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To understand the unexpectedly high thermoelectric performance observed in the thin-film Heusler
alloy Fe2V0.8W0.2Al, we study the magnon drag effect, generated by the tungsten based impurity
band, as a possible source of this enhancement, in analogy to the phonon drag observed in FeSb2.
Assuming that the thin-film Heusler alloy has a conduction band integrating with the impurity
band, originated by the tungsten substitution, we derive the electrical conductivity L11 based on
the self-consistent t-matrix approximation and the thermoelectric conductivity L12 due to magnon
drag, based on the linear response theory, and estimate the temperature dependent electrical re-
sistivity, Seebeck coefficient and power factor. Finally, we compare the theoretical results with the
experimental results of the thin-film Heusler alloy to show that the origin of the exceptional thermo-
electric properties is likely to be due to the magnon drag related with the tungsten-based impurity
band.

Introduction.— Thermoelectric materials have at-
tracted much attention because they can directly con-
vert thermal energy to electric energy [1–3]. Especially,
the development of thermoelectric materials, utilizing
magnetism, has been in the focus, and many mate-
rials with high thermoelectric performance have been
found [4–8]. The efficiency of the thermoelectric conver-
sion is expressed by the figure of merit, ZT , defined by
ZT ≡ S2σT/κ where S, σ, T and κ are the Seebeck coef-
ficient, electrical conductivity, temperature and thermal
conductivity, respectively. However, it is well known that
ZT is usually much lower than unity, because it is diffi-
cult to control these physical quantities independently.

Recently, it was found that a thin-film Heusler alloy,
Fe2V0.8W0.2Al, shows a huge ZT (ZT ∼ 5 ) at T ∼
350 K, deriving from a huge power factor defined as PF ≡
S2σ [9]. The origin of these huge ZT and PF is expected
to be related to the anomalous temperature dependence
of the electrical resistivity and the Seebeck coefficient,
because the electrical resistivity changes from a metallic
behavior to a semiconducting behavior at T ∼ 350 K, and
the Seebeck coefficient has a peak structure with a huge
value (S ∼ −500µV/K) around this temperature.

In a previous study, on the basis of the first principles
calculation, the origin of this huge Seebeck coefficient
was suggested to be a result of the large mobility due to
many Weyl points and a large logarithmic energy deriva-
tive of the electronic density of states near the Fermi
energy [9]. On the other hand, it was also claimed [10]
that the crystal structure assumed in ref. [9] is differ-
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ent from the experimental one. Then, it was reported
that a new alloy model suggested in ref. [10] gives only
rise to a Seebeck coefficient S ∼ 30µV/K at T ∼ 400 K ,
which is much smaller than the experimental value. How-
ever, the actual alloy structures of Fe2V0.8W0.2Al have
not been fully explored both theoretically and experimen-
tally. Furthermore, a contribution of magnetism related
to the thin-film Heusler alloy [9] to the Seebeck coefficient
has not yet been taken into account. In addition to recent
experimental reports, revealing an enhancement of the
Seebeck coefficient of various systems through magnetic
interactions [4, 6, 8], it has recently been experimentally
demonstrated that spin fluctuation enhances the Seebeck
coefficient of a doped itinerant ferromagnetic Fe2VAl sys-
tem [5].

The temperature dependencies of the electrical re-
sistivity and Seebeck coefficient observed in this thin-
film Heusler alloy are very similar to those in FeSb2:
FeSb2 shows a huge Seebeck coefficient at low temper-
atures (T ∼ 10 K ), and at the same temperature, the
electrical resistivity changes its temperature dependence
to the semiconducting behavior as the temperature de-
creases [11]. The origin of this huge Seebeck effect ob-
served in FeSb2 has been suggested being caused by a
phonon drag, in which acoustic phonons couple with
large effective mass electrons in an impurity band [12–
14]. From the analogy with FeSb2, the origin of huge
Seebeck effect observed in the thin-film Heusler alloy is
supposed to be magnon drag related in the context of
an impurity band and the conduction band with a large
effective electron masses.

