

CHORUS

This is the accepted manuscript made available via CHORUS. The article has been published as:

Heat transport in liquid water from first-principles and deep neural network simulations

Davide Tisi, Linfeng Zhang, Riccardo Bertossa, Han Wang, Roberto Car, and Stefano

Baroni

Phys. Rev. B **104**, 224202 — Published 13 December 2021 DOI: [10.1103/PhysRevB.104.224202](https://dx.doi.org/10.1103/PhysRevB.104.224202)

¹ Heat transport in liquid water from first-principles and deep-neural-network 2 simulations

Davide Tisi,¹ Linfeng Zhang,² Riccardo Bertossa,¹ Han Wang,³ Roberto Car,^{2,4} and Stefano Baroni^{1,5}

1 ⁴ SISSA – Scuola Internazionale Superiore di Studi Avanzati, 34136 Trieste, Italy

² Program in Applied and Computational Mathematics,

⁶ Princeton University, Princeton, NJ 08544, USA

³ Laboratory of Computational Physics, Institute of Applied Physics and Computational Mathematics,

⁸ Huayuan Road 6, Beijing 100088, People's Republic of China

4 ⁹ Department of Chemistry, Department of Physics,

¹⁰ and Princeton Institute for the Science and Technology of Materials,

¹¹ Princeton University, Princeton, NJ 08544, USA

 5 CNR Istituto Officina dei Materiali, SISSA unit, 34136 Trieste, Italy

¹³ (Dated: November 28, 2021)

 We compute the thermal conductivity of water within linear response theory from equilibrium molecular dynamics simulations, by adopting two different approaches. In one, the potential energy surface (PES) is derived on the fly from the electronic ground state of density functional theory (DFT) and the corresponding analytical expression is used for the energy flux. In the other, the PES is represented by a deep neural network (DNN) trained on DFT data, whereby the PES has an explicit local decomposition and the energy flux takes a particularly simple expression. By virtue of a gauge invariance principle, established by Marcolongo, Umari, and Baroni, the two approaches should be equivalent if the PES were reproduced accurately by the DNN model. We test this hy- pothesis by calculating the thermal conductivity, at the GGA (PBE) level of theory, using the direct formulation and its DNN proxy, finding that both approaches yield the same conductivity, in excess of the experimental value by approximately 60%. Besides being numerically much more efficient than its direct DFT counterpart, the DNN scheme has the advantage of being easily applicable to more sophisticated DFT approximations, such as meta-GGA and hybrid functionals, for which it would be hard to derive analytically the expression of the energy flux. We find in this way, that a DNN model, trained on meta-GGA (SCAN) data, reduce the deviation from experiment of the predicted thermal conductivity by about 50%, leaving the question open as to whether the residual error is due to deficiencies of the functional, to a neglect of nuclear quantum effects in the atomic dynamics, or, likely, to a combination of the two.

3

³² I. INTRODUCTION

³³ Heat transport plays an important role in many areas⁵⁹ 34 of science, such as, e.g., materials and planetary sciences, 60 35 with major impact on technological issues, such as energy 61 ³⁶ saving and conversion, heat dissipation and shielding, ³⁷ etc. Numerical studies of heat transport at the molec- $_{38}$ ular scale often rely on Boltzmann's kinetic approach $[1-$ ⁶⁴ $_3$ ⁹ 4. This is adequate when the relaxation processes are 65 ⁴⁰ dominated by binary collisions, as in the case of dilute ⁴¹ gases of particles, such as atoms or molecules, or of quasi- $_{42}$ particles, such as phonons in crystalline solids. A more 68 43 general approach to calculate the transport coefficients is 69 44 provided by simulations of the molecular dynamics (MD), $\frac{70}{2}$ 45 either directly via non-equilibrium MD $[5-8]$ $[5-8]$, or in combi-⁷¹ 46 nation with Green-Kubo (GK) theory of linear response 72 47 [\[5,](#page-11-2) [6,](#page-11-4) [9,](#page-11-5) [10\]](#page-11-6) via equilibrium MD.

 Much progress has been made in recent years to 74 develop ab initio approaches to heat transport based on electronic density functional theory (DFT). Some $_{51}$ schemes used *ad hoc* ingredients, such as a (rather arbi- $_{77}$) trary) quantum-mechanical definition of the atomic en- 78 ergies [\[11\]](#page-11-7). Other schemes used a definition of the en- ergy flux based on the normal-mode decomposition of 55 the atomic coordinates and forces, which is only possible \mathfrak{su} in crystalline solids [\[12\]](#page-11-8). In this work we follow the for-

⁵⁷ mulation of Marcolongo, Umari, and Baroni (MUB) [\[13\]](#page-11-9), ⁵⁸ who derived a general DFT expression for the adiabatic energy flux, based on a *gauge invariance* principle for the transport coefficients [\[13,](#page-11-9) [14\]](#page-11-10). The MUB approach made ab initio simulations of heat transport possible, not only for crystalline materials, but also for disordered systems, like liquids and glasses, albeit at the price of lengthy and ⁶⁴ costly simulations. Progress in statistical techniques for the analysis of the flux time series $[15, 16]$ $[15, 16]$ made possible to achieve 10% accuracy in the calculated thermal conductivity with simulations of a few dozen to a few hundred picoseconds. Still the computational burden of ab initio MD, where the potential energy surface (PES) is generated on the fly from DFT, is heavy and requires access to high performance computer platforms for substantial wall-clock times (see, e.g., Appendix F of Ref. ⁷³ [\[17\]](#page-11-13) for details on the computational cost of a MUB calculation).

In the last decade, a combination of standard ⁷⁶ electronic-structure methods, based on DFT, and new machine-learning techniques have allowed the construction of inter-atomic potentials possessing quantum mechanical accuracy at a cost that is only marginally higher than that of classical force fields. All the machine learned potentials, which are represented either by a deep-neural network (DNN) $[18-21]$ $[18-21]$ or by a Gaussian-process $[22]$, 83 use a local decomposition of the total potential energy₁₄₁ 84 of the system in terms of atomic contributions, which₁₄₂ ⁸⁵ makes straightforward to define the energy flux, or current, from which to compute the heat conductivity via.

87 GK theory.

⁸⁸ Here we adopt the recently developed deep poten- 89 tial (DP) framework [\[21,](#page-12-0) [23\]](#page-12-2). DP molecular dynam- 145 ⁹⁰ ics (DPMD) simulations have been used successfully to 91 study bulk thermodynamic properties beyond the reach¹⁴⁶ 92 of direct DFT calculations [\[24](#page-12-3)[–30\]](#page-12-4), as well as dynamic¹⁴⁷ 93 properties like mass diffusion in solid state electrolytes¹⁴⁸ 94 [\[31,](#page-12-5) [32\]](#page-12-6), thermal transport properties in silicon [\[33\]](#page-12-7), in-149 ⁹⁵ frared spectra of water and ice [\[34\]](#page-12-8) and Raman spectra ⁹⁶ of water [\[35\]](#page-12-9). In the present work, we report calculations¹⁵¹ 97 of the thermal conductivity (κ) of water, a molecular liq-152 ⁹⁸ uid, from both direct DFT and DPMD simulations. The ⁹⁹ close correspondence of the conductivities predicted with ¹⁰⁰ the two approaches validates DPMD against the results $_{101}$ obtained from the MUB current. We adopt two popu- $_{153}$ $_{102}$ lar DFT approximations: the PBE generalized gradient $_{_{154}}$ 103 approximation (GGA) [\[36\]](#page-12-10) and the strongly constrained $_{104}$ and appropriately normed (SCAN) meta-GGA [\[37\]](#page-12-11). The 105 SCAN functional describes water more accurately than 106 PBE, relative to which it reduces the covalent character $\frac{1}{158}$ $_{107}$ of the hydrogen bond and correctly predicts that the liq - $_{108}$ uid is denser than the solid [\[38\]](#page-12-12). However, expressions $_{109}$ for the energy density and fluxes are not currently avail- $_{\rm 161}$ 110 able for the SCAN functional, and its inherent complex- $_{162}$ $_{111}$ ity makes hard to derive usable analytical expressions for $_{163}$ $\frac{1}{112}$ these quantities. Because of that, we used PBE to vali-¹¹³ date our methodology. Our results show that direct DFT ¹¹⁴ simulations based on the PBE functional, and simula-¹¹⁵ tions based on the corresponding DP model are in good ¹¹⁶ agreement with each other, but distinctly overestimate $_{117}$ the thermal conductivity relative to experiment. This $_{118}$ outcome likely reflects the well known tendency of PBE ₁₆₆ 119 to overestimate the strength of the hydrogen bonds, en - $_{167}$ $_{120}$ hancing short-range order and making liquid water more₁₆₈ 121 "solid-like" and prone to freezing [\[39\]](#page-12-13). DPMD simula- $_{169}$ 122 tions trained on SCAN-DFT reduce substantially the er_{-170} 123 ror of the heat conductivity predicted by PBE, but do_{171} $_{124}$ not eliminate it, thus leaving open the question as to its₁₇₂ 125 origin, which is possibly due to residual deficiencies of $_{173}$ ¹²⁶ the functional, to nuclear quantum effects ignored in the₁₇₄ 127 MD equations of motion, or, likely, to a combination of 175 ¹²⁸ the two.

 The paper is organized as follows. In Section [II,](#page-2-0) we recall the main aspects of the GK theory, along with ¹³¹ two basic invariance principles of thermal transport that₁₇₉ allow us, among other things, to define the MUB-DFT energy flux. In Section [III,](#page-4-0) we describe the DP model, derive the corresponding expression for the energy flux, 135 and discuss the impact of the invariance principles within a DNN simulation framework. In Section [IV,](#page-5-0) we bench- $_{137}$ mark our DNN methodology against ab initio MD sim-185 ulations of liquid water at the PBE level of theory [\[36\]](#page-12-10). 139 Having proved that DPMD trustfully reproduces ab ini -187 tio results, in Section [V,](#page-7-0) we take advantage of the simpless

DNN expression for the heat current to compute the thermal transport coefficients of liquid water at the SCAN meta-GGA level of theory. Section [VI](#page-7-1) contains our conclusions.

