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ABSTRACT 

We report magnetization (χ, M), magnetic specific heat (CM), and neutron powder diffraction results 

on a quasi-two-dimensional (2D) S = 2 square lattice antiferromagnet Ba2FeSi2O7 consisting of FeO4 

tetrahedrons with highly compressive tetragonal distortion (27%). Despite of the quasi-2D lattice 

structure, both χ and CM present three dimensional magnetic long-range ordering below the Néel 

temperature TN = 5.2 K. Neutron diffraction data shows a collinear Qm = (1,0,1/2) antiferromagnetic 

(AFM) structure below TN but the ordered moment aligned in the ab plane is suppressed by 26% from 

the ionic spin S = 2 value (4B) . Both the AFM structure and the suppressed moments are well explained 

by using Monte Carlo simulations with a large single-ion in-plane anisotropy D = 1.4 meV and a rather 

small Heisenberg exchange Jintra = 0.15 meV in the plane. The characteristic 2D spin fluctuations are 

recognized in the magnetic entropy release and diffuse scattering above TN. This new quasi-2D magnetic 

system also displays unusual non-monotonic dependence of TN as a function of magnetic field H. 

 

I. INTRODUCTION 

Two-dimensional (2D) Heisenberg antiferromagnets have been intensively studied both in theory 

and in experiment to explore exotic low-dimensional magnetic behaviors. The Mermin-Wagner theorem 

states that no long range magnetic order can be stabilized at finite temperature in the 2D Heisenberg 

magnetic system due to strong spin fluctuations [1]. However, lattice topology and strong magnetic 

anisotropy are predicted to be able to realize the 2D AFM ground state [2] as in 2D-Ising and 2D-XY 

spin systems under an external magnetic field [3-7]. In real layered magnetic materials [8-10], three-

dimensional long-range magnetic ordering has often been observed because of the quasi-2D nature with 

minimal but non-vanishing interlayer magnetic coupling [11, 12]. 

Melilite compounds A2MB2O7 (A = Ca, Sr, Ba, M = divalent 3d transition metals, B = Si, Ge) are 

interesting examples of quasi-2D square lattice Heisenberg AFM systems. The d-p metal-ligand 
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hybridization have been reported to induce various interesting physics such as distinct 

magnetoelectricity [13], directional dichroism involving spin wave/optical excitations [14], 

magnetochiral effects [15], and longitudinal magnon modes associated with electromagnons [16, 17]. 

Most studies have been performed on melilite compounds with half-integer spin quantum numbers, M 

= Mn (5/2), Co (3/2), Cu(1/2) in the last decades. Meanwhile, the studies on the compounds with an 

integer spin number such as M = Ni2+ (S = 1) or Fe2+ (S = 2) have rarely been carried out due to lack of 

crystals with reliable quality, and thus only a few ones have been reported recently: a theoretical work 

on Jahn-Teller distortion driven ferroelectricity in Ba2NiGe2O7 [18] and a THz experimental one on 

spin-orbital excitations in Sr2FeSi2O7 [19]. Especially, the Fe (S = 2) based compounds present strongly 

compressed FeO4 tetrahedrons along the c axis suggesting intriguing magnetic properties governed by 

a non-trivial magnetic gap [19-22].  

A melilite compound Ba2FeSi2O7 is crystallized in the 𝑃421m  tetragonal melilite structure as 

shown in Fig. 1(a) [23]. The lattice constants are a = 8.3261 Å and c = 5.3401 Å at room temperature. 

The system is composed of FeO4 tetrahedra connected via SiO4 polyhedra, and FeSi2O7 layers are 

separated by Ba layers to form a quasi 2D square-lattice structure. The magnetic coupling is dominated 

by the intra-layer Heisenberg interaction (Jintra) through the neighboring Fe2+-O2−-O2−-Fe2+ exchange 

path and the layered structure contributes a minimal inter-plane exchange interaction (Jinter), resulting 

in a quasi-2D magnetic system. Noticeably, the FeO4 tetrahedron is compressed by as large as 27% 

along the c axis with respect to the perfect tetrahedron. Such a large compression splits both the triplet 

t2g and doublet eg orbital states and produce a considerable unquenched orbital angular momentum, 

which is responsible for noticeable single-ion anisotropy (D) [20, 21]. Considering that D ∼ 1.1 meV 

was estimated in Ba2CoGe2O7 of 13% compressed CoO4 tetrahedrons [16, 24, 25], the D value is 

certainly enhanced in Ba2FeSi2O7 with 27% compression of the FeO4 tetrahedron. 

In this article, we investigate physical properties of this quasi-2D integer spin (S = 2) AFM 

Ba2FeSi2O7 using magnetization, specific heat, and neutron powder diffraction measurements. The resu-  
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FIG. 1. (a) Crystal structure of Ba2FeSi2O7 determined from the neutron diffractions. Thick black arrows indicate 

the in-plane (Jintra) and inter-plane (Jinter) nearest neighbor Heisenberg exchange interactions. (b) A single layer 

FeSi2O7 structure. Jinter is the exchange interaction between neighboring two Fe2+ spins through the Fe2+-O2−-

O2−-Fe2+ path. 

lts manifest the AFM ordering below the Néel temperature (TN = 5.2 K) with large easy-planar magnetic 

anisotropy. Using Monte Carlo simulations, we estimate Jintra/D ∼ 0.1. The specific heat 

measurements reveal a Schottky anomaly arising from thermal populations on low-lying excited spin-

orbital states. Neutron diffraction measurements reveal that short-range spin correlations appear below 

