγqm

]
ij

is non-zero only if atom q is the i−th neighbour624

of m in the matrix R̃m:625

[
∂R̃m
∂rγqm

]
i,j

=



rγqm
r2qm

(
∂σqm
∂rqm

− σqm
rqm

)
if j = 1

∂σqm
∂rqm

rγqmr
j−1
qm

r3qm
− 2σ

rγqmr
j−1
qm

r4qm

+ δγ,j−1
σqm
r2qm

if j 6= 1

(A5)

where σnm = σ(rnm). With the same approach a similar626

expression for
[
∂R̃m
∂rγml

]
i,j

can be obtained.627

Appendix B: Neural network training628

1. Training parameters629

The NN PBE model in Section IV B is constructed with630

the DeePMD-kit [73] and the present appendix contains631

the main parameters of the model. In the definition of632

the local environment matrices, the two radii inside the633

smoothing function in Eq. (A1) are rc1 = 3.50 Åand rc =634

7.00 Å. The embedding network has three layers with635

25, 50 and 100 neurons respectively, whereas the fitting636

network has three layers with 240 neurons each. The loss637

function is optimized using the Adam stochastic gradient638

descent method [59], with a learning rate starting at 0.005639

and exponentially decaying, with a decay rate of 0.98,640

every 105 training step for a total of 1.5 · 106 training641

steps. In order to optimize training the coefficients pE642

and pf in Eq. (13) were adjusted, respectively, from 0.05643

to 1, and from 1000 to 1, during training.644

2. Training test645

The PBE neural network was tested against a set of646

Nv = 800 independent snapshots of 125 molecules of wa-647

ter at temperatures in the range [400 K – 1000K], obtain-648

ing a root-mean-square error of the forces of 0.05 eV/Å.649

Fig. 4 shows a direct comparison between the α compo-650

nent of the ab initio force for the s-th atoms in the b-th651

snapshot and the corresponding NN prediction. The red652

dashed line correspond to FNN
b,s,α = FDFT

b,s,α , that fits the653

data with a coefficient of determination R2 = 0.998. R2
654

is computed with the usual formula for linear regression:655

R2 = 1−
∑
i(F

DFT
i − FNNi )2∑

i(F
DFT
i − F̄DFT )2

, (B1)

where F̄DFT is the average of all the force components656

in the dataset.657

FIG. 4. Direct comparison between the ab initio force com-
ponents and the corresponding NN prediction. The indexes
b, s, α (see main text) label, respectively, the snapshot, the
atom, and the Cartesian coordinate of the force. The red
dashed line represent FDFT

b,s,α = FNN
b,s,α, that fits the data with

R2 = 0.998.

3. Benchmark of water properties658

To estimate the quality of the trained DP model we659

compared some simple static and dynamical properties660

of the model with their ab initio counterparts. We ran661

DPMD simulations of water at the same thermodynamic662

conditions of the ab initio simulations reported in Sec-663

tion IV A. Figs. 5 and 6 compares the oxygen radial dis-664

tribution functions, g(r), from DP and ab initio simula-665

tions of liquid water (third and seventh line of Table I),666

and of ice-Ih (fourth and last line of Table I). Both struc-667

tures are well described by the DP model. This is true668

also for the ice-structure even though no ice-snapshots669

were included in the training data set.670

For liquid water, we computed also the power spec-671

tra of the oxygen and hydrogen velocities Eq. (14), re-672

spectively, and their zero frequency values, the diffusion673

coefficients. Fig. 7 shows the power spectra of liquid wa-674

ter systems mentioned above. It can be seen that DP675

and ab initio models give consistent diffusivities (see Ta-676

ble I for a complete comparison of the results): DAIMD
H =677
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0.325±0.018 Å2/ps, DNN
H = 0.29±0.02 Å2/ps, DAIMD

O =678

0.29± 0.02 Å2/ps and DNN
O = 0.32± 0.02 Å2/ps.679
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FIG. 5. Comparison of the radial distribution functions of
liquid water from ab initio (continuous blue line) and DP
(dashed orange line) simulations, respectively. More details
on the simulations can be found in the main text.
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FIG. 6. Comparison of the radial distribution functions of
ice Ih from ab initio (continuous blue line) and DP (dashed
orange line) simulations, respectively. More details on the
simulations can be found in the main text.