II. THEORY

 GK theory of linear response [\[9,](#page-11-5) [10\]](#page-11-6) provides a rigorous and elegant framework to compute the atomic contribution to the thermal conductivity, κ , of extended systems, in terms of the stationary time series of the energy flux ¹⁵⁰ [\[40\]](#page-12-14), J^e , evaluated at thermal equilibrium with MD. For an isotropic system of N interacting particles, the GK expression for the heat conductivity reads:

$$
\kappa = \frac{V}{3k_B T^2} \int_0^\infty \langle \mathbf{J}^e(\Gamma_t) \cdot \mathbf{J}^e(\Gamma_0) \rangle dt, \tag{1}
$$

where Γ_t indicates the time evolution of a point in phase space from the initial condition Γ_0 . The definition of the energy current in Eq. (1) is the key ingredient for the computation of κ . This definition relies in general on extensivity, which allows the total, conserved, energy of an isolated system to be broken up into local contributions. In a classical setting, this is conveniently achieved by expressing the total energy as a sum of atomic energies, ¹⁶¹ $\epsilon_n = \frac{1}{2}M_n v_n^2 + w_n$, where M_n and v_n are atomic masses and velocities, and w_n are suitably defined atomic potential energies, *vide infra*. When this is done, the energy flux can be written as

$$
\boldsymbol{J}^{e}(t) = \frac{1}{V} \sum_{n} \left[\boldsymbol{v}_{n} \epsilon_{n} - \sum_{m} (\boldsymbol{r}_{n} - \boldsymbol{r}_{m}) \frac{\partial w_{m}}{\partial \boldsymbol{r}_{n}} \cdot \boldsymbol{v}_{n} \right], \quad (2)
$$

where r_n are atomic positions and n and m run over all the atoms in the system $[14, 41, 42]$ $[14, 41, 42]$ $[14, 41, 42]$. In the case of pairwise interactions, for instance, it can be assumed that ¹⁶⁸ $w_n = \frac{1}{2} \sum_{m \neq n} w(|r_m - r_n|)$. For a general many-body interaction, a similar partition of the total energy into local contributions is also possible. In a quantum-mechanical setting, it is not possible to uniquely define the atomic energies appearing in Eq. (2) , and the total energy of a system can at most be expressed in terms of an energy $density$, which is also ill-defined. For instance, the elec-¹⁷⁵ trostatic energy of a continuous charge-density distribu-¹⁷⁶ tion can be expressed as either one half the integral of the ¹⁷⁷ density times the potential, or of $\frac{1}{8\pi}$ the squared modulus of the field; by the same token, the kinetic energy of a quantum particle can be expressed as the integral of the squared modulus of the gradient of its wave-function, or of the negative of the product of the wave-function and its Laplacian. For this reason, it has long been feared that no quantum-mechanical expressions for the heat conduc-tivity could be obtained from first principles [\[43\]](#page-12-17). Actually, although not generally fully appreciated, this same problem arises with classical force fields as well, because ¹⁸⁷ classical atomic energies themselves are ill-defined. In the example of pair-wise interactions any different partition 189 of the interaction energy of the nm pair into individual₂₃₆

¹⁹⁰ atomic contributions would be equally acceptable and, ¹⁹¹ yet, would lead to a different expression for the energy ¹⁹² flux [\[14\]](#page-11-10).

 This long-standing problem was solved for good only 194 recently with the introduction of a *gauge invariance* prin-241 ciple for the transport coefficients [\[13,](#page-11-9) [14,](#page-11-10) [44\]](#page-12-18), as ex-plained in the following subsections.

197 **A.** Gauge invariance

¹⁹⁸ In order to introduce, and understand, the recently₂₄₅ 199 discovered *gauge* and *convective* invariance principles for₂₄₆ the transport coefficients, it is useful to define the concept of diffusive flux. A flux is said to be diffusive if its GK integral, as defined in Eq. [\(1\)](#page-2-1), is different from zero; the flux is said to be non-diffusive otherwise. Gauge invari- ance states that the addition of any linear combination ²⁰⁵ of non-diffusive fluxes to a diffusive one does not affect. ²⁰⁶ the value of the conductivity calculated with the GK for- $\frac{248}{248}$ $_{207}$ mula, Eq. [\(1\)](#page-2-1). This principle got this name because it results from a kind of gauge invariance of conserved den- sities, according to which any such density is only defined 210 up to the divergence of a bounded vector field. This is $\frac{1}{252}$ so because the volume integral of such a divergence is ir- relevant in the thermodynamic limit, and, thus, does not contribute to the value of the conserved quantity. This divergence would, in turn, result in the addition of a non-215 diffusive term to the flux of the conserved quantity, thus 256 not affecting the value of the transport coefficient.

²¹⁷ B. Convective invariance

 $_{218}$ In general, a system made of M atomic species (an M⁻²⁶³) 219 component system) has $M + 4$ conserved quantities (the²⁶⁴ ²²⁰ number of atoms of each species, the energy, and the $_{221}$ three components of the momentum). The energy and 266 ²²² atomic-number currents are vector quantities, whereas 223 the momentum currents are 3×3 (stress) tensors, which²⁶⁸ ²²⁴ do not couple with the former in a rotationally invariant ²²⁵ system. The total momentum is not only a conserved $_{226}$ quantity by itself, but is also a linear combination of the $_{271}$ ²²⁷ volume integral of the atomic-number currents (atomic-²²⁸ number fluxes). This reduces the number of indepen-229 dent mass fluxes from M to $M-1$. We conclude that, 274 230 when dealing with an M -component system, the con-275 ²³¹ served quantities relevant to heat transport are the total ²³² energy and the total numbers (or masses) of each one 233 of the $M-1$ independent atomic components, which, in²⁷⁸ ²³⁴ the linear regime, are related to each other by Onsager's ²³⁵ phenomenological relations:

$$
\boldsymbol{J}^{i} = \sum_{j=0}^{M-1} \Lambda^{ij} \boldsymbol{F}^{j}, \qquad (3)
$$

²³⁶ where \mathbf{F}^j is the thermodynamic force associated to the $j - th$ conserved quantity being transported. In Eq. [\(3\)](#page-3-0) the energy flux is identified as the zero-th term, the re-²³⁹ maining M−1 fluxes being any linearly independent combinations of the mass fluxes, and the Λ coefficients are expressed by the GK integrals:

$$
\Lambda^{ij} = \frac{V}{k_B} \int_0^\infty \langle \mathbf{J}^i(\Gamma_t) \mathbf{J}^j(\Gamma_0) \rangle dt.
$$
 (4)

²⁴² In the multi-component case, the heat conductivity is ²⁴³ defined as the ratio between the energy current and the ²⁴⁴ negative of the temperature gradient, when all the mass currents vanish. With some simple algebra, we arrive at the expression $[16]$:

$$
\kappa = \frac{1}{T^2} \left[\Lambda^{00} - \sum_{i,j=1}^{M-1} \Lambda^{0i} (\Lambda_{M-1}^{-1})^{ij} \Lambda^{j0} \right],
$$
 (5)

²⁴⁷ where Λ_{M-1}^{-1} is the inverse of the $(M-1) \times (M-1)$ mass block of the Onsager matrix. The expression in square brackets in Eq. (5) is called the *Schur complement* of the mass block in the Onsager matrix, and is nothing but the inverse of the 00 element of the inverse Onsager matrix.

By combining the definition of Λ with Eq. [\(5\)](#page-3-1), one can demonstrate by a straightforward substitution that the heat conductivity is invariant with respect to the addition ²⁵⁵ of any linear combination of mass fluxes to the energy ²⁵⁶ flux: $J^0 \to J^0 + \sum_{i=1}^{M-1} c^i J^i$. This is the transformation the energy flux undergoes when the energies of all the ²⁵⁸ atoms of the same chemical species are shifted by the ²⁵⁹ same amount, such as it occurs, e.g., when passing from ²⁶⁰ an all-electron to a pseudo-potential representation of the ²⁶¹ electronic structure, or when changing pseudo-potentials. ²⁶² This property has been called convective invariance [\[16\]](#page-11-12)

Molecular fluids, such as undissociated water, deserve a special comment. In this case, one demonstrates that, as the atoms in each molecule do not diffuse relative to ²⁶⁶ the center of mass of the molecule, all the independent atomic mass/number fluxes are non-diffusive. Therefore, energy can be assumed to be the only conserved flux relevant to heat transport, as it is the case for strictly one-component fluids [\[13\]](#page-11-9).

Notwithstanding gauge and convective invariance, the statistical noise affecting the estimate of the heat conductivity does depend on the energy flux of the non-diffusing components that are added to the diffusive energy flux. Gauge invariance can then be leveraged to tune the optimal linear combination of non-diffusive fluxes to minimize the statistical error on the heat conductivity. In order to achieve this goal, it is expedient to consider the transport coefficient as the zero-frequency value of $S(\omega)$, ²⁸⁰ the flux power spectrum, which is given, in the multi-²⁸¹ component case, by:

$$
S(\omega) = \frac{V}{2k_B T^2} \frac{1}{[\bar{S}^{-1}(\omega)]^{00}},\tag{6}
$$

²⁸² where $\left[\bar{S}^{-1}(\omega)\right]^{00}$ is the 00 element of the inverse of the ²⁸³ matrix defined by:

$$
\bar{S}^{ij}(\omega) = \int_{-\infty}^{\infty} \langle \mathbf{J}^i(\Gamma_t) \mathbf{J}^j(\Gamma_0) \rangle e^{-i\omega t} dt. \tag{7.33}
$$

²⁸⁴ In molecular fluids, all mass fluxes are non diffusive ²⁸⁵ [\[13\]](#page-11-9) and energy is the only conserved quantity relevant 286 to heat transport. Therefore, we actually have $S(0) = 318$ ²⁸⁷ $\frac{V}{2k_BT^2} \bar{S}^{00}(0)$ and, strictly speaking, no multi-component $\frac{2\kappa_B T}{288}$ analysis would be needed. However, data analysis is 220 289 greatly facilitated when the power spectrum is as smooth³²¹ ²⁹⁰ as possible (to be precise, when the number of inverse ²⁹¹ Fourier coefficients of the logarithm of the spectrum are 292 as few as possible [\[15\]](#page-11-11)). For this reason, it may be con-324 ²⁹³ venient to complement the diffusive energy flux with a ²⁹⁴ number of non-diffusive ones, which, while not altering 295 the value of the spectrum in Eq. [\(6\)](#page-3-2) at $\omega = 0$, decrease 27 296 the total power, thus easing data analysis $[16, 42, 44, 45]$ $[16, 42, 44, 45]$ $[16, 42, 44, 45]$ $[16, 42, 44, 45]$.

297 C. The MUB DFT adiabatic energy flux

²⁹⁸ Gauge invariance solves the problem of the alleged in-²⁹⁹ determinacy of the quantum-mechanical adiabatic energy ³⁰⁰ flux, thus providing a rigorous derivation of its expression 301 within DFT, without introducing any ad-hoc ingredients³³⁶ 302 [\[13\]](#page-11-9). Within the local density (LDA) and generalized³³⁷ $\frac{302}{303}$ gradient (GGA) approximations of DFT, the MUB ex- $\frac{338}{339}$ pression for the DFT energy flux $[13, 17]$ $[13, 17]$ is:

$$
\boldsymbol{J}^{MUB} = \boldsymbol{J}^{KS} + \boldsymbol{J}^H + \boldsymbol{J}^0 + \boldsymbol{J}^n + \boldsymbol{J}^{XC},\qquad(8)
$$

where

$$
\mathbf{J}^{KS} = \sum_{v} \left(\langle \varphi_{v} | \hat{\mathbf{r}} \hat{H}^{KS} | \dot{\varphi}_{v} \rangle + \varepsilon_{v} \langle \dot{\varphi}_{v} | \hat{\mathbf{r}} | \varphi_{v} \rangle \right),
$$

$$
\mathbf{J}^{0} = \sum_{nL} \sum_{v} \left(\varphi_{v} \left| (\hat{\mathbf{r}} - \mathbf{r}_{n} - \mathbf{L}) \left(\mathbf{v}_{n} \cdot \nabla_{nL} \hat{v}^{0} \right) \right| \varphi_{v} \right),
$$

$$
\mathbf{J}^{n} = \sum \left[\mathbf{v}_{n} e_{n}^{0} - \sum_{v} \mathbf{L} \left(\mathbf{v}_{n} \cdot \nabla_{nL} w_{n}^{Z} \right) \right] \tag{9}
$$

$$
\begin{aligned}\n &n \quad \lfloor \quad & L \neq 0 \\
 &\quad + \sum_{m \neq n} \sum_{L} (\mathbf{r}_n - \mathbf{r}_m - \mathbf{L}) \left(\mathbf{v}_m \cdot \nabla_{mL} w_n^Z \right) \n\end{aligned}
$$
\n
$$
\mathbf{r}^H \quad\n \begin{bmatrix}\n 1 & \int_{\mathbb{R}^d} H(x) \nabla_{\mathbb{R}^d} H(x) dx \\
 \end{bmatrix}
$$

$$
\mathbf{J}^{H} = \frac{1}{4\pi e^2} \int \dot{v}^{H}(\mathbf{r}) \nabla v^{H}(\mathbf{r}) d\mathbf{r},
$$

$$
\mathbf{J}^{XC} = \begin{cases} 0 & \text{(LDA)} \\ -\int n(\mathbf{r}) \dot{n}(\mathbf{r}) \partial \epsilon^{GGA}(\mathbf{r}) d\mathbf{r} & \text{(GGA)}, \end{cases}
$$

