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We study the antiferromagnetic XYZ spin chain with quenched bond randomness, focusing on a
critical line between localized Ising magnetic phases. A previous calculation using the spectrum-
bifurcation renormalization group, and assuming marginal many-body localization, proposed that
critical indices vary continuously. In this work we solve the low-energy physics using an unbiased
numerically exact tensor network method named the “rigorous renormalization group.” We find a
line of fixed points consistent with infinite-randomness phenomenology, with indeed continuously
varying critical exponents for average spin correlations. A self-consistent Hartree–Fock-type treat-
ment of the z couplings as interactions added to the free-fermion random XY model captures much
of the important physics including the varying exponents; we provide an understanding of this as a
result of local correlation induced between the mean-field couplings. We solve the problem of the
locally-correlated XY spin chain with arbitrary degree of correlation and provide analytical strong-
disorder renormalization group proofs of continuously varying exponents based on an associated
classical random walk problem. This is also an example of a line of fixed points with continuously
varying exponents in the equivalent disordered free-fermion chain. We argue that this line of fixed
points also controls an extended region of the critical interacting XYZ spin chain.

I. INTRODUCTION

In many situations, phases of many-body quantum sys-
tems are stable under weak static, or “quenched,” disor-
der in the presence of a gap, and the disorder average
of certain quantities can be calculated in a related clean
system via either the replica trick or supersymmetry ar-
guments for non-interacting models1,2. However, these
methods are not suitable for relevant disorder, or dis-
order along with interactions, which together produce a
rich variety of behaviors. In contrast, real-space think-
ing should be suitable for directly accounting for spatial
inhomogeneity. Interestingly, strong disorder causes cer-
tain classes of disordered systems to become tractable
on long scales, making real-space renormalization group
(RG) approaches amenable to analytical treatments con-
trolled by the flow to infinite randomness. In this work
we investigate a modern application of real-space RG to a
random XYZ spin chain3,4, where we use exact numerics
to perform unbiased exploration and validation, and also
use the strong-disorder renormalization group (SDRG)
to demonstrate and characterize such fixed points using
the language of random walks.

The original development of a real-space RG appro-
priate for strong-disorder physics in one dimension (1d)
is due to Ma, Dasgupta, and Hu5. The feature distin-
guishing SDRG from, e.g., spin blocking, is that effective
degrees of freedom are explicitly associated with an en-
ergy scale rather than with a spatial grouping. In this
way the disorder realization determines the pattern of
integrating out fluctuations.

Such an approach is now understood to be well-
motivated by the idea of an infinite-randomness fixed
point (IRFP), a stable solution of the SDRG equations
discovered by Fisher in Refs.3,6,7 at which effective dis-

order strength grows with the scale without bound, and
SDRG predictions become asymptotically exact. In an
IRFP, disorder dominates the low-energy physics and
physical observables are not self-averaging; average be-
haviors are instead often determined by rare regions
within a disorder realization. Interestingly, although such
fixed points lack conformal symmetry, the phenomenol-
ogy can resemble that of CFT fixed points: for instance,
the scaling of average entanglement follows the confor-
mal form with an effective central charge which in some
cases is related to the central charge of the clean theory
(but does not obey the same rules under RG)8–10.

Since its introduction, the SDRG has been special-
ized to a variety of classical and quantum systems, and
the original scheme has seen many generalizations; see
recent reviews11. For example, applications in two-
dimensional (2d) random models also yield IRFPs in
these settings12–18. In another direction, SDRG meth-
ods were extended to treat all eigenstates of a quantum
Hamiltonian19–22, in order to assess the possibility of
many-body localization (MBL) of excited states. (There
are by now multiple reviews of MBL, for instance see
Refs.23,24.) The many-body extended SDRG procedures
do not perform an iterative targeting of the low-energy
space, but instead tabulate emergent conservation laws
corresponding to the local integrals of motion of an MBL
phase; nevertheless, the equations are formally quite sim-
ilar to the original picture implementing a more tradi-
tional RG.

One of the extended many-body SDRG procedures, the
“spectrum bifurcation renormalization group” (SBRG)
developed in Ref.21 for Hamiltonians comprising Pauli
strings, was applied to the random XYZ spin chain by
Slagle et al. 4 . There, along a phase boundary between
localized Ising antiferromagnets (proposed to be MBL),
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disorder- and energy-averaged Edwards–Anderson spin
correlations were found to decay as power laws with con-
tinuously varying critical exponents. Average entangle-
ment entropy scaling also exhibited a stable effective cen-
tral charge. The phase transition was conjectured to be
“marginal MBL,” meaning that eigenstates do not ther-
malize but exhibit a logarithmic violation of the area law.
However, it has recently been argued that such marginal
MBL Hamiltonians are perturbatively unstable to ergod-
icity at finite energy density due to resonances25,26. As
is true of all excited-state SDRG schemes, Refs.4,21 rely
on MBL for validity, and these recent arguments call this
assumption into question.