Appendix C: Cepstral analysis of the flux time series680

In the present work the thermal conductivity is com-681

puted via the cepstral analysis of the energy flux, as im-682

plemented in the SporTran code [58]. This technique pro-683

vides a very accurate and reliable estimate of the trans-684

port coefficients and their statistical accuracy, depending685

only on two parameters: the effective Nyquist frequency,686
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FIG. 7. Comparison of the oxygen and hydrogen velocity
power spectra of liquid water from ab initio (blue line) and
DP (orange line) simulations, respectively. The simulations
used the same periodic cubic cell with density ρ = 1.00 g/cm3

containing 125 water molecules, at ≈ 410K. The inset shows
the region near ω = 0 used to estimate the diffusivity.

f∗, used to limit the analysis to a properly defined low-687

frequency window, and the number P ∗ of cepstral coef-688

ficients. For a detailed explanation of the method and689

the meaning of the parameters the reader may consult690

[15, 42, 44]. Table II contains the parameters used to691

obtain the values of κ in Table I.692

phase T f∗ P ∗

K THz

DPMD

liquid 516 9.9 11
liquid 423 17.8 12
liquid 408 36.7 17
ice Ih 270 25 93

ab initio

liquid 521 20.7 55
liquid 431 20.1 17
liquid 409 45.9 33
ice Ih 260 30.3 53

TABLE II. Table with the value of f∗ and P ∗ used to obtained
the values in Table I.

Appendix D: Size scaling for SCAN neural network693

potential694

Size effects may affect the transport properties calcu-695

lated in numerical simulations [74, 75]. In order to quan-696

tify these effects, we run 2 ns long NVE simulations at697

≈ 407 K of SCAN-DP water at fixed density and in-698

creasingly larger cells (with up to 1000 molecules). The699

results, reported in Fig. 8, suggest that κ shows no size700

dependence within the error bars of the simulation.701
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FIG. 8. The size dependence of the thermal transport coeffi-
cient κ for simulation with the SCAN neural network poten-
tial. The test shows that no relevant size scale dependence is
observed. All the quantities are evaluated from ≈ 2ns long
trajectories.
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Gaussian Approximation Potentials: The Accuracy of777