305 where r_n , v_n , and $w_n^Z = 1/2 \sum_{m \neq n}^{\prime} (Z_m Z_n / |r_n - r_m|)$ ³⁰⁶ are ionic positions, velocities, and electrostatic energies, 307 respectively, Z_n are ionic charges, and \sum' includes all ³⁰⁸ the atoms in the cell and their periodic images; \hat{H}^{KS} ³⁴⁶ 309 is the instantaneous Kohn–Sham (KS) Hamiltonian, $\varphi_{\nu^{347}}$

and ε_{ν} are the occupied eigenfunctions and correspond-³¹¹ ing eigenvalues, and $\rho(\mathbf{r}) = \sum_{\nu} |\varphi_{\nu}(\mathbf{r})|^2$ is the ground-312 state electron-density distribution; v_H , v_{XC} are Hartree 33 and exchange-correlation (XC) potentials; \boldsymbol{L} is a lattice ¹⁴ vector, $\nabla = \partial/\partial r$ and $\nabla_{mL} = \partial/\partial r_{mL}$ represent, re-³¹⁵ spectively, the gradients with respect to the space position r and with respect to the atom position at $r_m + L$ (that is an image if $\mathbf{L} \neq 0$); $\hat{\nu}_0$ represents the (possibly non-local) ionic (pseudo-) potential acting on the elec-trons; LDA and GGA indicate the local-density [\[46\]](#page-12-20) and generalized-gradient $[36]$ approximations for the XC energy functional and $\dot{\partial} \epsilon^{GGA}$ is the derivative of the GGA XC local energy per particle with respect to density gradients. All the terms in Eq. (8) are well defined under pe-riodic boundary conditions (PBC) [\[13\]](#page-11-9). Only the expres s_{25} sion of J^{KS} depends on the choice of the arbitrary zero of the one-electron energy levels. A shift of this zero by $\Delta \epsilon$ 327 results in a KS energy flux shifted by $\Delta \epsilon J^{\rho}$, J^{ρ} being the ³²⁸ adiabatic electronic flux [\[47\]](#page-12-21), $J^{\rho} = 2 \sum_{v} \langle \dot{\varphi}_{v} | \hat{\bm{r}} | \varphi_{v} \rangle$ (the ³²⁹ factor 2 accounts for spin degeneracy in a singlet state), ³³⁰ which is also well defined within PBC. The adiabatic elec-³³¹ tronic flux is non-diffusive, being the difference between ³³² the total-charge flux, which is by definition non-diffusive in insulators [\[48\]](#page-12-22), and its ionic component, non-diffusive in mono-atomic and molecular systems, because of momentum conservation and the condition that molecular 336 bonds do not break [\[13,](#page-11-9) [16\]](#page-11-12). Therefore, J^{ρ} does not contribute to the heat conductivity, thus lifting this further apparent indeterminacy of the transport coefficient derived from the MUB energy flux.

340 **III. DEEP POTENTIAL MODEL**

To speed up equilibrium MD simulations, we trained a DNN model according to the DP framework [\[23\]](#page-12-2). Consider a system of N atoms, whose configurations are represented by the set of atomic positions, $r =$ $\{r_1, r_2, \ldots, r_N\} \in \mathbb{R}^{3N}$. For each atom, n, we consider only the neighbours, $\{q\}$, such that $r_{qn} < r_c$, where r_{qn} is the modulus of the vector $\mathbf{r}_{qn} = [x_{qn}, y_{qn}, z_{qn}] = \mathbf{r}_q - \mathbf{r}_n$, and r_c is a pre-defined cut-off radius. Denoting with N_n the number of neighbours of n within the cutoff radius, we define the local environment matrices $\tilde{R}_n \in \mathbb{R}^{N_n \times 4}$ to encode the local environment:

$$
\tilde{R}_n = \begin{bmatrix}\n\frac{\sigma(r_{1n})}{r_{1n}} & \frac{\sigma(r_{1n})x_{1n}}{r_{1n}^2} & \frac{\sigma(r_{1n})y_{1n}}{r_{1n}^2} & \frac{\sigma(r_{1n})z_{1n}}{r_{1n}^2} \\
\frac{\sigma(r_{2n})}{r_{2n}} & \frac{\sigma(r_{2n})x_{2n}}{r_{2n}^2} & \frac{\sigma(r_{2n})y_{2n}}{r_{2n}^2} & \frac{\sigma(r_{2n})z_{2n}}{r_{2n}^2} \\
\vdots & \vdots & \vdots\n\end{bmatrix}, \quad (10)
$$

³⁴¹ where $\sigma(r_{qn})$ is a smoothing function (see Appendix [A\)](#page-8-0). Then, symmetry-preserving descriptors (extensive details) in $[23]$ are constructed and fed to the DNN, which returns the local energy contribution w_n in output. We denote by W the full set of parameters that define the total potential energy, E . Thus, as illustrated in Ref. [23,](#page-12-2) the extensive property of E is ensured by its decomposi³⁴⁸ tion into "atomic contributions":

$$
E^{\mathbf{W}}(\{\tilde{R}\}) = \sum_{n} w^{\mathbf{W}_{\alpha_n}}(\tilde{R}_n) \equiv \sum_{n} w_n \qquad (11)^{\frac{381}{382}}
$$

where α_n denotes the chemical species of atom n. We³⁸⁴ use the notation $(\dots)^{W_{\alpha_n}}$ to indicate that the param-³⁸⁵ eters used to represent the "atomic energy", w_n , only³⁸⁶ depend on the chemical species α_n of the *n*-th atom. Be-³⁸⁷ ing w_n a well defined and easy to compute function of³⁸⁸ the atomic positions, the atomic forces and their breakup³⁸⁹ into individual atomic contributions, $\frac{\partial w_m}{\partial \mathbf{r}_n}$ (needed in the definition of the energy flux in Eq. [\(1\)](#page-2-1)), can be easily³⁹¹ computed as the gradients of E and w_n , respectively. In³⁹² particular, the computation of the latter can be divided into two contributions by applying the chain rule:

$$
\nabla_{\boldsymbol{r}_n} w_m = \frac{\partial w_m}{\partial \boldsymbol{r}_n} = \sum_{i,j} \frac{\partial w_m}{\partial \tilde{R}_{m}^{ij}} \frac{\partial \tilde{R}_{m}^{ij}}{\partial \boldsymbol{r}_n}
$$
(12)₃₉³⁹

where i, j identifies an element of the matrix \tilde{R}_{m} . The₄₀₀ 350 first terms can be easily computed with TensorFlow $[49]$, $_{401}$ $_{351}$ while the second must be handled separately and coded $_{_{402}}$ $\frac{352}{100}$ explicitly [\[21,](#page-12-0) [23\]](#page-12-2). A more detailed description of the cal- $_{353}$ culation can be found in Appendix [A.](#page-8-0) The local energy₄₀₄ $_{354}$ and its derivatives are the key elements in the computa- $_{405}$ 355 tion of the energy flux, Eq. [\(2\)](#page-2-2). The parameters of the $_{406}$ $\frac{356}{356}$ model are determined by minimizing the loss function: $\frac{1}{407}$

$$
L = p_E \Delta E^2 + \frac{p_f}{3N} \sum_n \Delta F_n^2 \tag{13}_{\text{at}}
$$

³⁵⁷ where ΔE^2 and ΔF_n^2 are the squared deviations of the ³⁵⁸ potential energy and atomic forces, respectively, between ³⁵⁹ the reference DFT model and the DNN predictions. The ³⁶⁰ two prefactors, p_E and p_f , are needed to optimize the⁴¹⁴ 361 training efficiency and to account for the difference in⁴¹⁵ ³⁶² the physical dimensions of energies and forces. ³⁶³ We remark that gauge invariance is instrumental in en-⁴¹⁷

364 suring the uniqueness of the heat conductivity in a DNN^{418} ³⁶⁵ framework. In fact, the roughness of the loss-function 366 landscape implies that equally good representations of 420 ³⁶⁷ the potential-energy surface and atomic forces may be 368 reached with very different representations of the atomic⁴²² ³⁶⁹ contributions to the total energy. Gauge invariance im-³⁷⁰ plies that, if the total energies resulting from two dif- 371 ferent local representations were identical, the resulting⁴²⁵ 372 transport coefficients would also be identical, thus mak-⁴²⁶ 373 ing them in practice dependent on the overall accuracy⁴²⁷ ³⁷⁴ of the DNN model, but not on the details of its local ³⁷⁵ representation.