In the present work we investigate the SBRG findings
using unbiased numerics for the ground state and low-
energy excited states. We emphasize that our focus is
entirely on low-energy properties, and we will not have
anything to say about MBL physics at arbitrary energy
density. However, we find the possibility of continuously
varying power laws in IRFPs already very interesting and
worth further study. The random XYZ chain—while sus-
pected to support infinite-randomness phenomenology in
Fisher’s original work, Ref.3—has eluded understanding
due to the lack of a closed-form SDRG solution, and de-
veloping a stronger grasp of such instances would consti-
tute an important advance.

Strongly disordered models pose an especially difficult
challenge for unbiased numerics, and have long been rec-
ognized as among the only 1d models to be resistant to
standard methods, chiefly the density matrix renormal-
ization group (DMRG). We apply a relatively new tensor
network numerical method named the rigorous renormal-
ization group (RRG) to this problem, as it has already
been shown to be effective in the related random XY
model27. Our goal for the unbiased tensor network com-
putations is to test the findings of Ref.4, and better un-
derstand the disordered fixed points associated with the
critical line.

As a brief overview of our results, the data found
by RRG are in support of both infinite-randomness
physics as well as continuously varying critical indices
for disorder-averaged correlations. These conclusions are
based on direct measurements in MPS, along with scal-
ing of low-energy spectral gaps, which we solve for in the
various symmetry sectors of the model up to systems of
length N = 80 spins. Our findings are in general agree-
ment with the SBRG results, namely, that critical indices
controlling decay of correlations, as well as long-range
mutual information, vary along the critical line, while
the “central charge” is fixed. We additionally study the
critical exponent ψ, which characterizes IRFP dynamics
through the relationship log(1/E) ∼ Lψ between energy
scale and length, and find that its value is close to, but
may be varying away from, the free-fermion fixed point
with ψ = 1

2 .

These numerical results for the critical line are cap-
tured reasonably well by a self-consistent Hartree–Fock
mean-field that treats Jz couplings as interactions added

to the free-fermion XY chain [throughout, Jx,y,zj refer

to terms in the XYZ chain as in Eq. (1)]; the Hartree-
Fock also apparently produces continuously varying ex-
ponents. This finding motivates study of a “locally-
correlated” XY chain with correlations only between
terms on the same link of the lattice. The locally cor-
related model again exhibits similar behavior, and its
SDRG structure has an advantageous mathematical con-
nection to the theory of random walks. Within this set-
ting we write rigorous bounds fully determining the criti-
cal exponent for power-law decay of a certain average spin
correlation function. This exponent indeed varies contin-
uously, proving that the free-fermion critical line of the
locally-correlated model is marginal, and is described by
a line of IRFPs. This result resolves a question posed by
Fisher 3 , as illustrated in Fig. 1. In this figure, we pa-
rameterize correlations between Jxj and Jyj by a generic

parameter δ varying between δ = 0 (completely uncorre-
lated or XY model) and δ = 1 (completely correlated or
XX model) [for a specific example, see Eq. (19)]; devia-
tion of δ from 1 can also be viewed as introducing random
anisotropy to the XX model.

Returning to the interacting model, based on the above
understanding of the noninteracting case and the RRG
numerical data, we conjecture that at least in the neigh-
borhood of the free-fermion model, interactions are irrel-
evant and the local correlations generated in the SDRG
drive the interacting theory to the line of noninteract-
ing IRFPs at long distances. This scenario is presented
in Fig. 2 and represents our conjectured explanation for
the continuously varying critical exponents in the XYZ
chain.
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Figure 1. Shown is an updated version of the schematic RG
flow of XY antiferromagnets in Fig. 4 of Ref.3. In this work
we prove the line of fixed points along the exactly marginal
direction δ, which describes the degree of correlation between
bond terms Jx and Jy, in the notation of Eq. (1). (Note
that δ = 1 corresponds to σ2

a = 0 in Fisher’s notation.) The
average anisotropy a is as defined in Ref.3; in the present work
we consider only the line a = 0.

The outline of this paper is as follows. In Sec. II we
present the XYZ spin model and summarize the history
of its SDRG, along with explicitly developing the RG
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Figure 2. We propose the following schematic flows for the
XYZ antiferromagnet, where δ is the degree of correlation be-
tween local Jx and Jy couplings [as defined in Eq. (1)] and

J̃z is the bandwidth of the Jz distribution, with statistical
isotropy corresponding to J̃z = 1. The line of fixed points at
J̃z = 0 is the same as in Fig. 1, and J̃z is argued to be per-
turbatively irrelevant. We conjecture that any J̃z < 1 is irrel-
evant at δ = 0, but through generation of finite δ flows to the
line of non-interacting IRFPs. The methods we employ can-
not access the statistically isotropic XYZC or U(1)-symmetric
XXZC fixed points, but XXZC was previously described by
Fisher 3 . The flows on the dashed line between XYZC and
XXZC lie on a manifold separating the basins for XY and
ZAF, which is not well described by this slice through param-
eter space. We avoid any specific conjecture on this matter
but remark that it is an interesting topic for further study.

rules in the many-body language. In Sec. III we perform
an unbiased study of the ground state using RRG. In
Sec. IV, based on our numerical results, we develop both
a Hartree–Fock mean-field theory and the free-fermion
locally correlated effective model. In Sec. V, we use a pic-
ture of the SDRG procedure in terms of random walks
to prove continuously varying critical exponents in the
locally correlated effective model. In Sec. VI we conjec-
ture a possible long-distance fate of the RG flow for the
critical XYZ spin chain, and finally in Sec. VII we discuss
the implications of all of these results taken together.