The contribution of the magnon drag to the Seebeck
effect has been studied experimentally [15–18] and theo-
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retically [19–23] from the 1960s. However, it appears that
the magnon drag, related with an impurity band such as
for the present alloy, is not sufficiently understood.

In this letter, we study the magnon drag effect with
an impurity state to clarify the origin of the huge See-
beck coeffcient and PF observed in the thin-film Heusler
alloy. Firstly, since the electronic state of the thin-film
Heusler alloy has not been entirely understood yet, we
assume an electronic state from the view point of a di-
mensional reduction. Extending the phonon drag theory
studied in FeSb2 [14] to the thin-film Heusler alloy, we
study the temperature dependence of the electrical re-
sistivity, Seebeck coefficient, and PF related with such
an impurity state. We then compare the obtained the-
oretical results with experimental results to understand
the origin of huge thermoelectric effect observed in the
thin-film Heusler alloy.

Schematic picture of electronic states.— Firstly, we de-
duce the electronic state of the thin-film Heusler alloy
based on the electronic state of bulk Fe2VAl. Figure 1(a)
shows a schematic picture of the electronic state of the
bulk Fe2VAl near the Fermi level. It is found [9, 24, 25]
that this electronic state is a typical semimetallic state.
In the thin-film, it is expected that the bandwidth de-
creases due to the dimensional reduction. Therefore, we
suggest that a band gap appears by the lower dimension
in the thin-film Fe2VAl (Fig.1(b)). When vanadium (V)
is replaced by tungsten (W) in this thin-film, it is natural
to expect that impurity states appear near the bottom
of the conduction band, because the energy level of 5d
electrons in W is lower than the 3d energy level in V.
Figure 1(c) shows a schematic picture of the electronic
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FIG. 1. Schematic picture on the electronic state of a) bulk
Fe2VAl, b) thin-film Fe2VAl, and c) thin film Fe2(V,W)Al.

state of the thin-film Heusler alloy substituted by W. In
this letter, we study the electrical and thermal transports
on the basis of this electronic state shown in Fig.1(c).

Model Hamiltonian and Formulation of Electric and
Thermal transports.— To study the magnon drag based
on the electronic state shown in Fig. 1(c), we use a fol-
lowing model Hamiltonian [14, 21–23].

H = H0 +HW +Hmag +He−mag, (1)

where H0, HW, Hmag and He−mag are Hamiltonians
for a ferromagnetic conduction band, W sites, a ferro-
magnetic magnon, and an electron-magnon interaction,
respectively. These Hamiltonians are given as H0 =∑

k,σ(εkσ − µ)c†kσckσ, HW = V0

∑
〈i〉 c
†
iσciσ, Hmag =∑

q ~ωqb
†
qbq, and He−mag = I√

V

∑
k,q

[
b†qc
†
k↑ck+q↓ +

bqc
†
k+q↓ck↑

]
, where ckσ or ciσ (c†kσ or c†iσ) is an anni-

hilation (creation) operator of an electron with the wave
number k on the i-th site and spin σ =↑↓; bq (b†q) is an
annihilation (creation) operator of a magnon with wave
vector q. εkσ is the energy dispersion in the ferromag-
netic state, µ is a chemical potential, V0 is the strength of
a random impurity potential, 〈i〉 is the position of impu-
rities, and ~ωq is the energy dispersion of ferromagnetic
magnons given by ~ωq = Dq2, where D is the spin wave

stiffness constant. Finally, I = J
√
V is the strength of

the electron-magnon interaction, where J and V are the
coupling constant between electron and magnon, and the
volume of unit cell, respectively. In this letter, we use

the following simple energy dispersion: εk↑ = ~2k2

2m∗ −∆,

and εk↓ = ~2k2

2m∗ , where m∗ is the effective mass of con-
duction electrons, ∆ is the energy difference between up
spin and down spin electrons to express the ferromag-
netic state, which corresponds to d orbitals of Iron (Fe)
in FeV0.8W0.2Al [9]. We assume that ∆ is independent of
temperature for simplicity. Because the Fermi energy is
located near the bottom of the conduction band or in the
impurity band as shown in Fig. 1(c), the valence band
is neglected although it will contribute at high tempera-
tures.