³⁷⁶ IV. RESULTS

377 **A.** Ab initio Molecular Dynamics

³⁷⁸ We performed four *ab initio* MD simulations of wa-436 ³⁷⁹ ter, corresponding to different temperatures and phases,

³⁸⁰ using the PBE functional approximation of DFT, the plane-wave pseudopotential method, and periodic boundary conditions. Hamann-Schlüter-Chiang-Vanderbilt (HSCV) norm-conserving pseudopotentials [\[50\]](#page-12-24) were used with a kinetic-energy cutoff of 85 Ry. All the simulations were performed with the Car-Parrinello extended-Langrangian method $[51]$ using the $cp.x$ component of QUANTUM ESPRESSO[™] [\[52–](#page-13-1)[54\]](#page-13-2) and setting the fictitious electronic mass to 25 physical masses and the timestep to $dt = 0.073$ fs. Liquid water simulations were done with 125 water molecules inside a cubic computational box of side $l = 15.52$ Å, hexagonal ice-Ih simulations used 128 water molecules inside an orthogonal cell, with sides: $l_1 = 18.084 \text{ Å}, l_2 = 15.664 \text{ Å}$ and $l_3 = 14.724$ Å. It is known that within the PBE XC ³⁹⁵ functional approximation, liquid water exhibits enhanced short-range order [\[55,](#page-13-3) [56\]](#page-13-4) and a melting temperature that is more than 100 K higher than in experiment [\[39,](#page-12-13) [57\]](#page-13-5), while solid ice has higher density than liquid water at coexistence. In order to compensate for this shortfall, it is customary to offset the simulation conditions by increasing the temperature by ≈ 100 K. We performed simulations of the liquid at three temperatures $(521 \text{ K}, 431 \text{ K})$ ⁴⁰³ and 409 K), and of ice in the hexagonal Ih structure at ⁴⁰⁴ 260 K. Each simulation was 100 ps long. Then, using the QEHeat $[17]$ code, we computed the MUB flux ev-⁴⁰⁶ ery 3.1 fs. The statistical noise affecting the estimates of the GK integrals is larger when the spectral power of ₀₈ the flux time series is larger. Because of gauge invari-⁹⁹ ance, different representations of the energy current may ⁴¹⁰ carry a very different spectral power, and still yield the same conductivity, which is the zero-frequency limit of the flux power spectrum. The MUB energy flux turns out to carry an impractically large spectral power, which can be tamed to some extent by leveraging gauge and ⁴¹⁵ convective invariance. Gauge invariance is first exploited ⁴¹⁶ by the velocity renormalization technique of Ref. [45.](#page-12-19) In a nutshell, it can be demonstrated that subtracting to each atomic velocity the average velocity of all the atoms of the same chemical species, results in a current with a much reduced spectral weight but the same conductivity. Further spectral weight can be subtracted by adding to the resulting effective flux any linear combination of non-diffusive fluxes. This can be effectively done by treating the (possibly renormalized) energy current as one component of an M -component system, where all the other currents are non-diffusive ones [\[16\]](#page-11-12). Here, we choose $M = 2$ and take the electronic adiabatic current as the auxiliary non-diffusive one. In all cases, the trans-₄₂₉ port coefficients are obtained from the *cepstral analysis* ⁴³⁰ [\[15,](#page-11-11) [16\]](#page-11-12) of the power spectrum of the relevant currents, ⁴³¹ using the SporTran [\[58\]](#page-13-6) code.

 Fig. [1](#page-6-0) displays the (window-filtered) power spectrum of the MUB flux from one of our Car-Parrinello MD simula- tions of liquid water at an average temperature of 431 K, using renormalized velocities (orange line), and further removing the contribution of the adiabatic electron current from the energy flux (blue line). In the inset we see

FIG. 1. Comparison of the (window-filtered) spectrum of the velocity renormalized MUB flux (orange) and of the velocity renormalized MUB flux decorrelated with the adiabatic electronic flux (blue). Both spectrum are filtered with a moving average of 0.1 THz. The renormalized MUB flux has a higher power but close to zero the two spectra converge to the same value. The two dashed lines in the inset represent the cepstral filters of the power spectra.

 that the two spectra converge to the same value when $\omega = 0$. The decorrelation decreases the power of the 440 spectrum and flattens the spectrum near $\omega = 0$ facilitat- ing data analysis by reducing the number of the required cepstral coefficients.

⁴⁴³ B. DPMD benchmark against GGA results

 In order to appraise the ability of DP models to accu- rately describe heat transport phenomena, we have gen- erated one such model, by training it on a set of DFT- PBE data extracted from Car-Parrinello trajectories at different temperatures in the [400K – 1000K] tempera- ture range. The loss function in Eq. [\(13\)](#page-5-1) was optimized with the Adam stochastic gradient descent method [\[59\]](#page-13-7). The details of the training protocol are given in Ap- pendix [B.](#page-9-0) The generated DNN potential was then used to run equilibrium MD simulations of water at the same conditions explored in the previous subsection by ab ini-474 455 tio techniques. One of the resulting energy-flux power475 spectra is displayed in Fig. [2](#page-6-1) (orange), together with the corresponding ab initio spectrum (blue). The thermal 477 conductivities corresponding to the two spectra are ob- tained as before through cepstral analysis. Notice that, ⁴⁶⁰ in spite of the much larger weight of the *ab initio* spec-480 trum relative to that of the DNN model, the two spec- tra have the same low-frequency limit, indicating that the two simulations predict the same conductivity within statistical errors. The difference between the two spectra stems much more from the different local representations

 of the potential energy than from a different dynamics. The latter is, in fact, very well mimicked by the DNN po- tential, which gives forces in close agreement with those 469 of the *ab initio* model (see Appendix [B 3\)](#page-9-1).

FIG. 2. Power spectrum of a water simulation. The orange line is obtained from 360 ps of DPMD simulation of a periodic cubic cell containing 125 water molecules at 407 K. The blue line is obtained from an ab initio MD simulation of 125 water molecules with the same cubic box and an average temperature of 409 K. Both spectrum are filtered with a moving average of 0.1 THz. The dashed lines in the inset represent the cepstral-filtered spectra. Even though the two spectra have very different intensities the values at zero frequency are the same.

In Table [I](#page-7-2) we display the thermal conductivities computed from ab initio MD and DPMD for all the simulations that we performed, together with the atomic diffusivities, D_H and D_O . The latter are computed from the $\omega = 0$ value of the power spectrum of the velocity:

$$
\bar{D}_{\alpha}(\omega) = \frac{1}{6N_{\alpha}} \sum_{n}^{N_{\alpha}} \int_{-\infty}^{\infty} \langle v_n(0) \cdot v_n(t) \rangle e^{i\omega t} dt \qquad (14)
$$

where α represents the atomic species (oxygen and hydrogen here) and n runs over all the atoms of species α . The diffusivities are obtained from a block analysis of a ⁴⁷³ 100 ps long trajectory. The DP model was capable of re-⁴⁷⁴ producing accurately the three transport coefficients. In particular, it allowed us to perform longer simulations in order to reduce the statistical uncertainty on κ . While \approx 100 ps long trajectories suffice for errors of about 10% in liquid water and of about 20% in ice Ih, we found that \approx 360 ps long trajectories with the DP model reduced these errors to 5% and 8%, respectively. These errors could be reduced even further because trajectories lasting tens of ns or more would be possible with DPMD.

The calculated heat conductivities with DPMD and ab initio MD, based on PBE-DFT, agree closely among them, but differ substantially from experiment ($\kappa_{expt} \approx$

	phase	T	D _H	D_{O}	κ
		K	$\rm \AA^2/ps$	$\rm \AA^2/ps$	W/(mK)
DPMD	liquid 516		1.07 ± 0.05	$1.08 \pm 0.05 \, \vert 0.99 \pm 0.05$	
	liquid $ 423 $		0.41 ± 0.02	$0.42 \pm 0.02 \pm 1.03 \pm 0.05$	
	liquid $ 408 $		0.29 ± 0.02	0.32 ± 0.02 1.11 ± 0.05	
	ice Ih $ 270 $				1.9 ± 0.2
ab initio	liquid $ 521 $		1.13 ± 0.05	$1.11 \pm 0.05 \overline{)0.98 \pm 0.19}$	
	liquid $ 431 $		0.45 ± 0.03	(0.45 ± 0.03) 1.06 \pm 0.11	
			liquid $ 409 0.325 \pm 0.018 0.29 \pm 0.02 1.12 \pm 0.17$		
	ice Ih $ 260 $				1.8 ± 0.4

TABLE I. Comparison of some properties of water from ab initio MD and DPMD simulations based on PBE-DFT. All liquid simulations used 125 H₂O molecules inside a cubic box of side $l = 15.52$ Å. The ice Ih simulations used 128 H₂O molecules inside an orthogonal cell with sides: $l_1 = 18.084 \text{ Å}$, $l_2 = 15.664 \text{ Å}$ and $l_3 = 14.724 \text{ Å}$. T is the mean temperature of the simulations; D_H and D_O are the diffusivities of hydrogen and oxygen, respectively; while κ is the thermal transport coefficient. The diffusivities of ice Ih are compatible with zero and are not reported.

486 0.6 W/(mK) vs. $\kappa_{PBE} \approx 1$ W/(mK) for water at nearses 487 ambient conditions [\[60\]](#page-13-8)), indicating that the distribution₅₂₆ ⁴⁸⁸ of the energy density resulting from the PBE functional₅₂₇ ⁴⁸⁹ adopted here is likely inadequate to accurately describe ⁴⁹⁰ adiabatic energy transport in water. This prompted us ⁴⁹¹ to try more advanced functional approximations, like the ⁴⁹² meta-GGA SCAN framework, to cope with this short-⁴⁹³ coming.

494 V. EXTENDED SIMULATIONS WITH A SCAN 535 ⁴⁹⁵ BASED DEEP POTENTIAL MODEL

 Meta-GGA functionals like SCAN depend on the elec- tronic kinetic energy density, in addition to the density and its gradient, making significantly more complicated than in the PBE case the derivation of an analytic ex- pression for the energy flux to use in ab initio MD studies of heat transport. However, this is not necessary, as the DPMD methodology not only gives us a framework for molecular simulations having quantum-mechanical accu- racy at a cost close to that of empirical force fields, but also offers us the capability of easily deriving a practi- cal expression for the energy flux, in situations where it would be difficult to obtain it directly from first princi- ples. To follow this route, we trained a DP model using the SCAN-DFT dataset of Ref. [61.](#page-13-9) The thermal con-510 ductivity predicted by this model, at $T \approx 430$ K and at the same density used in our previous PBE simulations, is $\kappa = 0.88 \pm 0.05 W/(mK)$, which is closer to experi-⁵⁵² ment, but still not in perfect agreement with it. Recent studies [\[24,](#page-12-3) [62\]](#page-13-10) found that the melting temperature of SCAN-DP ice Ih models is around 310 K, a value very close to the corresponding DFT temperature, according to perturbative estimates [\[62\]](#page-13-10). While still not perfect, this result is far superior to PBE, whose estimated ice Ih 519 melting temperature should be around 400 K or highersss [\[39,](#page-12-13) [57\]](#page-13-5). Thus, one might argue that the 100 K tem- 559 perature offset used in our PBE-DFT simulations would be inappropriate here, but the rather broad temperature range displayed in Fig. [3](#page-8-1) shows that the thermal con-ductivity of water is rather insensitive to temperature at

near ambient pressure.

The simulations reported in Fig. [3](#page-8-1) have been performed by fixing the size of the simulation-box in order to match the experimental density $[63]$ at each reported temperature. At each temperature, we first performed an NVT simulation lasting for a few dozen ps, in which the system was coupled to a Nosé-Hoover thermo-⁵³² stat, followed by a 880 ps long NVE simulation, in order ⁵³³ to compute the thermal transport coefficient. The solid ⁵³⁴ line in Fig. [3](#page-8-1) connects PBE data at temperatures below ⁵³⁵ 400 K, i.e., below the estimated freezing temperature of ⁵³⁶ this model [\[39,](#page-12-13) [57\]](#page-13-5). At these temperatures PBE water is ⁵³⁷ sluggish and difficult to equilibrate.

SCAN overestimates κ less than PBE, consistent with the better representation of the covalent bond length of the water molecule in the liquid provided by this func-tional [\[38\]](#page-12-12). The experimental data show a broad maximum around 400 K, while PBE exhibits a sharp maximum around 360 K, i.e., below the estimated freezing point of this model. The SCAN results are closer to experiment and are consistent with a broad maximum of the thermal conductivity in the explored region. ⁵⁴⁷ Whether the residual discrepancy between DFT-SCAN simulations and experiment is due to a residual inaccuracy of the XC functional or to neglect of quantum effects on the nuclear motion is an issue that would require further work to be clarified.