20 K and that the AFM structure is characterized by a staggered magnetic moment of 2.95 µB, which is 

considerably (26%) smaller than the moment (4 µB) expected from S = 2. The field dependent 

measurements exhibit unusual non-monotonic behavior of TN(H) as a function of the H-field, indicating 

that the quasi-2D square lattice magnet Ba2FeSi2O7 is a novel easy-planar integer spin system. 
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II. METHODS 

To obtain single crystals of Ba2FeSi2O7, we prepared a polycrystalline of Ba2FeSi2O7 as a precursor 

using the solid-state reaction. Stoichiometric mixtures of BaCO3, Fe2O3, and SiO2 were thoroughly 

ground, pelletized, and heated at 1050◦C with intermediate sintering. X-ray and neutron powder 

diffraction measurements on the polycrystalline samples identified a dominant phase of Ba2FeSi2O7 

(96.5%) with minor Ba2SiO4 (2.6%) and SiO2 (0.9%) (see Fig. 6). The polycrystalline samples were 

prepared as feed rods, and a single crystal of Ba2FeSi2O7 was grown using a floating zone melting 

method under reducing gas atmosphere. The growth direction was perpendicular to the c axis and the 

size of the as-grown crystal was about 8 mm in diameter and 60 mm in length. The powder XRD pattern 

on crushed crystals presents a single phase of Ba2FeSi2O7, as described in Appendix A. 

Temperature (T) and magnetic field (H) dependence of dc magnetization and specific heat 

measurements on a Ba2FeSi2O7 crystal were performed by using a vibrating sample magnetometry 

(VSM) option and a standard calorimetric relaxation technique equipped in a physical property 

measurement system (PPMS) of Quantum Design DynaCool-9 T. The magnetization results were 

compared with classical Monte Carlo simulations in order to estimate the energy scale of the exchange 

interactions in Ba2FeSi2O7. In the simulation, a square lattice of 16 × 16 × 6 spin sites was employed 

with periodic boundary conditions. 

Neutron powder diffraction measurements were carried out using the BT-1 High-Resolution Powder 

Diffractometer (HRPD) at NIST Center for Neutron Research (NCNR), USA. A 2.9 g of polycrystalline 

sample was loaded into a vanadium can and cooled with a flow-type cryostat. A constant wavelength λ 

= 2.0772 Å of the neutron beam was collimated by using a Ge (311)-60◦ monochromator. Diffraction 

data were collected at temperatures, 1.7, 3, 8, 10, 20, and 30 K. The data refinement was carried out in 

the Rietveld methods by using the FULLPROF program [26], and the software SARAh was used for 

representational analysis to determine symmetry-allowed magnetic structures [27]. 
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III. EXPERIMENTAL RESULTS 

A. Magnetic properties 

Figure 2(a) shows temperature dependence of the magnetic susceptibility (χ = M/H) for a 

Ba2FeSi2O7 single crystal with magnetic fields parallel (H||ab||[110]) and perpendicular (H||c||[001]) to 

the ab plane. The magnetic susceptibility exhibits strongly anisotropic easy-planar spin behaviors over 

a broad temperature range. The ab plane is the magnetic easy plane and the c axis is the hard axis. At 

low temperatures, χ(T) for both field directions exhibit peaks around T ∼ 8 K, corresponding to the 

onset of short-range magnetic order with 2D spin fluctuations. The AFM long-range ordering 

temperature is determined to be TN = 5.2 K from the sharp peak in the first derivative of the in-plane 

magnetic susceptibility (dχ/dT).  

Inverses of the magnetic susceptibilities in Fig. 2(b) exhibit linear behaviors above 100 K, following 

the Curie-Weiss formula, χ(T) = χ0 + C/(T − ΘCW) with the Curie constant C, the Curie-Weiss 

temperature ΘCW, and the diamagnetic contribution χ0. We determined an effective magnetic moment 

µeff [ab] = 5.56(1) µB, µeff [c] = 4.84(1) µB and Curie-Weiss temperatures ΘCW [ab] = -7.4(2) K, ΘCW [c] 

= -23.7(2) K from Curie-Weiss fits in the temperature range from 100 K to 300 K. The out-of-plane 

moment µeff [c] is comparable to the spin only value of S = 2 (µeff ∼ 4.9 µB for g = 2) while the in-

plane one µeff [ab] is considerably larger than the value. It implies that an unquenched angular 

momentum is present and makes anisotropic contribution to the magnetic moment [21], in consistent 

with the observed anisotropic behavior of χ even up to room temperature. The obtained large ΘCW [c] 

is attributed to the spin fluctuation involving spin-spin interaction with a strong 2D character. 

Figure 3(a) presents isothermal magnetization M(H) as a function of magnetic field H up to 9 T for 

H||ab||[110] and H||c||[001] at T = 1.8 K. M(H) shows large anisotropy for H||ab and H||c reflecting the 

strong easy-planar spin, but both Mab(H) ≡  M(H||ab) and Mc(H) ≡  M(H||c) show linear-like 

behaviors with H. Interestingly, the slope in Mab(H) changes considerably around µ0H ∼ 0.3 T (µ0Hab1) 
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and ∼  

 

FIG. 2. (a) Temperature (T) dependence of the dc magnetic susceptibility (χ = M/H) with applied magnetic fields 

µ0H = 0.2 T along H||ab||[110] (orange symbol) and H||c||[001] (olive symbol). The dashed lines are the results of 

classical Monte Carlo simulations with Jintra = 0.15 meV, Jinter = 0.0025 meV, D = 1.4 meV with a field of 0.2 T. 