To treat the random potential of the W site, we use
a self-consistent t-matrix approximation [14, 26–29]. As
discussed in Ref [14], we define the retarded Green’s func-
tion of electron with spin σ as

GRσ (k, ε) =
1

ε− εkσ − ΣRσ (ε)
, (2)

where by the self-consistent t-matrix approximation,
a retarded self-energy, ΣRσ (ε), is given as ΣRσ (ε) =

niV0

1−V0V
∑′

kG
R
σ (k′,ε)

. Here, ni is the concentration of W sites.

The density of state (DOS) is obtained by Dσ(ε) =

D0Im[yσ], where D0 =

√
(m∗)3εB√
2π2~3

, and yσ is determined

by solving the cubic equation: y3
σ−2yσ+

(
1+

ε+∆δσ,↑
εB

)
yσ−

ν = 0 [14]. Here, ν ≡ 2πni~3/
√

2(m∗)3ε3B . We assumed
that εB (εB + ∆) is the binding energy of a single W im-
purity for down spin (up spin) as a first step. It should be
noted that the first principles calculation shows no spin
splitting in 5d orbitals of W [9].

The Fermi energy (EF ) and the temperature
dependence of the chemical potential are deter-
mined self-consistently by

∑
σ

∫∞
−∞ f(ε)Dσ(ε)dε =∑

σ

∫ EF
−∞Dσ(ε)dε = ni, where f(ε) is the Fermi distri-

bution function defined by f(ε) = 1/(eβ(ε−µ) + 1).
The electrical current (Je) and the heat current

due to electrons (Jele
Q ), and the heat current due to
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ferromagnetic magnons (Jmag
Q ) are defined as Je =

e
∑

kσ vk,σc
†
k,σck,σ, Jele

Q =
∑

kσ(εkσ−µ)vk,σc
†
k,σck,σ, and

Jmag
Q =

∑
q ~ωq

∂ωq

∂qx
b†qbq, where vk,σ = 1

~
∂εk,σ
∂kx

and e is

the electron charge (e < 0).
Under an electric field E and temperature gradient

∇T , the electrical current density j is described in the
linear response theory as j = L11E + L12

(
− ∇TT

)
, where

L11 and L12 are electrical conductivity and thermoelec-
tric conductivity, respectively [30]. These coefficients are
calculated from the correlation function between the elec-
trical currents, and that between the electrical and heat
currents derived by Kubo and Luttinger [31–33]:

Lij = lim
ω→0

Φij(ω + iδ)− Φij(0)

iω + iδ
, (3)

where ω is a frequency of the external field. In the present
case, L12 contains two components due to Jele

Q and Jmag
Q ,

which we refer to Lele
12 and Ldrag

12 , respectively.
The transport coefficient L11 due to the electrical cur-

rents and Lele
12 owing to the electrical current and the

heat current due to electrons are [33]

L11 =

∫
dε
(
− ∂f(ε)

∂ε

)
σ(ε), (4)

Lele
12 =

1

e

∫
dε
(
− ∂f(ε)

∂ε

)
(ε− µ)σ(ε), (5)

where σ(ε) is the function of electrical conductivity, de-
pending on ε. The relaxation time of electrons is included
in σ(ε). When we use a Green’s function, which is ob-
tained in Eq. (2), σ(ε) is given by

σ(ε) =
∑
σ

e2
√
m∗

12π2~2

(
√
x2
σ + Γσ(ε)2 + xσ)

3
2

Γσ(ε)
, (6)

where xσ = ε+∆δσ,↑−ReΣR
σ (ε) and Γσ(ε) = −ImΣR

σ (ε),
respectively. It has to be noted that we consider only the
effect of the random potential, given by the self-consistent
t-matrix approximation, and neglect the effect of relax-
ation due to the electron-magnon interaction in the cal-
culation of the electrical conductivity L11.