II. RANDOM XYZ MODEL AND REVIEW OF
PREVIOUS SDRG RESULTS

A. Spin chain Hamiltonian

As our most general model we consider the antiferro-
magnetic XYZ spin chain with quenched randomness in
all couplings; that is,

H =

N−1∑
j=1

(
Jxj σ

x
j σ

x
j+1 + Jyj σ

y
j σ

y
j+1 + Jzj σ

z
jσ

z
j+1

)
. (1)

The couplings Jαj > 0, α = x, y, z, are independent.
This model generically has a Z2 × Z2 global symme-
try, with generators given by the Ising-type operators

gx =
∏N
j=1 σ

x
j and gy =

∏N
j=1 σ

y
j . In particular, local

field terms are excluded by this symmetry. This model
also respects time reversal on the spins, which we imple-
ment as gyK, where K is complex conjugation in the z
basis.

We impose the same functional form on the disorder
distributions of Jxj , Jyj , and Jzj (though delay specifica-

tion until Sec. III), with bandwidths specified by a set

of parameters J̃x, J̃y, J̃z > 0. If the value of any one
of these is larger than the other two, the ground state
of the model displays Ising antiferromagnetic (AFM) or-
der. As we are considering strong disorder, we anticipate
that these phases are localized. If two bandwidths are
equal and of the largest magnitude, the model lies on a
boundary between localized phases with distinct types of
magnetic order; we will primarily consider this case. If
all three disorder bandwidths are equal, the model has a
statistical S3 permutation symmetry and sits at a tricrit-
ical point in the phase diagram3,4.

Many exact results are known for phases of the Hamil-
tonian Eq. (1) in certain limits, and we provide a brief
recap here. The SDRG was in fact originally introduced
by Ma, Dasgupta, and Hu in order to study the ran-
dom Heisenberg antiferromagnet with SU(2) symmetry5,
achieved in the present notation by fixing Jxj = Jyj = Jzj
for all bonds j. These works argued for the asymptotic
development of a power-law singularity in the distribu-
tion of couplings and computed leading contributions to
critical indices, which vary slowly along the flow.

Fisher 3 generalized this analysis to account for
anisotropy and performed a thorough study of the re-
sulting phase diagram. The SDRG rules for the random
XX model (Jxj = Jyj and Jzj = 0 for all j), which breaks

the SU(2) spin rotation symmetry to a U(1) subgroup,
are very similar to those of the isotropic model, and in
particular both realize random-singlet (RS) phases28. In
the ground state the microscopic spins are paired up into
singlet states at arbitrarily long scales. Correlations be-
tween the spins in a singlet are of order unity, and are
strongly suppressed with the rest of the system. Thus
typical spin correlations are short-ranged, whereas the
average correlations are dominated by rare paired spins.
This is one hallmark of an IRFP: that a distribution
which is broad on a logarithmic scale leads to exponential
separation between typical and averaged properties of the
state. From the density of paired spins one finds that av-
erage spin correlations exhibit power-law decay, scaling
as r−2 for separation r. This defines the XX fixed point
exponents ηx = ηy = ηz = 2. The characteristic energy
scale of the singlets in the RS phase follows

log(1/E) ∼ Lψ , (2)

where ψ = 1
2 . As a consequence for the density of states,

the dynamical exponent is formally infinite.
The random XY chain (i.e., independent Jxj and Jyj

but with J̃x = J̃y, J̃z = 0), in contrast, does not realize

the RS phase. With the mean in-plane anisotropy J̃x −
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J̃y serving as the quantum control parameter, Fisher 3

computed the critical exponents ν = 2 and β = 3 −
√

5
for the transition separating Ising x- and y-AFM phases.
This was accomplished through a lattice duality mapping
to two decoupled copies of the random transverse-field
Ising model (RTFIM), whose SDRG equations are also
well-studied6,7,29. Translating the RTFIM results to the
present XY chain, at the phase transition the critical
exponent for the decay of x and y components of spin

correlations is ηx = ηy = 4− 2φ, where φ = 1+
√

5
2 is the

golden ratio.

Starting from the opposite limit of the XX model, with
Jxj = Jyj for all j, it was also found by Fisher 3 that weak
random in-plane anisotropy, which moves along the phase
transition toward the XY point, is a marginal perturba-
tion. It was not clear whether this is the case along the
entire phase boundary, and we will in fact be led to take
up this question in some detail in Sec. V.