The first derivative of the magnetic susceptibility (dχ/dT) is presented as a function of temperature in the inset. 

Vertical arrows in (a) denote the magnetic transition at TN = 5.2 K. (b) Inverses of the magnetic susceptibilities 

with magnetic field along H||ab||[110] (orange symbol) and H||c||[001] (olive symbol). Solid lines are Curie-Weiss 

fits to the data from 100 K to 300 K. 

7.4 T (µ0Hab2). As shown in Fig. 3(b), these anomalies are more noticeable in the derivative dMab/dH 

while those disappear at 6.5 K (> TN), indicating that there exist two field-induced transitions below 

TN. Meanwhile, Mc monotonically increases with H-field up to 9 T without any noticeable anomaly 

representing the field-induced transition. We also observed the weak anomaly around µ0Ha1 ~ 0.5 T 

in the dM/dH for H||a||[100] at T = 1.8 K (Fig. 3(b)). As the magnetic field is applied away from the 
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easy axes, the Zeeman energy cost is required to increase the critical field for the transition. Thus,  

 

FIG. 3. (a) Magnetic field (H) dependence of magnetization (M) curve along H||ab||[110] (orange and blue symbols 

for T = 1.8 K and 6.5 K, respectively) and H||c||[001] (olive symbol, T = 1.8 K). The dotted lines are the results of 

classical Monte Carlo simulations with Jintra = 0.15 meV, Jinter = 0.0025 meV and D = 1.4 meV (for detailed 

information about calculation, see the section IV.). (b) First derivative of magnetization curve (dM/dH) as a 

function of H||ab||[110] at 1.8 K (orange symbol) and 6.5 K (blue symbol) and of H||a||[100] at 1.8 K (grey symbol, 

up to 2 T). Vertical arrows indicate positions of critical magnetic fields µ0Hab1 ∼ 0.3 T (µ0Ha1 ∼ 0.5 T) and 

µ0Hab2 ∼ 7.4 T showing the H induced weak and sharp peaks in dM/dH at T = 1.8 K, respectively. The inset in 

(b) displays dM/dH as a function of H||ab||[110] measured at various temperatures below TN. 

slightly smaller value of µ0Hab1 than one of µ0Ha1 implies that the easy axes are likely along [110] and 

[1-10] directions in the ab plane. We note that the dM/dH for both H||a||[100] and H||b||[010] shows 

almost the same H dependence and the critical magnetic fields (not shown here), indicating that the 

fourfold in-plane anisotropy exists by the crystallographic symmetry. The calculated in-plane magnetic 

anisotropy energy is about 0.05 meV. 
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FIG. 4. (a) Temperature (T) dependence of the dc magnetic susceptibility (χ = M/H) and (b) first derivatives of 

magnetic susceptibility (dχ/dT) as a function of T for applied magnetic fields along H||ab||[110]. In (b), the dotted 

guide line indicates TN(H) determined from the peak positions in dχ/dT. For clarity, each dχ/dT curve is vertically 

shifted by 0.006 emu mol−1 Oe−1 K−1. 

The low field transition at Hab1 can be attributed to a spin-flop-like transition aligning two AFM 

domains. At H = 0 field (AFM-I phase), there exist two equally-populated AFM domains: the AFM 

ordered spins along in-plane easy axis [110] in one and [1-10] in the other. At H increases across Hab1, 

the spin axes of both domains align to be perpendicular to the H-direction in the ab plane (AFM-II 

phase). A similar transition was also observed in Ba2CoGe2O7 [25]. Hab1 exhibits almost no temperature 

dependence below TN (not shown here) and disappears above TN. On the other hand, the high field 

transition enhances Mab across Hab2, and the enhanced magnetic moment ∆Mab (T) = Mab (T) – Mab (6.5 

K) is estimated to be ∼ 0.15 µB/Fe2+ at T = 1.8 K. To trace the anomalies, we measured Mab(H) at 

different temperatures below TN. The inset shows dMab/dH as a function of H at various temperatures 

below TN. As temperature increases, the dM/dH peak feature becomes weaker and Hab2 shifts to low 

fields. The peak disappears above TN, indicating that this transition is also relevant to the AFM order. 

Figures 4(a) shows χ(T) as a function of temperature T measured at various H||ab||[110] fields up to 
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µ0H = 7.5 T. χ(T) below TN suddenly changes between 0.2 T and 0.5 T due to the spin-flop-like transition 

across µ0Hab1 ∼ 0.3 T observed Mab (dMab/dH). As presented in Fig. 4(b), the derivatives dχ/dT clearly 

exhibit peak features representing the AFM transition up to µ0H = 7.2 T (< µ0Hab2) and enable us to 

determine TN(H) at a given H||ab field. Interestingly, TN(H) shows a non-monotonic field dependent 

behavior. TN(H) slightly increases as H increases up to µ0H ∼ 2 T, and then it decreases for further 

increasing H up to 7.2 T. At µ0H = 7.5 T (> µ0Hab2), the dχ/dT peak feature becomes completely 

suppressed with saturation in χ(T). 