Next, we study the correlation function between the
electrical current and the heat current of magnons de-
fined as Φ12(τ) = 1

V 〈Tτ [je(τ)jmag
Q (0)]〉, where τ is an

imaginary time and Tτ denotes the imaginary time order-
ing operator [22, 23]. By the second order perturbation
on the exchange interaction based on the Green’s func-
tion of electrons, Eq. (2), the correlation function due to
the magnon drag is obtained as

Φdrag
12 (ω) = iω

I2e(m∗)2

48π3~5Γmag(T )

∫ εcut
q

0

dεq
βεqe

βεq

(eβεq − 1)2

×
∫
dxf(x)

[
L+

1

Γ↓(x+ εq)
− L+

2

Γ↓(x)
− L−1

Γ↑(x)
+

L−2
Γ↑(x− εq)

]
,

(7)

where Γmag(T ) and εcut
q are the temperature dependent

magnon relaxation rate, and an energy cutoff of magnons,

respectively; L±1 = εq ± αεq − ∆ − ReΣ
(R)
↓ (x + εq) +

ReΣ
(R)
↑ (x) and L±2 = εq ± αεq − ∆ + ReΣ

(R)
↑ (x − εq) −

ReΣ
(R)
↓ (x) where α = ~2

2m∗D . In the supplemental ma-

terial, we show the derivation of Eq. (7) in detail [34].
Using Eq. (3), the thermoelectric conductivity due to the

magnon drag, Ldrag
12 , is obtained. The vetex corrections,

which are neglected in this letter for simplicity, have been
discussed in ref. [23].

Numerical Results.— Figure 2(a) shows the density of
states for ν̃ ≡ ν/ν0 = 1.1, 2 and 4. We set ∆/εB = 0.5.
For ν̃ = 2 and 4, the impurity band hybridizes the
conduction band naturally, while for ν̃ = 1.1, the im-
purity band only slightly touches with the conduction
band. The Fermi energy is located in EF /εB ' −1.20
for ν̃ = 1.1 , −1.16 for ν̃ = 2, and −1.07 for ν̃ = 4.0.
It should be noted that the chemical potential does not
show a drastic temperature dependence.

(a) (b)

(c) (d)

FIG. 2. (a) Densitiy of states (DOS), (b) electrical resistivity,
(c) Seebeck coefficient due to the magnon drag (Sdrag) and
(d) the power factor due to the magnon drag (PFdrag) for
ν̃ ≡ ν/ν0 = 1.1, 2 and 4 and ∆/εB = 0.5. Inset of (b)
Seebeck coefficient due to the heat current of electron (Sele).

Figure 2(b) shows the temperature dependent electri-
cal resistivity (ρ = 1/L11) for ν̃ = 1.1, 2 and 4. Here,
ρ0 = 12π2~2/γe2

√
m∗εB . It has to be noted that we

introduce the dimensionless phenomenological parame-
ter γ to consider additional contributions of the valleys
and other unspecified processes to the electrical conduc-
tivity. As shown in Fig. 2(b), the resistivity increases
gradually, as the temperature decreases from high tem-
peratures, while around kBT/εB ' 0.5, the resistivity
drastically increases; the resistivity becomes constant at
low temperatures. This behavior is a result of the impu-
rity band. We also conclude that the constant resistivity
value at low temperatures depends on the impurity con-
centration.

Next, let us discuss the Seebeck coefficient due to
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the heat current of electrons, i.e. Sele = Lele
12 /TL11

and the Seebeck coefficient due to the magnon drag, i.e.