The set of exponents for disorder-averaged spin corre-
lations can be completed using the mapping of the XX
and XY models to free fermions30. For the anisotropic
model with S2 permutation symmetry, ηz = 4. In a chain
with open boundaries, consideration of the form of the
surface magnetization leads to the scaling of the end-to-
end spin correlations ηe

x = ηe
z = 1 for the XX model and

ηe
x = 1, ηe

z = 2 for the XY model.

Focusing on a different type of spin chain, Damle
and Huse 31 studied permutation-symmetric multicriti-
cal points arising from effective low-energy theories of
partially dimerized spin-S models with SU(2) symmetry.
They performed a fixed-point analysis of the SDRG equa-
tions for degrees of freedom localized at the boundaries
between distinct domains of n = 2S + 1 different types
of local order (i.e., topological phases distinguished by
the properties of edge modes localized near the ends of
open chains). Their primary result is a generalization of
the n = 2 random-singlet criticality to a countably in-
finite set of IRFPs with critical exponents ψ = 1

n and

ν = 2n√
4n+1−1

. The permutation symmetry refers to the

interchange of distributions for the different types of or-
der, which mediate effective couplings between the do-
main walls. While the permutation-symmetric tricritical
point at J̃x = J̃y = J̃z in our model shares the statistical
symmetry of these theories for n = 3, its microscopic de-
tails are dissimilar and it is not clear a priori whether this
category of universality applies. Indeed, our estimates of
the exponent ψ at the XYZ tricritical point in Sec. III B 3
appear to rule out the applicability of the Damle–Huse
universality in this case.

B. Majorana representation

Aspects of this problem become more evident in the
language of fermions, for which we use the Jordan–
Wigner transformation. Equation (1) maps to a spinless

p-wave superconductor with density-density interactions:

H =

N−1∑
j=1

(tjc
†
jcj+1 + ∆jc

†
jc
†
j+1 + H.c.)

+ Jzj (2nj − 1)(2nj+1 − 1) , (3)

which has position-dependent hopping tj = Jxj + Jyj and

pairing potential ∆j = Jxj −Jyj . Following the idea of Ki-

taev 32 , Motrunich et al. 33 , it is enlightening to introduce
two species of Majorana fermion,

ηj = c†j + cj and ζj =
1

i
(c†j − cj) . (4)

The ηj and ζj are Hermitian, and normalized so that
(ηj)

2 = (ζj)
2 = 1. In terms of these operators the Hamil-

tonian is written

H =

N−1∑
j=1

iJxj ζjηj+1 − iJyj ηjζj+1 − Jzj ηjζjηj+1ζj+1 . (5)

The symmetry group of the problem is somewhat more
expressive in the Majorana language. In the following we
specialize to even system sizes N ∈ 2Z. The generators
of the global symmetry translate to

gx = iN/2ζ1η2ζ3 · · · ηN , (6)

gy = (−i)N/2η1ζ2η3 · · · ζN . (7)

The symmetries measure fermion parity on two disjoint
sets partitioning the Majorana orbitals. The Hamil-
tonian Eq. (5) takes the form of separate “imaginary
random hopping” problems (see Ref.33) on these two
chains of Majoranas of length N , which we denote X =
{ζ1, η2, ζ3, . . . , ηN} and Y = {η1, ζ2, η3, . . . , ζN}. On each
chain the coefficients of the Majorana hopping terms—
which are fermion parity measurements on adjacent or-
bitals within a chain—alternate between iJxj and −iJyj .
There are also inter-chain coupling terms with coefficients
−Jzj . A single “rung” term iηjζj is odd under the par-
ity symmetries, and H instead includes the double-rung
interactions −ηjζjηj+1ζj+1.

The anti-unitary symmetry K (i.e., complex con-
jugation in the σz basis) acts on the Majoranas as
{i, ηj , ζj} 7→ {−i, ηj ,−ζj}. This symmetry prohibits
nonzero expectation values of the form 〈iηjηk〉 or 〈iζjζk〉,
even when these orbitals belong to the same Majorana
chain.

Constraining Jzj = 0 for all j, the resulting Hamilto-

nian Hxy ≡ H[J̃x, J̃y, J̃z = 0] is quadratic and can be
solved for any particular disorder realization by diago-
nalization of the auxiliary Bogoliubov–de Gennes (BdG)
matrix in the particle-hole basis. The mapping to the
Majoranas in Eq. (4) transforms the BdG matrix into a
particular form decoupling the two Majorana chains X
and Y. This further simplifies the solution for the single-
particle eigenstates to diagonalization of a pair of N ×N
tridiagonal matrices.