 

B. Specific heat 

Figure 5(a) shows total specific heat (CP) of Ba2FeSi2O7 at H = 0. Lattice contribution (CL) was 

estimated from the Debye-Einstein model, where CL(T) is defined as [28, 29], 

𝐶L(𝑇) = 𝑚 [9𝑅𝑥𝐷
−3 ∫

𝑥4𝑒𝑥

(𝑒𝑥 − 1)2

𝑥𝐷

0

] + ∑ 𝑛𝑖 [3𝑅
𝑥𝐸𝑖

2 𝑒𝑥𝐸𝑖

(𝑒𝑥𝐸𝑖 − 1)2
]

𝑠−1

𝑖=1

.                         (1) 

The first term represents the Debye specific heat for the acoustic phonon modes and the second term 

does the Einstein specific heat for optical phonon modes. xD and xEi are defined as xD = ΘD/T and xEi = 

ΘEi/T where ΘD and ΘEi are the Debye temperature and the Einstein temperatures, respectively. The 

constants m and ni are the number of degrees of freedom for each contribution and R is the molar gas 

constant. Fitting Eq. (1) to the experimental data in a range from 70 K to 250 K provides ΘD ∼ 237 K 

(m = 4.8), ΘE1 ∼ 554 K (n1 = 4.3) and ΘE2 ∼ 1345 K (n2 = 2.9) with m + n1 + n2 = 12 (total number of 

atoms in the formula unit). Based on these fitting parameters, the extracted CL is displayed in Fig. 5(a). 

Magnetic specific heat (CM) shown in Fig. 5(b) was obtained by subtracting the lattice contribution from 

the total specific heat, i.e. CM = CP − CL. CM displays a sharp λ-anomaly at TN = 5.2 K, which coincides 

with TN determined from the magnetic susceptibility. Above TN, CM exhibits a broad peak around TSO 

∼ 8 K, which represents the short-range ordering with suppression of the long-range order due to the  
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FIG. 5. (a) Total specific heat (CP). Open circles and a red line display the measured total specific heat (CP) and 

the calculated lattice contribution of specific heat (CL), respectively. Inset displays the magnified CP and CL below 

30 K in a semi-logarithmic scale. The vertical arrow indicates the magnetic transition temperature (TN = 5.2 K). 

(b) Magnetic specific heat (left panel: CM = CP - CL, black symbols) and magnetic entropy gain (right panel: ∆SM, 

blue line) as a function of temperature. Above TN, CM shows two broad peaks centered at TSO ∼ 8 K and TBroad 

∼ 23 K, associated with short-range spin correlations and a Schottky anomaly from the excitations between the 

spin Sz states, respectively. Two gray horizontal dashed lines show Rln(2S + 1) for S = 1 (Rln3) and S = 2 (Rln5). 

Inset represents the energy level structure of the lowest dz2 orbital for the Fe2+ ion in the tetrahedral crystal field 

(Td) with a tetragonal compression (δz) and energy levels of the Sz states further split by the spin-orbit coupling 

(SOC) [19, 20]. A red dashed curve indicates the calculated Schottky anomaly for the transition between Sz = | ± 

2> and Sz = | ± 1> states with gap, ∆ = 3D = 3*1.4 meV = 4.2 meV where D is referred to the Monte Carlo 

calculations (see the text). 
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low-dimensionality [2]. 

The magnetic entropy, ∆SM(T), was calculated by using ∆𝑆M(𝑇) =  ∫ ∆𝐶M(𝑇)/𝑇𝑑𝑇
𝑇

0
. ∆SM at T = 

50 K is obtained to be 12.74 J mol −1 K−1 that corresponds to 95% of Rln(2S + 1) = Rln5, the total entropy 

of S = 2. We note that only about 20% of the total entropy is released at TN and additional entropy 

involving the short range order is released by above the transition temperature (TSO ∼ 8 K). 

Interestingly, the entropy Rln(3) ∼ 9.13 J mol−1 K−1 corresponding to the degree of freedom for S = 1 

effectively releases up to around 18 K, where the short-range ordering peak diminishes. Above this 

temperature, a Schottky-like broad peak is visible in CM around TBroad ∼ 23 K and the entropy 

gradually releases the remnant of the S = 2 spin degree of freedom upto even above 50 K. 

 

C. Powder neutron diffraction 

To study the AFM spin structure below TN, we have carried out zero field (H = 0) neutron powder 

diffraction (NPD) measurements on Ba2FeSi2O7. Figure 6 shows the NPD patterns at 30 K (> TN ) and 

1.7 K (< TN). The crystal and magnetic structures were determined from the Rietveld refinement fitting 

by using FULLPROF [26]. The refined crystallographic parameters are tabulated in Table I (T = 30 K) 

and II (T = 1.7 K). Both the T = 30 K and T = 1.7 K diffraction patterns for the nuclear Bragg peaks are 

well described by the tetragonal space group, 𝑃421m (SG: 113), and the Bragg peak profiles exhibit 

only small variations across TN, evidencing that the AFM transition does not accompany any 

considerable structural transition. Comparing the low Q-region (0.5 Å−1 ≤ Q ≤ 2.0 Å−1) diffraction 

patterns at T = 1.7 K and 30 K as shown in the inset, we identify the magnetic Bragg reflections at Q = 

(1,0,1/2) and (2,1,1/2) below TN, indicating the characteristic vector of Qm = (1,0,1/2). 