Sdrag = Ldrag
12 /TL11. The inset of Figure 2(b) shows

the temperature dependent Seebeck coefficients Sele for
ν̃ = 1.1, 2 and 4. As the impurity concentration de-
creases, the Seebeck coefficient increases, while the See-
beck coefficient does not show a peak structure. Figure
2(c) shows the temperature dependent term Sdrag, for
ν̃ = 1.1, 2 and 4 and α = 1.0. We assume a temperature
dependent magnon relaxation rate, Γmag =

(
~/2τ0

)
T ,

where τ0 is a constant. The factor S0 is defined by
S0 = I2(m∗)3/2k2

Bτ0/2eπ~4√εB . Note that the Seebeck
coefficient does not depend on γ. As shown in Fig.2(c),
the Seebeck coefficient increases as the impurity concen-
tration decreases. We also find that a peak structure of
the temperature dependent Seebeck coefficient appears
around kBT/εB ' 0.5 for ν/ν0 = 1.1, 0.6 for ν/ν0 = 2
and 0.7 for ν/ν0 = 4. Figs. 2(d) show the temperature
dependent power factor due to the magnon drag, PFdrag,
where we define PF0 = S2

0/ρ0. The PFdrag traces closely
the temperature dependent Seebeck coefficient as shown
in Figs. 2(c) regarding several impurity concentrations,
while we find that the peak temperature of PFdrag is
higher than that of Seebeck coefficient, because of the
distinct decrease of the electrical resistivity. It should
be noted that the temperature dependences of Sdrag and
PFdrag are insensitive to α, while these values strongly
depend on α (See the supplemental material).

Discussion: Comparison with experiments.— Here, we
compare the obtained theoretical results with the exper-
imental results of the thin-film Heusler alloy. Since there
are no experimental data on theoretical parameters, we
have chosen a set of the reasonable values: εB/kB =
300 K, m∗/m0 = 10, J/kB = 1000 K, V = 10−27m3, and
γ = 10. It should be noted that the large effective mass is
due to the large density of states of the conduction band
as shown from the first principles DFT calculations [9];
then, the impurity concentration (ni) is of the order of
1027m−3 for ν̃ = 1 ∼ 4, which is consistent with the con-
centration of W in Fe2VAl. Here, we set the life time of
magnon as τ = τ0/T ∼ 10−14 s at T = 300 K. This value
is reasonable for a ferromagnetic metal [35].

Using these parameters, ν/ν0 = 4 and α = 1.0, the
temperature dependent electrical resistivity and Seebeck
coefficient due to the magnon drag, as well as the power
factor are displayed in Fig. 3. We find that the electrical
resistivity attains ρ ' 1000µΩcm at T ∼ 300 K; we also
find that the Seebeck coefficient due to the magnon drag
exhibits a peak structure, with Smax ∼ −500µV/K at
T ∼ 300 K. The power factor reaches PF ∼ 60 mW/m
K2 around T ∼ 400 K. Since these theoretical results are
similar to the experimental results, we presume that the
origin of the huge Seebeck coefficient and the large PF

observed experimentally for the thin-film Heusler alloy
is likely due to a magnon drag, related to the tungsten-
based impurity band.

Finally, we comment on the life time of magnons. In
this letter, we used a simple temperature dependent life
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FIG. 3. Temperature dependences of electrical resistivity, See-
beck coefficient due to the magnon drag, and power factor
(PF) in the realistic parameters.

time of magnons. However, the life time is expected to
be very complicated in a real material, because it is de-
rived from many kinds of scattering mechanisms such as
impurity scattering, magnon-electron, magnon-magnon,
magnon-phonon interactions related with (without) the
Umklapp process, and so on. The understanding of these
microscopic mechanisms for the life time of magnon is a
future problem.
Conclusion.— We studied the origin of the large See-

beck coefficient and unprecedented large PF observed in
the thin-film Heusler alloy FeV0.8W0.2Al on the basis of
the linear response theory. Assuming that this thin-film
alloy has a conduction band integrating with the impu-
rity band originated from the W substitution, and by
extending the microscopic phonon drag theory observed
in FeSb2, we derived L11 based on the self-consistent t-
matrix approximation and L12 due to the magnon drag.
As a result, we found that the theoretical results of the
Seebeck coefficient and PF are in agreement with the ex-
perimental ones. Therefore, we concluded that the origin
of these striking thermoelectric properties is likely due
to the magnon drag related with the W-based impurity
band.
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