VI. CONCLUSIONS

In this work we have shown that DNN potentials generated according to the DP framework and properly trained ⁵⁵⁵ on DFT data are a powerful tool to study the transport properties of water, and likely of other material systems, with quantum-mechanical accuracy at a nearly empirical force field cost. An important byproduct of this technol-⁵⁵⁹ ogy is that it allows one to derive numerically practical expressions for the energy current, even in cases where analytical derivations from the DFT functional would be hard, as we have shown in the case of the SCAN functional. Our results show that PBE-DFT overestimates

FIG. 3. Temperature dependence of the thermal conductivity κ of water between 300 K and 500 K. The blue line repre-595 sents the experimental data from the NIST website [\[63\]](#page-13-11). These orange and green lines result from (classical) DPMD simulations trained on PBE and SCAN data, respectively. The simulations use a periodically repeated cubic box with $128₅₀₀$ water molecules. In the simulations the box size is fixed to $_{600}$ the experimental density $[63]$ at each given temperature. Rel- $\frac{1}{601}$ ative to PBE, SCAN overestimates less the experimental values, and varies less with temperature, consistent with \exp^{602} iment. PBE exhibits a relatively sharp conductivity maxi-⁶⁰³ mum at around 360 K, whereas experiment shows a broad⁶⁰⁴ maximum at ≈ 400 K. The sharp PBE maximum may be an artifact of imperfect equilibration in a metastable liquid. The continuous line connects data points below the freezing temperature at ≈ 400 K, where the PBE liquid is metastable. In the Supplementary Material $[64]$ the reader can find the files₆₀₆ containing the data points for the DPMD-PBE and DPMD- $\frac{1}{607}$ SCAN simulations shown in the figure

.

564 the thermal conductivity by $\approx 60\%$. The SCAN meta- GGA functional reduces this error by approximately a_{min} factor of two, which is not quite negligible. Whether this residual discrepancy should be ascribed mostly to resid- ual inaccuracies of the XC energy functional or to neglect of nuclear quantum effects in the particle dynamics, is an issue that deserves further study. As a final remark, we would like to stress that the method presented here should be useful in fields, such as, e.g., the geosciences ₅₇₃ and the planetary sciences, where the transport proper-₆₁₇ ties of different phases of matter at extreme pressure and $_{618}$ temperature conditions, that are difficult to reproduce in the laboratory, are a key ingredient in quantitative evo- lutionary models of the earth and/or other planets. The reliability of such models stands in fact on the accuracy of the relevant conductivities under the thermodynamic conditions of interest [\[65,](#page-13-13) [66\]](#page-13-14).

DATA AND CODE AVAILABILITY

 In the Supplementary Material [\[64\]](#page-13-12) the reader can find two files, kappa T DPMD-PBE.dat and kappa T_DPMD-SCAN.dat, containing the data points shown in Fig. [3](#page-8-1) for the DPMD-PBE and DPMD-SCAN simulations, respectively.

 $\frac{587}{187}$ In the latest versions of DeePMD-kit the authors re- leased a code to compute the heat current with the method presented in this paper. This code extends the LAMMPS [\[67–](#page-13-15)[69\]](#page-13-16) interface of DeePMD-kit allowing the computation of the heat current via the command compute heat/flux. For more info see the documenta-tion on DeePMD-kit [\[70\]](#page-13-17).

⁵⁹⁴ ACKNOWLEDGMENTS

DT, RB, and SB are grateful to Federico Grasselli for enlightening discussions throughout the completion of this work. This work was partially funded by the EU through the MAX Centre of Excellence for supercom-⁵⁹⁹ puting applications (Project No. 824143). LZ and RC acknowledge support from the Center Chemistry in Solution and at Interfaces funded by the DOE Award No. DE-SC0019394. HW is supported by the National Science Foundation of China under Grant No. 11871110 and by the Beijing Academy of Artificial Intelligence (BAAI).

Appendix A: Derivatives

⁶⁰⁶ The derivative of the local energy, $\frac{\partial w_m}{\partial r_n}$, is a key component in the computation of the energy flux, Eq. (2) . ⁶⁰⁸ As already mentioned in Section [III,](#page-4-0) it is composed of ⁶⁰⁹ two terms, i.e., $\frac{\partial w_m}{\partial \tilde{R}_m}$ and $\frac{\partial \tilde{R}_m}{\partial r_n}$. Since w_n is a well defined ⁶¹⁰ and easy to compute function of the local environment $_{611}$ matrices R_m [\[23\]](#page-12-2), the first term can be easily obtained ⁶¹² from TensorFlow [\[49\]](#page-12-23) using the same back-propagation ⁶¹³ approach that is commonly used during the training of a ⁶¹⁴ DNN [\[71,](#page-13-18) [72\]](#page-13-19). The second term must, instead, be computed explicitly $[21, 23]$ $[21, 23]$. Given the definition in Eq. (10) and the following smoothing function:

$$
\sigma(r_{mn}) = \begin{cases}\n1 & r_{mn} < r_{c1} \\
-6\Omega^5 + 15\Omega^4 - 10\Omega^3 + 1 & r_{c1} < r_{mn} < r_c \\
0 & r_c < r_{mn}\n\end{cases}
$$
\n(A1)

where r_{c1} is the smoothing cut-off radius and Ω = $\frac{r_{mn}-r_{c1}}{r_c-r_{c1}}$, we get by applying the chain rule:

$$
\frac{\partial \tilde{R}_m}{\partial r_n^{\tau}} = \frac{\partial \tilde{R}_m}{\partial r_{ql}^{\gamma}} \frac{\partial r_{ql}^{\gamma}}{\partial r_n^{\tau}}
$$
(A2)

where sums on repeated indices are implied, and τ , γ = 620 1, $2, 3 \equiv x, y, z$ denote Cartesian coordinates. We find:

$$
\frac{\partial r_{ql}^{\gamma}}{\partial r_n^{\tau}} = \delta_{\gamma,\tau} (\delta_{n,q} - \delta_{n,l})
$$
\n(A3)

654

$$
\frac{\partial \tilde{R}_m}{\partial r_{ql}^{\gamma}} = \frac{\partial \tilde{R}_m}{\partial r_{qm}^{\gamma}} \delta_{l,m} + \frac{\partial \tilde{R}_m}{\partial r_{ml}^{\gamma}} \delta_{q,m} \tag{A4}
$$

⁶²¹ where δ_{nm} is the Kronecker delta.

 δ ₆₂₂ Using i, j to represent line and column indices of the ϵ_{23} element of R_m to be differentiated, a general element of $\sqrt{ }$ $\partial \tilde{R}_m$ $\overline{\partial r_q^{\gamma}}$ $\left[\frac{\tilde{\chi}_m}{\gamma_m}\right]$ ij ⁶²⁴ $\left[\frac{\partial R_m}{\partial r_{nm}^2}\right]$ is non-zero only if atom q is the $i-th$ neighbour ⁶²⁵ of m in the matrix \ddot{R}_m :

$$
\left[\frac{\partial \tilde{R}_m}{\partial r_{qm}^{\gamma}}\right]_{i,j} = \begin{cases} \frac{r_{qm}^{\gamma}}{r_{qm}^2} \left(\frac{\partial \sigma_{qm}}{\partial r_{qm}} - \frac{\sigma_{qm}}{r_{qm}}\right) & \text{if } j = 1\\ \frac{\partial \sigma_{qm}}{\partial r_{qm}} \frac{r_{qm}^{\gamma} r_{qm}^{j-1}}{r_{qm}^3} - 2\sigma \frac{r_{qm}^{\gamma} r_{qm}^{j-1}}{r_{qm}^4} \\ + \delta_{\gamma,j-1} \frac{\sigma_{qm}}{r_{qm}^2} & \text{if } j \neq 1 \end{cases} \tag{A5}
$$

where $\sigma_{nm} = \sigma(r_{nm})$. With the same approach a similar ⁶²⁷ expression for $\left[\frac{\partial \tilde{R}_m}{\partial r_m^{\gamma}}\right]_{i,j}$ can be obtained.

⁶²⁸ Appendix B: Neural network training

⁶²⁹ 1. Training parameters

⁶³⁰ The NN PBE model in Section [IV B](#page-6-2) is constructed with ⁶³¹ the DeePMD-kit [\[73\]](#page-13-20) and the present appendix contains ⁶³² the main parameters of the model. In the definition of ⁶³³ the local environment matrices, the two radii inside the ϵ_{634} smoothing function in Eq. [\(A1\)](#page-8-2) are $r_{c1} = 3.50$ Aand $r_c =$ 635 7.00 Å. The embedding network has three layers with 636 25, 50 and 100 neurons respectively, whereas the fitting ⁶³⁷ network has three layers with 240 neurons each. The loss 638 function is optimized using the Adam stochastic gradient_{659} 639 descent method [\[59\]](#page-13-7), with a learning rate starting at $0.005_{\scriptscriptstyle{660}}$ ⁶⁴⁰ and exponentially decaying, with a decay rate of 0.98 _{,661} $_{641}$ every 10^5 training step for a total of $1.5 \cdot 10^6$ training ϵ_{642} steps. In order to optimize training the coefficients $p_{E_{663}}$ 643 and p_f in Eq. [\(13\)](#page-5-1) were adjusted, respectively, from $0.05₆₆₄$ ⁶⁴⁴ to 1, and from 1000 to 1, during training.

⁶⁴⁵ 2. Training test

⁶⁴⁶ The PBE neural network was tested against a set of $N_v = 800$ independent snapshots of 125 molecules of wa- $_{671}$ 648 ter at temperatures in the range $[400 \text{ K} - 1000 \text{ K}]$, obtain-672 μ_{49} ing a root-mean-square error of the forces of 0.05 eV/A. ϵ_{573} 650 Fig. [4](#page-9-2) shows a direct comparison between the α compo-674 651 nent of the *ab initio* force for the *s*-th atoms in the *b*-th $\frac{5}{1075}$ ⁶⁵² snapshot and the corresponding NN prediction. The red ⁶⁵³ dashed line correspond to $F_{b,s,\alpha}^{\text{NN}} = F_{b,s,\alpha}^{\text{DFT}}$, that fits the

data with a *coefficient of determination* $R^2 = 0.998$. R^2 ⁶⁵⁵ is computed with the usual formula for linear regression:

$$
R^{2} = 1 - \frac{\sum_{i} (F_{i}^{\text{DFT}} - F_{i}^{NN})^{2}}{\sum_{i} (F_{i}^{\text{DFT}} - \bar{F}^{DFT})^{2}},
$$
 (B1)

 \bar{F}^{DFT} is the average of all the force components ⁶⁵⁷ in the dataset.

FIG. 4. Direct comparison between the ab initio force components and the corresponding NN prediction. The indexes b, s, α (see main text) label, respectively, the snapshot, the atom, and the Cartesian coordinate of the force. The red dashed line represent $F_{b,s,\alpha}^{\text{DFT}} = F_{b,s,\alpha}^{\text{NN}}$, that fits the data with $R^2 = 0.998.$

3. Benchmark of water properties

To estimate the quality of the trained DP model we ⁶⁶⁰ compared some simple static and dynamical properties of the model with their *ab initio* counterparts. We ran DPMD simulations of water at the same thermodynamic conditions of the *ab initio* simulations reported in Sec-tion [IV A.](#page-5-2) Figs. [5](#page-10-0) and [6](#page-10-1) compares the oxygen radial dis- ϵ_{665} tribution functions, $q(r)$, from DP and ab initio simula-⁶⁶⁶ tions of liquid water (third and seventh line of Table [I\)](#page-7-2), ⁶⁶⁷ and of ice-Ih (fourth and last line of Table [I\)](#page-7-2). Both struc-⁶⁶⁸ tures are well described by the DP model. This is true ⁶⁶⁹ also for the ice-structure even though no ice-snapshots were included in the training data set.