5

As we are considering boundaries between Ising or-
dered phases, the natural observables are the correspond-
ing magnetic order parameters σα, α = x, y, z. Written
in terms of fermion operators, the spin correlation func-
tions Cα(j, k) = 〈σαj σαk 〉 are

Cx(j, k) = 〈iζj(iηj+1ζj+1) · · · (iηk−1ζk−1)ηk〉 , (8)

Cy(j, k) = 〈−iηj(iηj+1ζj+1) · · · (iηk−1ζk−1)ζk〉 , (9)

Cz(j, k) = 〈−ηjζjηkζk〉 . (10)

From Wick’s theorem, in the ground state of any specific
disorder realization Cx(j, j + r) and Cy(j, j + r) can be
computed as Pfaffians of antisymmetric 2r×2r matrices,
and the calculation further simplifies due to the separa-
tion into two Majorana chains. We focus on this case
and consider the angle brackets 〈·〉 as denoting expecta-
tion values measured in the ground state, although the
expressions Eqs. (8)–(10) apply more generally. We will

be discussing disorder-averaged correlations Cα(j, j + r)
and when this is clear we will drop the overline. In the fol-
lowing we work exclusively along the line with statistical
symmetry between Jxj and Jyj and will often collectively

refer to Cx,y(j, j + r), as C⊥(j, j + r).

C. Strong-disorder renormalization group

1. Decoupled Majorana chains

Examining the Hamiltonian on Majorana chains X and
Y also clarifies the form of the analytic SDRG. In the de-
coupled model Hxy, the RG proceeds independently on
each of the chains, which are endowed with parity con-
servation. The SDRG for a single such chain was devel-
oped explicitly in the single-particle spectrum language
by Motrunich et al. 33 and in the many-body Hamiltonian
language by Monthus 22 . We review the result here, spe-
cialized to our case, in the many-body language, which
naturally extends to the interacting problem22. For now
we consider only a single Majorana chain, and relabel
the orbitals as γn, n = 1, . . . , N . The Hamiltonian act-

ing on this chain is HM =
∑N−1
n=1 ihnγnγn+1. Suppose

that the largest energy scale is set by H0 = ihkγkγk+1

for some k ∈ [1, N − 1]. H0 measures fermion parity on
the two orbitals, with eigenvalues ±hk associated with
the two parity states; denote the splitting by Ω = 2hk.
Accordingly, this term is diagonalized by the complex

fermion mode f†0 = 1
2 (γk + iγk+1), which has projectors

π+ = f0f
†
0 and π− = 1−π+ = f†0f0 into the even and odd

parity sectors, respectively. In terms of the projectors we
have H0 = (Ω/2)(π+ − π−).

The rest of the terms inHM ≡ H0+V can be treated as
a perturbation if the nearby couplings are much smaller
than the local gap |Ω|. Although this condition may not
be satisfied initially, the validity of the assumption im-
proves during the RG flow because the SDRG generates
an effective disorder distribution with increasingly broad

logarithm. The rest of the Hamiltonian can be divided
into diagonal and off-diagonal components with respect
to H0; specifically, V = Vd + Vod, where

Vd = π+V π+ + π−V π− , (11)

Vod = π−V π+ + π+V π− = π−HMπ
+ + π+HMπ

− .
(12)

Note that Vod contains only a constant number of local
terms. We denote the small scale of these terms relative
to H0 by the parameter ε. The effective Hamiltonian

with emergent good quantum number 〈f†0f0〉 is found
by a Schrieffer–Wolff transformation eliminating Vod up
to O(ε2)34–37. That is, H ′M = eiSHMe

−iS , where the
Hermitian generator of the rotation can be expanded in
powers of ε as S = S[1] + S[2] + · · · . The conditions
on the rotation are that S[1] is off-diagonal and satisfies
Vod = [H0, iS

[1]], and S[2] eliminates off-diagonal terms
at O(ε2) (but we will not need to write it explicitly). A
suitable generator is iS[1] = 1

Ω (π+HMπ
− − π−HMπ+),

H ′M = eiSHMe
−iS (13)

= HM + [iS,HM] +
1

2
[iS, [iS,HM]] + · · · (14)

= H0 + Vd +
1

2

∑
ι=±

πι[iS[1], Vod]πι +O(ε3) (15)

≈ H0 + Vd +
1

Ω
[π+HMπ

−, π−HMπ
+] , (16)

the final line being Eq. (17) of Ref.22.
The off-diagonal terms are those which share an odd

number of Majoranas with H0 and thus anticommute.
Consequently Vod = ihk−1γk−1γk + ihk+1γk+1γk+2 and

π+HMπ
− = (ihk−1γk−1 + hk+1γk+2)f0 , (17)

π−HMπ
+ = (ihk−1γk−1 − hk+1γk+2)f†0 . (18)

Finally the rotated Hamiltonian is

H ′M = H0 + Vd +
h2
k−1 + h2

k+1

2hk
(iγkγk+1)

+ i
hk−1hk+1

hk
γk−1γk+2 +O(ε3) . (19)