Representation analyses were used to determine symmetry-allowed magnetic structures. Irreducible  
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FIG. 6. Neutron powder diffraction patterns for Ba2FeSi2O7 at (a) T = 30 K (> TN ) and (b) 1.7 K (< TN). Open 

circles and a red solid line represent the experimental data and the Rietveld refinement fitting line, respectively. 

At both temperatures, Bragg peaks from SiO2 and Ba2SiO4 (non-magnetic secondary phases) are visible in the 

sample, and the Rietveld refinement quantifies the phase fractions of 0.9% and 2.6%, respectively. In (b), the 

structural and magnetic Bragg reflections are presented by upper (green) and low (violet) ticks, respectively. The 

inset shows an expanded view of the low-Q region data and miller indexed magnetic peaks indicated by arrows. 

Asterisk marks at two peaks are from an unknown impurity phase. 

representations Γmag = 1Γ1
1 + 1Γ1

2 + 2Γ2
5 are compatible with the 𝑃421m symmetry with two Fe sites  

at (0,0,0) and (1/2,1/2,0). The basis vectors of 2Γ2
5 reproduce all of magnetic Bragg peaks with a 

collinear antiferromagnetic spin structure as depicted in Fig. 7(a) and (b). The in-plane collinear AFM 

spin alignment indicates that the nearest neighbor spin-spin interaction is governed by the Heisenberg 

Jintra through the in-plane Fe2+-O2−-O2−-Fe2+ exchange path (see Fig. 1). The ordered magnetic moment 

is determined to be 2.95 µB, which is only 74% of the full moment of Fe2+ spin (S = 2). 
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TABLE I. Crystallographic parameters with space group 𝑃421m (SG:113) from Rietveld refinements on the 

diffraction data at T = 30 K. Lattice constants a = b = 8.3193(8) Å, c = 5.3348(5) Å, and α = β = γ = 90◦. Rwp = 

6.75%. 

atom site x y z B 

Ba 4e 0.1648(3) 0.6648(3) 0.5090(6) 0.05(12) 

Fe 2a 0 0 0 0.05(4) 

Si 4e 0.3627(3) 0.8627(3) 0.9610(7) 0.12(12) 

O1 2c 0 0.5 0.1371(8) 0.36(8) 

O2 8f 0.3649(3) 0.8649(3) 0.2627(5) 0.17(6) 

O3 4e 0.0764(3) 0.1990(2) 0.1712(4) 0.15(5) 

 

 

TABLE II. Crystallographic parameters with space group 𝑃421m (SG:113) from Rietveld refinements on the 

diffraction data at T = 1.7 K. Lattice constants a = b = 8.3194(2) Å, c = 5.3336(5) Å, and α = β = γ = 90◦. Rwp = 

7.14%. 

atom site x y z B 

Ba 4e 0.1644(3) 0.6644(3) 0.5098(7) 0.08(10) 

Fe 2a 0 0 0 0.20(5) 

Si 4e 0.3645(3) 0.8645(3) 0.9609(7) 0.11(8) 

O1 2c 0 0.5 0.1383(8) 0.54(9) 

O2 8f 0.3651(3) 0.8651(2) 0.2642(5) 0.07(6) 

O3 4e 0.0769(3) 0.1984(2) 0.1694(5) 0.32(5) 
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FIG. 7. (a), (b) Magnetic structure of Ba2FeSi2O7. The structure is a collinear spin alignment of Fe spins with Qm 

= (1,0,1/2) (= 0.95 Å−1). (c) Magnetic peak intensity at Q = 0.95 Å−1 as a function of temperature (black closed 

circles). The red solid line is a guide to eye, and TN = 5.2 K is indicated by a vertical arrow. Near constant intensity 

above TN reflects the structural contribution at Q. (d) Neutron powder diffraction patterns at different temperatures 

as indicated in the figure. 

Figure 7(c) shows evolution of the magnetic peak intensity at Qm = (1,0,1/2) (Q = 0.95 Å−1) with 

temperature. Figure 7(d) presents NPD Q-scans at different temperatures from 3 K to 30 K. The sharp 

and intense magnetic Bragg peak, which is present at Q = Qm = 0.95 Å−1 in the 3 K scan, mostly 

diminishes at 8 K. A small peak at Qm = (1,0,1/2) ~ 0.95 Å−1 in 8 K data is likely due to the significant 

3D short-range correlations at TN < T ~ TSO. Note that the small peak near Q = 0.95 Å−1 remaining at 20 

K and 30 K is most likely a small impurity peak (Appendix B). Besides minimal remnant of the sharp 

magnetic peak, an additional broad peak feature is observable around Q = 0.8 Å−1 (marked with a black 

arrow) in the 8 K scan. The broad peak around Q = (1,0,0) ~ 0.75 Å−1 (close to 0.8 Å−1) is from the 2D 

correlations with magnetic form factor distribution and is observed in 20 K. This feature gradually fades 
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out and shifts to low Q upon heating, and then finally disappears at 30 K, well above TN. This Q-

dependent diffusive scattering is attributed to short range spin-spin correlations, which were also 

observed in the magnetic specific heat CM(T) as a broad peak feature around TSO ∼ 8 K (see Fig. 5). 

Presence of the diffusive scattering feature reflects strong spin fluctuations in the low dimensional 

quasi-2D magnetic system. 