For liquid water, we computed also the power spectra of the oxygen and hydrogen velocities Eq. (14) , respectively, and their zero frequency values, the diffusion coefficients. Fig. [7](#page-10-2) shows the power spectra of liquid water systems mentioned above. It can be seen that DP and *ab initio* models give consistent diffusivities (see Ta-ble [I](#page-7-2) for a complete comparison of the results): $D_{H}^{\rm{AIMD}} =$

 $\mu_{\rm 678}$ 0.325 \pm 0.018 Å²/ps, $D_{H}^{\rm NN}$ = 0.29 \pm 0.02 Å²/ps, $D_{O}^{\rm AIMD}$ = δ_{679} 0.29 \pm 0.02 Å²/ps and $\overleftrightarrow{D_O}^{\rm NN} = 0.32 \pm 0.02$ Å²/ps.

FIG. 5. Comparison of the radial distribution functions of liquid water from ab initio (continuous blue line) and DP (dashed orange line) simulations, respectively. More details on the simulations can be found in the main text.

FIG. 6. Comparison of the radial distribution functions of ice Ih from ab initio (continuous blue line) and DP (dashed orange line) simulations, respectively. More details on the simulations can be found in the main text.

⁶⁸⁰ Appendix C: Cepstral analysis of the flux time series

 In the present work the thermal conductivity is com- puted via the cepstral analysis of the energy flux, as im-683 plemented in the SporTran code [\[58\]](#page-13-6). This technique pro-698 vides a very accurate and reliable estimate of the trans- port coefficients and their statistical accuracy, depending only on two parameters: the effective Nyquist frequency,

FIG. 7. Comparison of the oxygen and hydrogen velocity power spectra of liquid water from ab initio (blue line) and DP (orange line) simulations, respectively. The simulations used the same periodic cubic cell with density $\rho = 1.00 \text{ g/cm}^3$ containing 125 water molecules, at $\approx 410K$. The inset shows the region near $\omega = 0$ used to estimate the diffusivity.

 f^* , used to limit the analysis to a properly defined low f_{688} frequency window, and the number P^* of cepstral coef-⁶⁸⁹ ficients. For a detailed explanation of the method and ⁶⁹⁰ the meaning of the parameters the reader may consult $[15, 42, 44]$ $[15, 42, 44]$ $[15, 42, 44]$. Table [II](#page-10-3) contains the parameters used to 692 obtain the values of κ in Table [I.](#page-7-2)

	phase	Т		
		K	THz	
	liquid $ 516$		9.9	11
DPMD	liquid	423	17.8	12
	liquid $ 408$		36.7	17
	ice Ih $ 270$		25	93
	liquid $ 521$		20.7	55
ab initio	liquid $ 431$		20.1	17
	liquid	409	45.9	33
	ice Ih $ 260 $		30.3	53

TABLE II. Table with the value of f^* and P^* used to obtained the values in Table [I.](#page-7-2)

⁶⁹³ Appendix D: Size scaling for SCAN neural network ⁶⁹⁴ potential

⁶⁹⁵ Size effects may affect the transport properties calcu-lated in numerical simulations [\[74,](#page-13-21) [75\]](#page-13-22). In order to quantify these effects, we run 2 ns long NVE simulations at \approx 407 K of SCAN-DP water at fixed density and increasingly larger cells (with up to 1000 molecules). The results, reported in Fig. [8,](#page-11-15) suggest that κ shows no size dependence within the error bars of the simulation.

FIG. 8. The size dependence of the thermal transport coefficient κ for simulation with the SCAN neural network potential. The test shows that no relevant size scale dependence is observed. All the quantities are evaluated from ≈ 2 ns long trajectories.

- ⁷⁰² [1] R. Peierls, Zur kinetischen theorie der w¨armeleitung in ⁷⁰³ kristallen, [Annalen der Physik](https://doi.org/10.1002/andp.19293950803) 395, 1055 (1929), trans-⁷⁰⁴ lated in: R. E. Peierls, On the Kinetic Theory of Thermal ⁷⁰⁵ Conduction in Crystals, in R. H. Dalitz and R. E. Peierls ⁷⁰⁶ (ed.), Selected Scientific Papers of Sir Rudolf Peierls with ⁷⁰⁷ Commentary, vol. 19, World Scientific Publishing Co., ⁷⁰⁸ Singapore, 1997.
- ⁷⁰⁹ [2] P. Klemens, Thermal Conductivity and Lattice Vibra-⁷¹⁰ tional Modes, in [Solid State Physics - Advances in Re-](https://doi.org/10.1016/S0081-1947(08)60551-2)⁷¹¹ [search and Applications](https://doi.org/10.1016/S0081-1947(08)60551-2), Vol. 7 (1958) pp. 1–98.
- ⁷¹² [3] D. A. Broido, M. Malorny, G. Birner, N. Mingo, and ⁷¹³ D. A. Stewart, Intrinsic lattice thermal conductivity of ⁷¹⁴ semiconductors from first principles, [Applied Physics](https://doi.org/10.1063/1.2822891) ⁷¹⁵ Letters 91[, 231922 \(2007\).](https://doi.org/10.1063/1.2822891)
- 716 [4] F. Zhou, W. Nielson, Y. Xia, and V. Ozolinš, Lattice an-748 ⁷¹⁷ harmonicity and thermal conductivity from compressive ⁷¹⁸ sensing of first-principles calculations, [Physical Review](https://doi.org/10.1103/PhysRevLett.113.185501) ⁷¹⁹ Letters 113[, 185501 \(2014\),](https://doi.org/10.1103/PhysRevLett.113.185501) [arXiv:1404.5923.](https://arxiv.org/abs/1404.5923)
- ⁷²⁰ [5] D. J. Evans and G. P. Morriss, [Statistical Mechanics of](https://doi.org/10.22459/smnl.08.2007) ⁷²¹ [Nonequilibrium Liquids](https://doi.org/10.22459/smnl.08.2007) (2007).
- ⁷²² [6] M. P. Allen and D. J. Tildesley, [Mathematics of Compu-](https://doi.org/10.1093/oso/9780198803195.001.0001)⁷²³ [tation](https://doi.org/10.1093/oso/9780198803195.001.0001), Vol. 1 (Oxford University Press, 2017) p. 442.
- 724 [7] F. Müller-Plathe, A simple nonequilibrium molecular dy- 756 ⁷²⁵ namics method for calculating the thermal conductivity, ⁷²⁶ [The Journal of Chemical Physics](https://doi.org/10.1063/1.473271) 106, 6082 (1997).
- ⁷²⁷ [8] A. Tenenbaum, G. Ciccotti, and R. Gallico, Stationary ⁷²⁸ nonequilibrium states by molecular dynamics. Fourier's ⁷²⁹ law, [Physical Review A](https://doi.org/10.1103/PhysRevA.25.2778) 25, 2778 (1982).
- ⁷³⁰ [9] M. S. Green, Markoff random processes and the statis-⁷³¹ tical mechanics of time-dependent phenomena, ii. irreversible processes in fluids, J. Chem. Phys. 22, 398-413⁷⁶⁴ ⁷³³ (1954).
- [10] R. Kubo, Statistical-mechanical theory of irreversible processes. i. general theory and simple applications to magnetic and conduction problems, J. Phys. Soc. Jpn. 12, 570 (1957).
- [11] J. Kang and L.-W. Wang, First-principles Green-Kubo method for thermal conductivity calculations, [Physical](https://doi.org/10.1103/PhysRevB.96.020302) ⁷⁴⁰ Review B 96[, 020302\(R\) \(2017\).](https://doi.org/10.1103/PhysRevB.96.020302)
- [12] C. Carbogno, R. Ramprasad, and M. Scheffler, Ab initio Green-Kubo approach for the thermal conductivity of ⁷⁴³ solids, [Phys. Rev. Lett.](https://doi.org/10.1103/PhysRevLett.118.175901) 118, 175901 (2017).
	- [13] A. Marcolongo, P. Umari, and S. Baroni, Microscopic theory and quantum simulation of atomic heat transport, [Nature Physics](https://doi.org/10.1038/nphys3509) 12, 80 (2016).
- ⁷⁴⁷ [14] L. Ercole, A. Marcolongo, P. Umari, and S. Baroni, Gauge Invariance of Thermal Transport Coefficients, JLTP 185[, 79 \(2016\).](https://doi.org/10.1007/s10909-016-1617-6)
- [15] L. Ercole, A. Marcolongo, and S. Baroni, Accurate ther-⁷⁵¹ mal conductivities from optimally short molecular dy-namics simulations, [Scientific Reports](https://doi.org/10.1038/s41598-017-15843-2) 7, 15835 (2017).
- ⁷⁵³ [16] R. Bertossa, F. Grasselli, L. Ercole, and S. Baroni, Theory and Numerical Simulation of Heat Transport in ⁷⁵⁵ Multicomponent Systems, [Physical Review Letters](https://doi.org/10.1103/PhysRevLett.122.255901) 122, ⁷⁵⁶ [255901 \(2019\),](https://doi.org/10.1103/PhysRevLett.122.255901) [arXiv:1808.03341.](https://arxiv.org/abs/1808.03341)
- [17] A. Marcolongo, R. Bertossa, D. Tisi, and S. Baroni, QE-⁷⁵⁸ Heat: an open-source energy flux calculator for the computation of heat-transport coefficients from first prin-⁷⁶⁰ ciples, [Computer Physics Communications](https://doi.org/https://doi.org/10.1016/j.cpc.2021.108090) 269, 108090 761 [\(2021\).](https://doi.org/https://doi.org/10.1016/j.cpc.2021.108090)
	- [18] J. Behler and M. Parrinello, Generalized Neural-Network Representation of High-Dimensional Potential-Energy Surfaces, [Physical Review Letters](https://doi.org/10.1103/PhysRevLett.98.146401) 98, 146401 (2007).
- ⁷⁶⁵ [19] R. Kondor, N-body networks: a covariant hierarchical ⁷⁶⁶ neural network architecture for learning atomic poten-⁷⁶⁷ tials (2018), [arXiv:1803.01588.](https://arxiv.org/abs/1803.01588)
- ⁷⁶⁸ [20] J. S. Smith, O. Isayev, and A. E. Roitberg, ANI-1: an ⁷⁶⁹ extensible neural network potential with DFT accuracy ⁷⁷⁰ at force field computational cost, [Chemical Science](https://doi.org/10.1039/C6SC05720A) 8, ⁷⁷¹ [3192 \(2017\),](https://doi.org/10.1039/C6SC05720A) [arXiv:1610.08935.](https://arxiv.org/abs/1610.08935)
- ⁷⁷² [21] L. Zhang, J. Han, H. Wang, R. Car, and W. E, Deep ⁷⁷³ Potential Molecular Dynamics: A Scalable Model with ⁷⁷⁴ the Accuracy of Quantum Mechanics, [Physical Review](https://doi.org/10.1103/PhysRevLett.120.143001) ⁷⁷⁵ Letters 120[, 143001 \(2018\),](https://doi.org/10.1103/PhysRevLett.120.143001) [arXiv:arXiv:1707.09571v1.](https://arxiv.org/abs/arXiv:1707.09571v1)
- 776 [22] A. P. Bartók, M. C. Payne, R. Kondor, and G. Csányi, 840 ⁷⁷⁷ Gaussian Approximation Potentials: The Accuracy of ⁷⁷⁸ Quantum Mechanics, without the Electrons, [Physical Re-](https://doi.org/10.1103/PhysRevLett.104.136403)⁷⁷⁹ view Letters 104[, 136403 \(2010\),](https://doi.org/10.1103/PhysRevLett.104.136403) [arXiv:0910.1019.](https://arxiv.org/abs/0910.1019)
- ⁷⁸⁰ [23] L. Zhang, J. Han, H. Wang, W. Saidi, R. Car, and ⁷⁸¹ W. E, End-to-end symmetry preserving inter-atomic po-⁷⁸² tential energy model for finite and extended systems, in ⁷⁸³ Advances in Neural Information Processing Systems 31, ⁷⁸⁴ edited by S. Bengio, H. Wallach, H. Larochelle, K. Grau-⁷⁸⁵ man, N. Cesa-Bianchi, and R. Garnett (Curran Asso-⁷⁸⁶ ciates, Inc., 2018) pp. 4436–4446.
- ⁷⁸⁷ [24] L. Zhang, H. Wang, R. Car, and W. E, Phase diagram γ_{88} of a deep potential water model, [Phys. Rev. Lett.](https://doi.org/10.1103/PhysRevLett.126.236001) $126,_{852}$ ⁷⁸⁹ [236001 \(2021\).](https://doi.org/10.1103/PhysRevLett.126.236001)
- ⁷⁹⁰ [25] W. Jiang, Y. Zhang, L. Zhang, and H. Wang, Accu-⁷⁹¹ rate Deep Potential model for the Al–Cu–Mg alloy in the ⁷⁹² full concentration space*, [Chinese Physics B](https://doi.org/10.1088/1674-1056/abf134) 30, 050706 ⁷⁹³ [\(2021\),](https://doi.org/10.1088/1674-1056/abf134) [arXiv:2008.11795.](https://arxiv.org/abs/2008.11795)
- ⁷⁹⁴ [26] C. Zhang, F. Tang, M. Chen, L. Zhang, D. Y. Qiu, J. P. ⁷⁹⁵ Perdew, M. L. Klein, and X. Wu, Modeling liquid water ⁷⁹⁶ by climbing up Jacob's ladder in density functional the-⁷⁹⁷ ory facilitated by using deep neural network potentials ⁷⁹⁸ (2021), [arXiv:2104.14410 \[physics.chem-ph\].](https://arxiv.org/abs/2104.14410)
- ⁷⁹⁹ [27] J. Wu, Y. Zhang, L. Zhang, and S. Liu, Deep learning of 800 accurate force field of ferroelectric HfO₂, [Phys. Rev. B](https://doi.org/10.1103/PhysRevB.103.024108)₈₆₄ 801 103[, 024108 \(2021\).](https://doi.org/10.1103/PhysRevB.103.024108)
- ⁸⁰² [28] T. E. Gartner, L. Zhang, P. M. Piaggi, R. Car, A. Z. 803 Panagiotopoulos, and P. G. Debenedetti, Signatures of 867 ⁸⁰⁴ a liquid–liquid transition in an ab initio deep neural ⁸⁰⁵ network model for water, [Proceedings of the National](https://doi.org/10.1073/pnas.2015440117) 806 [Academy of Sciences](https://doi.org/10.1073/pnas.2015440117) 117, 26040 (2020).
- ⁸⁰⁷ [29] H. Niu, L. Bonati, P. M. Piaggi, and M. Parrinello, Ab ⁸⁰⁸ initio phase diagram and nucleation of gallium, [Nature](https://doi.org/10.1038/s41467-020-16372-9) 809 [Communications](https://doi.org/10.1038/s41467-020-16372-9) **11**, 2654 (2020).
- ⁸¹⁰ [30] W. Jia, H. Wang, M. Chen, D. Lu, L. Lin, R. Car, W. E, 811 and L. Zhang, Pushing the limit of molecular dynamics⁸⁷⁵ ⁸¹² with ab initio accuracy to 100 million atoms with ma-813 chine learning, in Proceedings of the International Con-877 ⁸¹⁴ ference for High Performance Computing, Networking, ⁸¹⁵ Storage and Analysis (IEEE Press, 2020).
- ⁸¹⁶ [31] A. Marcolongo, T. Binninger, F. Zipoli, and T. Laino, 817 Simulating diffusion properties of solid-state electrolytessen ⁸¹⁸ via a neural network potential: Performance and training 819 scheme, ChemSystemsChem 2, [10.1002/syst.201900031](https://doi.org/10.1002/syst.201900031)883 ⁸²⁰ (2019), [arXiv:1910.10090.](https://arxiv.org/abs/1910.10090)
- ⁸²¹ [32] J. Huang, L. Zhang, H. Wang, J. Zhao, J. Cheng, and 822 W. E, Deep potential generation scheme and simula-886 823 tion protocol for the Li10GeP2S12-type superionic con-887 824 ductors, The Journal of Chemical Physics 154, 094703888 825 (2021) .
- 826 [33] R. Li, E. Lee, and T. Luo, A unified deep neural networks90 ⁸²⁷ potential capable of predicting thermal conductivity of ⁸²⁸ silicon in different phases, [Materials Today Physics](https://doi.org/https://doi.org/10.1016/j.mtphys.2020.100181) 12,892