This result includes a renormalization of the strength
of the H0 term which increases the magnitude of the
splitting, in addition to a new term ih′k−1γk−1γk+2. By
projecting into the low-energy sector of H0 (which de-
pends on the sign of hk), the Majoranas γk and γk+1 are
frozen into one of the definite parity states of the complex
fermion mode, and thereby decoupled, or “decimated,”
from the effective Hamiltonian. The single effective cou-
pling h′k−1 replaces three hopping terms in HM. Because
the new term maintains the imaginary random-hopping
form, the SDRG is closed in this model space and can be
iterated, with the flow acting on the disorder distribution
of the couplings {hn}. During the RG flow, some of the
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terms involved in decimations will be themselves renor-
malized couplings from prior steps; they can be made to
fit the present format by re-indexing the chain after ev-
ery step to remove the decimated Majorana orbitals. In
addition, the specific form of the renormalized coupling
h′k−1 permits a framing of the SDRG in terms of a clas-
sical random walk; this approach will be developed in
detail in Sec. V.

The many-body Hilbert space is therefore decomposed
into a tensor product of non-interacting complex fermions
in definite parity states. Returning to the XY model
viewed as two decoupled Majorana chains and running
the above procedure independently on each of the chains,
one can deduce from the signs of the couplings in Eq. (5)
that the ground state is even under gx and gy if N
mod 4 = 0 and odd under gx and gy if N mod 4 = 2.
The ground state spin correlations in an eigenstate of the
Hamiltonian can also be understood from this picture;
see Sec. II D.

As a technical remark, one way to deal with the signs
of the couplings in Eq. (5)—needed to deduce gx and
gy quantum numbers as well as the signs of the corre-
lation functions—is to perform a gauge transformation
of the Majorana fermions as ηj = sjη

′
j , where sj = 1

if j = 4n + 1 or 4n + 2 and sj = −1 if j = 4n + 3
or 4n + 4, while ζj = sj(−1)j+1ζ ′j . The Hamiltonian
written in terms of the primed Majoranas takes the form∑
j iJ

x
j ζ
′
jη
′
j+1+iJyj η

′
jζ
′
j+1, i.e., all Majorana hopping am-

plitudes are positive in the convention where the Majo-
ranas are written in the same order as they appear on the
chain: ihnmγ

′
nγ
′
m with n < m has hnm > 0. This prop-

erty is preserved under the SDRG, which simplifies anal-
ysis of the signs. For example, for Majoranas γ′n, γ

′
m with

n < m decimated as a pair we then have 〈iγ′nγ′m〉 = −1 at
the zeroth order in the SDRG, and using the non-crossing
property of the pairs in each Majorana chain fixes the
signs of correlations in Eqs. (8)–(10) to be (−1)j−k. To
avoid confusion, in formulas we keep using the original
Majoranas as in Eq. (5).

2. Majorana problem with inter-chain interaction terms

In the presence of interactions coupling the two Majo-
rana chains, it is necessary to consider the full Hamilto-

nian Eq. (5). In the notation of the present section we
have H = HX +HY +Hint, where

HX =

N−1∑
n=1

ihXn γ
X
n γ
X
n+1 , (20)

HY =

N−1∑
n=1

ihYnγ
Y
n γ
Y
n+1 , (21)

Hint =

N−1∑
n=1

Kn(iγXn γ
X
n+1)(iγYn γ

Y
n+1) . (22)

Because all of the terms in H are measurements of
fermion parity, the general framework from the previous
section—in particular Eq. (16)—still applies. Now there
are two cases: the largest energy scale can be set by one of
either the hopping terms {hMn } or the interactions {Kn}.
While one can in principle consider both cases following
Ref.22, for our purposes we will study only the hopping-
dominated case. Suppose that H0 = ihXk γ

X
k γ
X
k+1. Now

Vod = ihXk−1γ
X
k−1γ

X
k + ihXk+1γ

X
k+1γ

X
k+2

+Kk−1(iγXk−1γ
X
k )(iγYk−1γ

Y
k )

+Kk+1(iγXk+1γ
X
k+2)(iγYk+1γ

Y
k+2) . (23)

The components appearing in each off-diagonal block of
the Hamiltonian are

π+Hπ− =
( (
hXk−1 +Kk−1(iγYk−1γ

Y
k )
)
iγXk−1

+
(
hXk+1 +Kk+1(iγYk+1γ

Y
k+2)

)
γXk+2

)
f0 (24)

≡ (ihX ,int
k−1 γ

X
k−1 + hX ,int

k+1 γ
X
k+2)f0 , (25)

π−Hπ+ =
( (
hXk−1 +Kk−1(iγYk−1γ

Y
k )
)
iγXk−1

−
(
hXk+1 +Kk+1(iγYk+1γ

Y
k+2)

)
γXk+2

)
f†0 (26)

≡ (ihX ,int
k−1 γ

X
k−1 − hX ,int

k+1 γ
X
k+2)f†0 . (27)