 

IV. DISSCUSSION 

We observe multiple magnetic transitions with temperature and in-plane magnetic fields 

(H||ab||[110]) in the magnetization and specific heat measurements. Those transitions can be 

summarized with a phase diagram in an H-T space as shown in Fig. 8. The phase boundaries are defined 

by the peak positions determined from dχ/dT, dM/dH, and CM. At a zero field, the system is in the AFM-

I phase with two types of AFM domains below TN, and transits to the paramagnetic phase (PM) upon 

heating across TN. On the other hand, as H increases across µ0Hab1 ~ 0.3 T well below TN, the AFM-I 

phase transits to the AFM-II phase with a single type of AFM domain. The AFM ordered spins, which 

lie to be nearly perpendicular to the H-direction, slightly cant toward the H-direction and result in a 

finite M, i.e. a composition of AFM and ferromagnetic (FM) components (field induced canted AFM). 

As the H-field further increases, the AFM component decreases and finally disappears. The AFM-II 

phase transits to the spin polarized (SP) phase across Hab2 with a certain gain of M. µ0Hab2 ~ 7.4 T 

determined from M(H,T) at 1.8 K decreases as T increases (see Fig. 3). Hab2(T) nearly coincides with 

TN(H) from χ(H,T) (see Fig. 4) up to T ~ 4 K. Upon further heating, Hab2(T) somewhat deviates from 

TN(H) and finally disappears at T > ~ 5 K (or µ0H < ~ 4 T), implying that the SP phase crosses over to 

the PM phase. 

  We note that TN = 5.2 K at H = 0 increases up to 2 T and then decreases above 2 T as H increases. 

This non-monotonic behavior of TN(H) was also observed in other quasi-2D spin systems with a very  
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FIG. 8. Magnetic phase diagram of the Ba2FeSi2O7 with applied magnetic field H||ab||[110]. Blue and green 

symbols present TN determined from the magnetic susceptibility and specific heat measurements, respectively. 

Orange symbols represent critical magnetic fields (Hab1, Hab2) determined from the magnetization measurements. 

AFM-I, AFM-II, SP, and PM denote antiferromagnetic (two types of AFM domains), field induced canted 

antiferromagnetic, spin-polarized, and paramagnetic phases, respectively. 

weak inter-layer exchange coupling (Jinter) [9, 10]. At a low magnetic field, the Sz spin fluctuation 

becomes suppressed and the spin correlation within the ab plane becomes effectively enhanced to 

increase TN. At a high field, the spin canting effect prevails to reduce TN as usual. Appearance of the 

non-monotonic behavior of TN(H) manifests that Ba2FeSi2O7 is a spin system with the strong 2D 

character. It is also consistent with remarkable short-range spin correlation above TN observed in speci-  

fic heat and neutron diffraction results. 

To quantify energy scales of the exchange interactions and single-ion anisotropy, we performed 

Monte Carlo simulations to calculate the magnetic properties. The calculated χ(T) and M(H) are 

compared with the corresponding experimental ones in Fig. 2 and Fig. 3, respectively. For the simulation, 

we constructed a simple spin Hamiltonian only consisting of Heisenberg exchange interactions, a 

single-ion anisotropy, and a Zeeman term for S = 2 as follows; 
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H =  𝐽intra ∑ 𝐒𝑖 ∙<𝑖𝑗>1
𝐒𝑗 +  𝐽inter ∑ 𝐒𝑖 ∙<𝑖𝑗>2

𝐒𝑗 + 𝐷 ∑ (𝑆𝑖
𝑧)2

𝑖 − 𝜇B ∑ 𝐒𝑖𝑖 ∙ 𝐠 ∙ 𝐁 , 

where <i, j>1 and <i, j>2 denote the in-plane and inter-plane nearest neighbors, respectively. The 

direction of z is parallel to the c axis (see Fig. 1(a)). Although it is not possible to uniquely determine 

values of the exchange parameters, we could quantify Jintra = 0.15 meV, Jinter = Jintra/60, and D = 1.4 meV, 

gab = 2.6 and gc = 2.3, which fairly well reproduce TN, high temperature χ(T) above 50 K (Fig. 2(a)), and 

the magnetic anisotropy M(H) (Fig. 3(a)). χ(T) below 50 K deviates from the Curie-Weiss formula. We 

ascribe this deviation to thermal depopulations of the high energy spin states split by the strong single-

ion anisotropy, which are not taken into in our classical Monte Carlo simulations. 

Together with tetragonal compression of FeO4 tetrahedrons along the z direction in Ba2FeSi2O7, the 

spin-orbit coupling (SOC) splits the S = 2 state with (2S +1)-fold degeneracy into one singlet ground 

state (Sz = 0) and two doublet excited states (Sz = | ± 1> and Sz = | ± 2>) with finite gaps of D and 3D, 

respectively (see inset in Fig. 5(b)) [19-21]. Hence these low-lying ground/excited spin states are 

governed by thermal populations in the temperature range of 4D (5.6 meV ∼ 70 K) energy scale. The 

residual broad peak around 23 K in CM is considered to be associated with the thermal populations of 

Sz = | ± 1> and Sz = | ± 2> states. The Schottky anomaly for the gap ∆ = 3D with D = 1.4 meV from the 

Monte Carlo simulation (red dashed line in Fig. 5(b)) reproduces the peak position and width of the 

observed broad peak. This D-value agrees with the value obtained from the recent inelastic neutron 

scattering study [22]. The thermal populations of the excited states (Sz = | ± 1> and Sz = | ± 2>) were also 

similarly observed in the THz absorption data of a sister compound Sr2FeSi2O7 (denoted by β-mode 

absorption) [19]. It is worth to note that magnetic susceptibility along the c axis deviates from the Curie-