⁸²⁹ [100181 \(2020\).](https://doi.org/https://doi.org/10.1016/j.mtphys.2020.100181)

- [34] L. Zhang, M. Chen, X. Wu, H. Wang, W. E, and R. Car, ⁸³¹ Deep neural network for the dielectric response of insu-lators, Phys. Rev. B 102[, 041121\(R\) \(2020\).](https://doi.org/10.1103/PhysRevB.102.041121)
- [35] G. M. Sommers, M. F. Calegari Andrade, L. Zhang, ⁸³⁴ H. Wang, and R. Car, Raman spectrum and polariz-⁸³⁵ ability of liquid water from deep neural networks, [Phys.](https://doi.org/10.1039/D0CP01893G) [Chem. Chem. Phys.](https://doi.org/10.1039/D0CP01893G) 22, 10592 (2020).
	- [36] J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, [Phys. Rev. Lett.](https://doi.org/10.1103/PhysRevLett.77.3865) ⁸³⁹ 77[, 3865 \(1996\).](https://doi.org/10.1103/PhysRevLett.77.3865)
	- [37] J. Sun, A. Ruzsinszky, and J. P. Perdew, Strongly constrained and appropriately normed semilocal density functional, [Phys. Rev. Lett.](https://doi.org/10.1103/PhysRevLett.115.036402) **115**, 036402 (2015).
- ⁸⁴³ [38] M. Chen, H.-Y. Ko, R. C. Remsing, M. F. Calegari Andrade, B. Santra, Z. Sun, A. Selloni, R. Car, M. L. Klein, J. P. Perdew, and X. Wu, Ab initio theory and model-ing of water, [Proceedings of the National Academy of](https://doi.org/10.1073/pnas.1712499114) Sciences 114[, 10846 \(2017\).](https://doi.org/10.1073/pnas.1712499114)
- [39] P. H.-L. Sit and N. Marzari, Static and dynamical properties of heavy water at ambient conditions from first-⁸⁵⁰ principles molecular dynamics, [The Journal of Chemical](https://doi.org/10.1063/1.1908913) Physics 122[, 204510 \(2005\).](https://doi.org/10.1063/1.1908913)
- [40] A flux, J , is defined as the macroscopic average of a ⁸⁵³ current density, $\boldsymbol{j}(\boldsymbol{r})$: $\boldsymbol{J} = \frac{1}{V} \int_{V} \boldsymbol{j}(\boldsymbol{r}) d\boldsymbol{r}$, where V is the system's volume.
	- [41] E. Helfand, Transport Coefficients from Dissipation in a Canonical Ensemble, [Phys. Rev.](https://doi.org/10.1103/PhysRev.119.1) 119, 1 (1960).
- ⁸⁵⁷ [42] S. Baroni, R. Bertossa, L. Ercole, F. Grasselli, and ⁸⁵⁸ A. Marcolongo, Heat transport in insulators from ab ini-tio Green-Kubo theory, in [Handbook of Materials Mod](https://doi.org/10.1007/978-3-319-50257-1_12-1)[eling: Applications: Current and Emerging Materials](https://doi.org/10.1007/978-3-319-50257-1_12-1), edited by W. Andreoni and S. Yip (Springer Interna-⁸⁶² tional Publishing, Cham, 2018) pp. 1–36, [1802.08006.](https://arxiv.org/abs/1802.08006)
- [43] S. Stackhouse, L. Stixrude, and B. B. Karki, Thermal Conductivity of Periclase (MgO) from First Principles. ⁸⁶⁵ [Physical Review Letters](https://doi.org/10.1103/PhysRevLett.104.208501) 104, 208501 (2010).
	- ⁸⁶⁶ [44] F. Grasselli and S. Baroni, Invariance principles in the theory and computation of transport coefficients, Eu-⁸⁶⁸ ropean Physical Journal B [10.1140/epjb/s10051-021-](https://doi.org/10.1140/epjb/s10051-021-00152-5) ⁸⁶⁹ [00152-5](https://doi.org/10.1140/epjb/s10051-021-00152-5) (2021), [2105.02137.](https://arxiv.org/abs/2105.02137)
- ⁸⁷⁰ [45] A. Marcolongo, L. Ercole, and S. Baroni, Gauge Fixing for Heat-Transport Simulations., JCTC 16[, 3352 \(2020\).](https://doi.org/10.1021/acs.jctc.9b01174)
- [46] W. Kohn and L. J. Sham, Self-consistent equations in-873 cluding exchange and correlation effects, [Phys. Rev.](https://doi.org/10.1103/PhysRev.140.A1133) 140, [A1133 \(1965\).](https://doi.org/10.1103/PhysRev.140.A1133)
	- [\[](https://doi.org/10.1103/PhysRevB.27.6083)47] D. J. Thouless, Quantization of particle transport, [Phys.](https://doi.org/10.1103/PhysRevB.27.6083) Rev. B 27[, 6083 \(1983\).](https://doi.org/10.1103/PhysRevB.27.6083)
- [48] F. Grasselli and S. Baroni, Topological quantization and gauge invariance of charge transport in liquid insulators, ⁸⁷⁹ [Nature Physics](https://doi.org/https://doi.org/10.1038/s41567-019-0562-0) 15, 967 (2019).
- [49] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Lev-⁸⁸⁴ enberg, D. Man´e, R. Monga, S. Moore, D. Murray, ⁸⁸⁵ C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, ⁸⁸⁶ K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. Warden, M. Wattenberg, ⁸⁸⁸ M. Wicke, Y. Yu, and X. Zheng, [TensorFlow: Large-](https://www.tensorflow.org/)⁸⁸⁹ [scale machine learning on heterogeneous systems](https://www.tensorflow.org/) (2015), software available from tensorflow.org.
	- [50] D. R. Hamann, Optimized norm-conserving Vanderbilt pseudopotentials, [Physical Review B](https://doi.org/10.1103/PhysRevB.88.085117) 88, 085117 (2013).
- 893 [51] R. Car and M. Parrinello, Unified Approach for Molecu-956 ⁸⁹⁴ lar Dynamics and Density-Functional Theory, [Phys. Rev.](http://dx.doi.org/10.1103/PhysRevLett.55.2471) ⁸⁹⁵ Lett. 55[, 2471 \(1985\).](http://dx.doi.org/10.1103/PhysRevLett.55.2471)
- ⁸⁹⁶ [52] P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, ⁸⁹⁷ C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococ-⁸⁹⁸ cioni, I. Dabo, A. D. Corso, S. de Gironcoli, S. Fabris, ⁸⁹⁹ G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, ⁹⁰⁰ A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, ⁹⁰¹ F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, ⁹⁰² L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A. P.
- ⁹⁰³ Seitsonen, A. Smogunov, P. Umari, and R. M. Wentz-⁹⁰⁴ covitch, QUANTUM ESPRESSO: a modular and open-⁹⁰⁵ source software project for quantum simulations of mate-⁹⁰⁶ rials, [Journal of Physics: Condensed Matter](https://doi.org/10.1088/0953-8984/21/39/395502) 21, 395502 907 (2009) .
- ⁹⁰⁸ [53] P. Giannozzi, O. Andreussi, T. Brumme, O. Bunau, ⁹⁰⁹ M. B. Nardelli, M. Calandra, R. Car, C. Cavazzoni, ⁹¹⁰ D. Ceresoli, M. Cococcioni, N. Colonna, I. Carnimeo, 911 A. D. Corso, S. de Gironcoli, P. Delugas, R. A. DiStasio, 974 ⁹¹² A. Ferretti, A. Floris, G. Fratesi, G. Fugallo, R. Gebauer, 975 ⁹¹³ U. Gerstmann, F. Giustino, T. Gorni, J. Jia, M. Kawa-914 mura, H.-Y. Ko, A. Kokalj, E. Küçükbenli, M. Lazzeri, 977 ⁹¹⁵ M. Marsili, N. Marzari, F. Mauri, N. L. Nguyen, H.- 916 V. Nguyen, A. O. de-la Roza, L. Paulatto, S. Poncé, 979 ⁹¹⁷ D. Rocca, R. Sabatini, B. Santra, M. Schlipf, A. P. Seitso-⁹¹⁸ nen, A. Smogunov, I. Timrov, T. Thonhauser, P. Umari, ⁹¹⁹ N. Vast, X. Wu, and S. Baroni, Advanced capabilities for ⁹²⁰ materials modelling with quantum ESPRESSO, [Journal](https://doi.org/10.1088/1361-648x/aa8f79)
- ⁹²¹ [of Physics: Condensed Matter](https://doi.org/10.1088/1361-648x/aa8f79) 29, 465901 (2017). 922 [54] P. Giannozzi, O. Baseggio, P. Bonfà, D. Brunato, R. Car, 985