The effect of the interactions in perturbation theory is
simply to modify the couplings into operators which we

refer to as “interacting couplings:” hXk±1 → hX ,int
k±1 . This

is a reasonable shorthand because the interacting cou-
plings commute with each other and all fermion operators
appearing in the formula. Then from the result Eq. (19),
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H ′ = H0 + Vd +
(hX ,int
k−1 )2 + (hX ,int

k+1 )2

2hXk
(iγXk γ

X
k+1) + i

hX ,int
k−1 h

X ,int
k+1

hXk
γXk−1γ

X
k+2 +O(ε3) (28)

= H0 + Vd + (iγXk γ
X
k+1)

(
(hXk−1)2 + (hXk+1)2 +K2

k−1 +K2
k+1

2hXk
+ i

hXk−1Kk−1

hXk
γYk−1γ

Y
k + i

hXk+1Kk+1

hXk
γYk+1γ

Y
k+2

)

+ i
hXk−1h

X
k+1

hXk
γXk−1γ

X
k+2 +

Kk−1h
X
k+1

hXk
(iγXk−1γ

X
k+2)(iγYk−1γ

Y
k ) +

hXk−1Kk+1

hXk
(iγXk−1γ

X
k+2)(iγYk+1γ

Y
k+2)

+
Kk−1Kk+1

hXk
(iγYk−1γ

Y
k )(iγXk−1γ

X
k+2)(iγYk+1γ

Y
k+2) +O(ε3) . (29)

Projecting into the low-energy sector sets iγXk γ
X
k+1 →

−sgn(hXk ) and again decouples the Majorana operators
γXk and γXk+1 from the rest of the system, decimating
them by creating a complex fermion mode with defi-
nite parity. As in the non-interacting case, the mag-
nitude of the splitting is increased by renormalization
of H0, and a new hopping term hX ′k−1 is added to the
X chain. However, the leading-order effect of the in-
teractions, at O(ε), arises from Vd, where the “degra-
dation” of the term Kk(iγXk γ

X
k+1)(iγYk γ

Y
k+1) renormalizes

hY ′k = hYk −sgn(hXk )Kk. As a result, correlations develop
between the hopping terms on the same bond. This as-
pect of the perturbation will constitute the basis of a
mean-field study of the interacting system, presented in
Sec. IV.

The effective Hamiltonian also includes renormalized
couplings hY ′k−1 and hY ′k+1, as well as new four-fermion
terms which change the structure of the lattice graph,
and a six-fermion term. The appearance of these terms
breaking the form of H, as well as the generation of cor-
relations between terms, are an indication that the RG
flow cannot be tracked exactly in the interacting model.
However, if the interaction terms already tend to be weak
compared to the hopping, the higher-order terms gener-
ated by this process will accordingly be weaker still. This
is the situation, at least initially, in the random XYZ
model with small J̃z; however there is no guarantee at
this point that the relative strengths of the different types
of couplings are maintained asymptotically. We will re-
turn to this question more systematically in Sec. VI, after
we understand the non-interacting problem with corre-
lated Majorana hopping amplitudes in the two chains in
Sec. V.

D. XY model spin correlations in SDRG

From the controlled SDRG for the random XY model
one can deduce that average correlations in the ground
state follow power laws—although typical correlations
are short-ranged—and even calculate the exponents. One
also obtains a more qualitative picture of the behavior of
the spin correlation functions.

Expanding Eq. (10) in the ground state at distance r,

Cz(j, j + r) = 〈iηjζj+r〉〈iζjηj+r〉 . (30)

Other terms vanish due to symmetry. One sees imme-
diately that Cz(j, j + r) = 0 if r is even. For odd r,
Cz(j, j + r) assumes a large value if and only if the sites
j and j + r were decimated together on both Majorana
chains, in which case both expectation values 〈iηjζj+r〉
and 〈iζjηj+r〉 have approximately unit magnitude and
opposite sign, so the sign of Cz is negative. Otherwise if
this decimation did not occur in one or both Majorana
chains the contribution is suppressed, arising only from
higher-order terms in the perturbation theory. Consider
the correlations averaged over sites j as well as over disor-
der realizations, which average we denote Cz(r). Nearly
all terms will be vanishingly small, with rare terms of
roughly unit magnitude occurring with some density;
these dominate the average. It is a result of Ref.3 for the
RS phase that at sufficiently large separation the like-
lihood of such a decimation scales as r−2; thus for two
independent Majorana chains ηz = 4.

The transverse correlations Eqs. (8) and (9), summa-
rized as C⊥(j, j+r), are the expectation values of strings
of 2r Majoranas. Such operators are evaluated as the sum
of r-fold products of expectation values of symmetry-
allowed bilinear contractions, with signs arising from the
signature of each permutation. A term in the sum has
a large value if and only if it contracts all Majoranas
with their decimation partners in the SDRG. This will
be the case for exactly one term if all decimations of the
Majoranas appearing in the string expectation value are
“internal;” that is, if all decimation partners are also in-
cluded. If any Majoranas were decimated with orbitals
which do not appear in the string, the expectation value
will be small. We again define C⊥(r) as the average over
sites and disorder realizations.