Weiss formula below 70 K, which is consistent with the onset temperature of the Schottky anomaly 

peak. The deviations in χc and the Schottky peak evidence the presence of a single-ion anisotropy in 

Ba2FeSi2O7. 
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V. CONCLUSION 

In summary, we have studied the effects of the large single-ion anisotropy (D) on the physical 

properties in the new S = 2 quasi-2D square lattice antiferromagnet Ba2FeSi2O7 with M, χ, CM, and NPD 

measurements. The gapped spin states and their thermal populations are responsible for the remarkable 

2D spin fluctuation behaviors such as Schottky anomaly and short-range magnetic ordering with strong 

release of the magnetic entropy gain. On the other hand, below TN = 5.2 K, M and χ exhibit large easy-

planar magnetic anisotropy, and the NPD data yield a significantly reduced magnetic ordered moment. 

As the easy-planar anisotropy gap energy D increases, the system with an integer S could favor a 

quantum disordered paramagnetic ground state (local Sz = 0) rather than the AFM one [30, 31]. We 

suspect that the AFM Ba2FeSi2O7 may be near the quantum critical point of these two competing 

magnetic states. In this case, Higgs modes like the longitudinal magnon modes are possibly observable 

in the low-energy spin excitation spectra of the inelastic neutron scattering or Raman spectroscopy [22, 

32-34]. The presented magnetic results and the constructed magnetic phase diagram suggest that 

Ba2FeSi2O7 is an important example of the S = 2 quasi-2D square lattice Heisenberg antiferromagnet 

with a strong easy-planar magnetic anisotropy, providing a suitable playground to test intriguing physics 

of the low dimensional quantum magnetism. 
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Appendix A: X-ray diffraction data for crushed single crystals 

 

 

FIG. S1. X-ray diffraction (XRD) pattern from crushed single crystals of Ba2FeSi2O7 collected at T = 300 K. Open 

circles represent experimental data and solid line in red indicates a fitted line from Rietveld refinement using 

FULLPROF [26]. The blue solid line indicates the difference between experimental data and the fitted line. Green 

tick marker indicates the location of Bragg reflections for Ba2FeSi2O7 phase. The XRD pattern confirms the single 

phase Ba2FeSi2O7 but also exhibits that there exist preferred crystallographic orientations. 

TABLE SI. Crystallographic parameters with space group 𝑃421m (SG:113) from Rietveld refinements on the 

diffraction data at T = 300 K. Lattice constants a = b = 8.3261(2) Å, c = 5.3402(1) Å, and α = β = γ = 90◦. Rwp = 

20.2%. 

atom site x y z B 

Ba 4e 0.1693(1) 0.6693(1) 0.5098(4) 1.33(2) 

Fe 2a 0 0 0 0.60(9) 

Si 4e 0.3689(5) 0.8689(5) 0.9665(13) 1.17(16) 

O1 2c 0 0.5 0.1182(30) 0.35(44) 

O2 8f 0.3452(15) 0.8452(15) 0.2767(19) 1.85(34) 

O3 4e 0.0738(12) 0.1996(11) 0.1722(11) 0.51(22) 
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APPENDIX B: Neutron powder diffraction data at different temperatures 

 

 

FIG. S2. (a) Low Q-region of the neutron powder diffraction for Ba2FeSi2O7 at 1.7 K and 30 K. Red arrow and 

solid black line indicate the remaining peak at 30 K and magnetic Bragg peak position, Qm = (1,0,1/2) ~ 0.95 Å−1, 

respectively. (b) Subtraction of the 50 K data from the low-temperature data. Horizontal solid black lines indicate 

the offset of each data. 

 

Figure S2 presents the low-Q diffraction data measured at several temperatures, to show that the small 

peak remaining at 20 K and 30 K is most likely a small impurity peak. In Fig. S2(a), the small peak 

shown at 30 K (red arrow) slightly mismatches the magnetic Bragg peak at Qm = (1,0,1/2) ~ 0.95 Å−1 

(solid black line). To subtract the higher temperature data provides further clarity, Fig. S2(b) presents 

the subtraction of the 50 K data from the lower temperature data. In this subtracted data, the small peak 

is consistently absent at all temperatures. This result indicates that the peak is temperature independent 

across a broad temperature range, including TN, and hence most likely arises from a small impurity 

phase in the sample. 



23 

 

REFERENCES 

* All the correspondence should be addressed to jhp@postech.ac.kr. 

[1] N. D. Mermin and H. Wagner, Phys. Rev. Lett. 17, 1133 (1966). 

[2] A. Orendáčová, R. Tarasenko, T. Vladimír, E. Čižmár, M. Orendáč, and A. Fehe, Crystals 9, 6 (2019). 

[3] L. Onsager, Phys. Rev. 65, 117 (1944). 

[4] A. Cuccoli, T. Roscilde, V. Tognetti, R. Vaia, and P. Verrucchi, Phys. Rev. B 67, 104414 (2003). 

[5] Y. Kohama, M. Jaime, O. E. Ayala-Valenzuela, R. D. McDonald, E. D. Mun, J. F. Corbey, and J. L. 

Manson, Phys. Rev. B 84, 184402 (2011). 

[6] J. M. Kosterlitz and D. J. Thouless, J. Phys. C: Solid State Phys. 6, 1181 (1973). 