- ⁹²³ I. Carnimeo, C. Cavazzoni, S. de Gironcoli, P. Delugas, ⁹²⁴ F. Ferrari Ruffino, A. Ferretti, N. Marzari, I. Timrov, ⁹²⁵ A. Urru, and S. Baroni, Quantum espresso toward the ⁹²⁶ exascale, [The Journal of Chemical Physics](https://doi.org/10.1063/5.0005082) 152, 154105 927 [\(2020\),](https://doi.org/10.1063/5.0005082) [https://doi.org/10.1063/5.0005082.](https://arxiv.org/abs/https://doi.org/10.1063/5.0005082)
- ⁹²⁸ [55] J. C. Grossman, E. Schwegler, E. W. Draeger, F. Gygi, ⁹²⁹ and G. Galli, Towards an assessment of the accuracy ⁹³⁰ of density functional theory for first principles simula-931 tions of water, [The Journal of Chemical Physics](https://doi.org/10.1063/1.1630560) 120,994 932 [300 \(2004\).](https://doi.org/10.1063/1.1630560)
- 933 [56] E. Schwegler, J. C. Grossman, F. Gygi, and G. Galli, To-996 934 wards an assessment of the accuracy of density functional997 ⁹³⁵ theory for first principles simulations of water. II, [Journal](https://doi.org/10.1063/1.1782074) 936 [of Chemical Physics](https://doi.org/10.1063/1.1782074) 121, 5400 (2004), [arXiv:0405561.](https://arxiv.org/abs/0405561) 999
- 937 [57] S. Yoo, X. C. Zeng, and S. S. Xantheas, On theoso ⁹³⁸ phase diagram of water with density functional the-⁹³⁹ ory potentials: The melting temperature of ice Ih with 940 the Perdew–Burke–Ernzerhof and Becke–Lee–Yang–Parroos 941 functionals, [The Journal of Chemical Physics](https://doi.org/10.1063/1.3153871) 130,004 ⁹⁴² [221102 \(2009\),](https://doi.org/10.1063/1.3153871) [https://doi.org/10.1063/1.3153871.](https://arxiv.org/abs/https://doi.org/10.1063/1.3153871)
- 943 [58] L. Ercole, R. Bertossa, S. Bisacchi, and S. Baroni,006 944 SporTran: a code to estimate transport coefficients from or ⁹⁴⁵ the cepstral analysis of a multi-variate current station-⁹⁴⁶ ary time series, https://github.com/lorisercole/sportran 947 $(2017-2020)$.
- 948 [59] D. P. Kingma and J. Ba, Adam: A Method for Stochasticon ⁹⁴⁹ Optimization, [3rd International Conference on Learning](http://arxiv.org/abs/1412.6980) 950 Representations, ICLR 2015 - Conference Track Proceed-1013 ⁹⁵¹ [ings , 1 \(2014\),](http://arxiv.org/abs/1412.6980) [arXiv:1412.6980.](https://arxiv.org/abs/1412.6980)
- 952 [60] M. L. V. Ramires, C. A. Nieto de Castro, Y. Nagasaka,015 953 A. Nagashima, M. J. Assael, and W. A. Wakeham, Stan-1016 ⁹⁵⁴ dard Reference Data for the Thermal Conductivity of ⁹⁵⁵ Water, [Journal of Physical and Chemical Reference Data](https://doi.org/10.1063/1.555963)

24[, 1377 \(1995\).](https://doi.org/10.1063/1.555963)

- [61] T. I. Gartner, L. Zhang, P. Piaggi, R. Car, ⁹⁵⁸ A. Panagiotopoulos, and P. Debenedetti, Signatures of a liquid-liquid transition in an ab initio deep neural network model for water, ⁹⁶¹ http://arks.princeton.edu/ark:/88435/dsp01b5644v47m (2020) .
	- ⁹⁶³ [62] P. M. Piaggi, A. Z. Panagiotopoulos, P. G. Debenedetti, and R. Car, Phase equilibrium of water with hexagonal and cubic ice using the scan functional, [Journal of Chem](https://doi.org/10.1021/acs.jctc.1c00041)[ical Theory and Computation](https://doi.org/10.1021/acs.jctc.1c00041) 17 , 3065 (2021).
	- [\[](https://webbook.nist.gov/chemistry/fluid/)63] Nist chemistry webbook, [https://webbook.nist.gov/](https://webbook.nist.gov/chemistry/fluid/) [chemistry/fluid/](https://webbook.nist.gov/chemistry/fluid/), accessed: 2020.
- [64] In the Supplementary Material the two files can be found: 970 kappa T_DPMD-PBE.dat and kappa T_DPMD-SCAN.dat. They contain the data points shown in Fig. [3](#page-8-1) for the DPMD-PBE and DPMD-SCAN simulations, respectively. The files contain both 5 columns corresponding, respectively, to: average temperature, kappa, its statistical uncertainty, the value of f^* and the value of P^* chosen for the cepstral analysis.
	- [65] L. Stixrude, S. Baroni, and F. Grasselli, Thermal Evolution of Uranus with a Frozen Interior (2020), [arXiv:2004.01756.](https://arxiv.org/abs/2004.01756)
	- [66] F. Grasselli, L. Stixrude, and S. Baroni, Heat and charge transport in H2O at ice-giant conditions from ab ini-tio molecular dynamics simulations, [Nature Communi-](https://doi.org/10.1038/s41467-020-17275-5)cations 11[, 3605 \(2020\).](https://doi.org/10.1038/s41467-020-17275-5)
- ⁹⁸⁴ [67] S. Plimpton, Fast parallel algorithms for short-range ⁹⁸⁵ molecular dynamics, [Journal of Computational Physics](https://doi.org/https://doi.org/10.1006/jcph.1995.1039) 117[, 1 \(1995\).](https://doi.org/https://doi.org/10.1006/jcph.1995.1039)
- [68] A. P. Thompson, H. M. Aktulga, R. Berger, D. S. Bolintineanu, W. Michael Brown, P. S. Crozier, P. J. in 't Veld, ⁹⁸⁹ A. Kohlmeyer, S. G. Moore, T. D. Nguyen, R. Shan, ⁹⁹⁰ M. Stevens, J. Tranchida, C. Trott, and S. J. Plimpton, LAMMPS - A flexible simulation tool for particle-based materials modeling at the atomic, meso, and contin-uum scales, [Computer Physics Communications , 108171](https://doi.org/10.1016/j.cpc.2021.108171) $(2021).$
- ⁹⁹⁵ [69] Lammps website, <https://www.lammps.org>.
	- [70] A more detailed description of the use of the LAMMPS interface for the energy current is given the DeePMD-kit documentation ⁹⁹⁹ [https://github.com/deepmodeling/deepmd-kit/](https://github.com/deepmodeling/deepmd-kit/blob/master/doc/third-party/lammps-command.md) ¹⁰⁰⁰ [blob/master/doc/third-party/lammps-command.md](https://github.com/deepmodeling/deepmd-kit/blob/master/doc/third-party/lammps-command.md).
	- [\[](http://www.deeplearningbook.org)71] I. Goodfellow, Y. Bengio, and A. Courville, *Deep Learn*[ing](http://www.deeplearningbook.org) (MIT Press, 2016) Chapter 6.
- [72] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, Learning representations by back-propagating errors, Na-1005 ture **323**, 533 (1986).
- [73] H. Wang, L. Zhang, J. Han, and W. E, DeePMDkit: A deep learning package for many-body potential energy representation and molecular dynamics, [Computer Physics Communications](https://doi.org/10.1016/j.cpc.2018.03.016) 228, 178 (2018), 1010 [arXiv:1712.03641.](https://arxiv.org/abs/1712.03641)
- [74] I. C. Yeh and G. Hummer, System-size dependence of diffusion coefficients and viscosities from molecular dynamics simulations with periodic boundary conditions, ¹⁰¹⁴ [Journal of Physical Chemistry B](https://doi.org/10.1021/jp0477147) 108, 15873 (2004).
	- [75] M. Puligheddu and G. Galli, Atomistic simulations of the thermal conductivity of liquids, [Physical Review Materi-](https://doi.org/10.1103/PhysRevMaterials.4.053801)als 4[, 053801 \(2020\).](https://doi.org/10.1103/PhysRevMaterials.4.053801)