Quantum Mechanics, without the Electrons, Physical Re-778

view Letters 104, 136403 (2010), arXiv:0910.1019.779

[23] L. Zhang, J. Han, H. Wang, W. Saidi, R. Car, and780

W. E, End-to-end symmetry preserving inter-atomic po-781

tential energy model for finite and extended systems, in782

Advances in Neural Information Processing Systems 31,783

edited by S. Bengio, H. Wallach, H. Larochelle, K. Grau-784

man, N. Cesa-Bianchi, and R. Garnett (Curran Asso-785

ciates, Inc., 2018) pp. 4436–4446.786

[24] L. Zhang, H. Wang, R. Car, and W. E, Phase diagram787

of a deep potential water model, Phys. Rev. Lett. 126,788

236001 (2021).789

[25] W. Jiang, Y. Zhang, L. Zhang, and H. Wang, Accu-790

rate Deep Potential model for the Al–Cu–Mg alloy in the791

full concentration space*, Chinese Physics B 30, 050706792

(2021), arXiv:2008.11795.793

[26] C. Zhang, F. Tang, M. Chen, L. Zhang, D. Y. Qiu, J. P.794

Perdew, M. L. Klein, and X. Wu, Modeling liquid water795

by climbing up Jacob’s ladder in density functional the-796

ory facilitated by using deep neural network potentials797

(2021), arXiv:2104.14410 [physics.chem-ph].798

[27] J. Wu, Y. Zhang, L. Zhang, and S. Liu, Deep learning of799

accurate force field of ferroelectric HfO2, Phys. Rev. B800

103, 024108 (2021).801

[28] T. E. Gartner, L. Zhang, P. M. Piaggi, R. Car, A. Z.802

Panagiotopoulos, and P. G. Debenedetti, Signatures of803

a liquid–liquid transition in an ab initio deep neural804

network model for water, Proceedings of the National805

Academy of Sciences 117, 26040 (2020).806

[29] H. Niu, L. Bonati, P. M. Piaggi, and M. Parrinello, Ab807

initio phase diagram and nucleation of gallium, Nature808

Communications 11, 2654 (2020).809

[30] W. Jia, H. Wang, M. Chen, D. Lu, L. Lin, R. Car, W. E,810

and L. Zhang, Pushing the limit of molecular dynamics811

with ab initio accuracy to 100 million atoms with ma-812

chine learning, in Proceedings of the International Con-813

ference for High Performance Computing, Networking,814

Storage and Analysis (IEEE Press, 2020).815

[31] A. Marcolongo, T. Binninger, F. Zipoli, and T. Laino,816

Simulating diffusion properties of solid-state electrolytes817

via a neural network potential: Performance and training818

scheme, ChemSystemsChem 2, 10.1002/syst.201900031819

(2019), arXiv:1910.10090.820

[32] J. Huang, L. Zhang, H. Wang, J. Zhao, J. Cheng, and821

W. E, Deep potential generation scheme and simula-822

tion protocol for the Li10GeP2S12-type superionic con-823

ductors, The Journal of Chemical Physics 154, 094703824

(2021).825

[33] R. Li, E. Lee, and T. Luo, A unified deep neural network826

potential capable of predicting thermal conductivity of827

silicon in different phases, Materials Today Physics 12,828

100181 (2020).829

[34] L. Zhang, M. Chen, X. Wu, H. Wang, W. E, and R. Car,830

Deep neural network for the dielectric response of insu-831

lators, Phys. Rev. B 102, 041121(R) (2020).832

[35] G. M. Sommers, M. F. Calegari Andrade, L. Zhang,833

H. Wang, and R. Car, Raman spectrum and polariz-834

ability of liquid water from deep neural networks, Phys.835

Chem. Chem. Phys. 22, 10592 (2020).836

[36] J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized837

gradient approximation made simple, Phys. Rev. Lett.838

77, 3865 (1996).839

[37] J. Sun, A. Ruzsinszky, and J. P. Perdew, Strongly840

constrained and appropriately normed semilocal density841

functional, Phys. Rev. Lett. 115, 036402 (2015).842

[38] M. Chen, H.-Y. Ko, R. C. Remsing, M. F. Calegari An-843

drade, B. Santra, Z. Sun, A. Selloni, R. Car, M. L. Klein,844

J. P. Perdew, and X. Wu, Ab initio theory and model-845

ing of water, Proceedings of the National Academy of846

Sciences 114, 10846 (2017).847

[39] P. H.-L. Sit and N. Marzari, Static and dynamical prop-848

erties of heavy water at ambient conditions from first-849

principles molecular dynamics, The Journal of Chemical850

Physics 122, 204510 (2005).851

[40] A flux, J , is defined as the macroscopic average of a852

current density, j(r): J = 1
V

∫
V
j(r)dr, where V is the853

system’s volume.854

[41] E. Helfand, Transport Coefficients from Dissipation in a855

Canonical Ensemble, Phys. Rev. 119, 1 (1960).856

[42] S. Baroni, R. Bertossa, L. Ercole, F. Grasselli, and857

A. Marcolongo, Heat transport in insulators from ab ini-858

tio Green-Kubo theory, in Handbook of Materials Mod-859

eling: Applications: Current and Emerging Materials,860

edited by W. Andreoni and S. Yip (Springer Interna-861

tional Publishing, Cham, 2018) pp. 1–36, 1802.08006.862

[43] S. Stackhouse, L. Stixrude, and B. B. Karki, Thermal863

Conductivity of Periclase (MgO) from First Principles,864

Physical Review Letters 104, 208501 (2010).865

[44] F. Grasselli and S. Baroni, Invariance principles in the866

theory and computation of transport coefficients, Eu-867

ropean Physical Journal B 10.1140/epjb/s10051-021-868

00152-5 (2021), 2105.02137.869

[45] A. Marcolongo, L. Ercole, and S. Baroni, Gauge Fixing870

for Heat-Transport Simulations., JCTC 16, 3352 (2020).871

[46] W. Kohn and L. J. Sham, Self-consistent equations in-872

cluding exchange and correlation effects, Phys. Rev. 140,873

A1133 (1965).874

[47] D. J. Thouless, Quantization of particle transport, Phys.875

Rev. B 27, 6083 (1983).876

[48] F. Grasselli and S. Baroni, Topological quantization and877

gauge invariance of charge transport in liquid insulators,878

Nature Physics 15, 967 (2019).879

[49] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen,880

C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin,881

S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Is-882

ard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Lev-883
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