[7] A. Cuccoli, T. Roscilde, R. Vaia, and P. Verrucchi, Phys. Rev. B 68, 060402(R) (2003). 

[8] N. Tsyrulin, F. Xiao, A. Schneidewind, P. Link, H. M. Rønnow, J. Gavilano, C. P. Landee, M. M. 

Turnbull, and M. Kenzelmann, Phys. Rev. B 81, 134409 (2010). 

[9] P. Sengupta, C. D. Batista, R. D. McDonald, S. Cox, J. Singleton, L. Huang, T. P. Papageorgiou, O. 

Ignatchik, T. Herrmannsdörfer, J. L. Manson, J. A. Schlueter, K. A. Funk, and J. Wosnitza, Phys. Rev. 

B 79, 060409(R) (2009). 

[10] E. Čižmár, S. A. Zvyagin, R. Beyer, M. Uhlarz, M. Ozerov, Y. Skourski, J. L. Manson, J. A.ˇ 

Schlueter, and J. Wosnitza, Phys. Rev. B 81, 064422 (2010). 

[11] P. Sengupta, A. W. Sandvik, and R. R. P. Singh, Phys. Rev. B 68, 094423 (2003). 

[12] C. Yasuda, S. Todo, K. Hukushima, F. Alet, M. Keller, M. Troyer, and H. Takayama, Phys. Rev. 

Lett. 94, 217201 (2005). 

[13] H. Murakawa, Y. Onose, S. Miyahara, N. Furukawa, and Y. Tokura, Phys. Rev. Lett. 105, 137202 



24 

 

(2010). 

[14] I. Kézsmárki, N. Kida, H. Murakawa, S. Bordács, Y. Onose, and Y. Tokura, Phys. Rev. Lett. 106, 

057403 (2011). 

[15] S. Bordács, I. Kézsmárki, D. Szaller, N. Kida, H. Murakawa, Y. Onose, R. Shimano, T. Rõõm, U. 

Nagel, S. Miyahara, N. Furukawa, and Y. Tokura, Nat. Phys. 8, 734 (2012). 

[16] K. Penc, J. Romhányi, T. Rõõm, U. Nagel, A. Antal, T. Fehér, A. Jánossy, H. Engelkamp, H. 

Murakawa, Y. Tokura, D. Szaller, S. Bordács, and I. Kézsmárki, Phys. Rev. Lett. 108, 257203 (2012). 

[17] M. Soda, L.-J. Chang, M. Matsumoto, V. O. Garlea, B. Roessli, J. S. White, H. Kawano- Furukawa, 

and T. Masuda, Phys. Rev. B 97, 214437 (2018). 

[18] P. Barone, K. Yamauchi, and S. Picozzi, Phys. Rev. B 92, 014116 (2015). 

[19] T. T. Mai, C. Svoboda, M. T. Warren, T.-H. Jang, J. Brangham, Y. H. Jeong, S.-W. Cheong, and R. 

Valdés Aguilar, Phys. Rev. B 94, 224416 (2016). 

[20] W. Low and M. Weger, Phys. Rev. 118, 1119 (1960). 

[21] D. Dai, H. Xiang, and M.-H. Whangbo, J. Comput. Chem. 29, 2187 (2008). 

[22] S.-H. Do, H. Zhang, T. J. Williams, T. Hong, V. O. Garlea, T.-H. Jang, S.-W. Cheong, J.-H. Park, 

C. D. Batista, and A. D. Christianson, “Decay and renormalization of a higgs amplitude mode in a quasi-

two-dimensional antiferromagnet,” (2020), arXiv:2012.05445 [cond-mat.str-el]. 

[23] B. E. Warren, Z. Krist. 74, 131 (1930). 

[24] V. Hutanu, A. Sazonov, H. Murakawa, Y. Tokura, B. Náfrádi, and D. Chernyshov, Phys. Rev. B 84, 

212101 (2011). 

[25] M. Soda, M. Matsumoto, M. Månsson, S. Ohira-Kawamura, K. Nakajima, R. Shiina, and T. 

Masuda, Phys. Rev. Lett. 112, 127205 (2014). 



25 

 

[26] J. RodrÃguez-Carvajal, Physica B: Condensed Matter 192, 55 (1993). 

[27] A. Wills, Physica B: Condensed Matter 276-278, 680 (2000). 

[28] C. Kittel, Introduction to Solid State Physics (J. Wiley, 1995). 

[29] E. Gamsjager and M. Wiessner, Monats Chem 149, 357 (2018). 

[30] Z. Zhang, K. Wierschem, I. Yap, Y. Kato, C. D. Batista, and P. Sengupta, Phys. Rev. B 87, 174405 

(2013). 

[31] M. Matsumoto, M. Soda, and T. Masuda, J. Phys. Soc. Jpn. 82, 093703 (2013). 

[32] M. Matsumoto, J. Phys. Soc. Jpn. 83, 084704 (2014). 

[33] A. Jain, M. Krautloher, J. Porras, G. H. Ryu, D. P. Chen, D. L. Abernathy, J. T. Park, A. Ivanov, J. 

Chaloupka, G. Khaliullin, B. Keimer, and B. J. Kim, Nat. Phys. 13, 633 (2017). 

[34] S.-M. Souliou, J. Chaloupka, G. Khaliullin, G. Ryu, A. Jain, B. J. Kim, M. Le Tacon, and B. Keimer, 

Phys. Rev. Lett. 119, 067201 (2017). 