If on both chains X and Y the sites j and j + r are
decimation partners, then as described above, this pair
contributes a large value to Cz(r). The pair also neces-
sarily contributes a large value to C⊥(r), as pairing the
extremal Majorana orbitals in a string implies that all
decimations are internal to the string. Thus, the critical
exponent η⊥ lower-bounds ηz. As reviewed earlier, for
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the random XY model η⊥ = 3−
√

5 ≈ 0.764; the bound
is saturated in the XX model where η⊥ = ηz = 23.

Finally, the SDRG picture also tells us about the end-
to-end spin correlations in the XX and XY models. The
expectation value Cz(1, N) ≡ Cz(N) obtains large con-
tributions if on both Majorana chains the end sites 1
and N are paired in the SDRG. While such occurrences
in the two chains are perfectly matched in the XX model
and have probability 1/N or ηe

z = 1, in the XY model
the occurrences are independent, giving ηe

z = 2. On the
other hand, the expectation value C⊥(1, N) ≡ C⊥e (N)
includes all Majorana orbitals on one chain, and all but
those at sites 1 and N on the other. This string has
a large expectation value if all of these Majoranas are
paired internally, which is to say that the two excluded
Majoranas are decimated together. As this is occurs on
a single chain only, it has the same probability in both
the random XX and XY models. Indeed, ηe

⊥ = 1 in both
cases30.

III. UNBIASED TENSOR NETWORK STUDY

A. “Rigorous RG” numerical method

The standard numerical technique for equilibrium
states of many-body quantum systems in 1d is the den-
sity matrix renormalization group (DMRG)38,39, which
has been remarkably effective in conjunction with ma-
trix product state (MPS) representations of low-energy
wavefunctions40,41. Over nearly 30 years, DMRG has
seen enormous practical success in a wide range of mod-
els of physical interest. However, for some time its effec-
tiveness was not well explained: even as MPS attained a
rigorous footing with the proof of the area law of entan-
glement in 1d42–44, the existence of an efficient algorithm
for eigenstates given an area-law Hamiltonian remained
unclear. It was not until the work of Landau et al. 45 in
2015 that a polynomial-time algorithm was developed for
ground states of gapped models, proving that an efficient
method is possible in principle.

However, the algorithm exhibited in Ref.45 bears little
resemblance in its particulars to DMRG, and a similar
proof for the DMRG algorithm appears to be challenging;
in fact, it is known that popular multi-site variants can
be NP-hard in the worst case46. As a practical matter,
in systems with strong disorder DMRG is susceptible to
spurious convergence to excited states, an outcome which
cannot be readily diagnosed47. This is fundamentally a
consequence of performing an iterated local optimization
over MPS parameters. The rigorous algorithm is dis-
tinguished by a reliance on an approximate ground state
projector (AGSP), an operator derived from the Hamilto-
nian, which was introduced by Arad et al. 48 . The role of
the AGSP is to provide global information, ensuring that
intermediate states can be efficiently represented and di-
recting the algorithm along a computationally tractable
route to the ground state.

AGSP-based methods were later generalized to low-
energy excited states in models with slightly relaxed con-
ditions on the density of states49. Based on this work,
in collaboration with Vidick we introduced the rigor-
ous renormalization group (RRG), a numerical imple-
mentation for low-energy states of local Hamiltonians in
one dimension27. While the implemented method differs
slightly from the proof construction and does not strictly
satisfy the conditions of the guarantee—whose parame-
ters are not known a priori regardless—it inherits the
intuitive benefits of the AGSP and has been seen to be
effective in practice for nontrivial low-energy spectra like
those of strongly disordered systems, or in the presence
of nearly degenerate manifolds27,50, where DMRG may
be unreliable.

In the following sections, we perform a numerical study
of the line J̃z ∈ [0, 1], J̃x = J̃y = 1, in the phase dia-
gram of Eq. (1), using RRG. Our objective is primarily
to verify by unbiased numerics the observation of contin-
uously varying critical exponents in the SBRG study of
Slagle et al. 4 , and then to shed additional light on the
nature of the low-energy theory. (Here we focus solely
on the ground state properties and low-energy physics,
rather than the question of MBL.) For concreteness, we
use the disorder distribution described in Eqs. (3) and
(4) of Ref.4, namely,

p(Jαi ) =
1

ΓJ̃α
(Jαi )1/Γ−1 , Jαi ∈ [0, (J̃α)Γ] . (31)

We use a milder disorder strength Γ = 2, as compared
to Γ = 4 for the previous work4. Both choices lead to
strong disorder physics and the specific value should have
little effect on the universal low-energy physics for large
enough systems. However, we find that the logarithm of
the distribution of the energy gaps depends significantly
on Γ, with smaller values tending to lead to larger gaps;
this eases the challenge to the numerics which in any case
are limited by double-precision floating-point errors on
the order of 10−16. In RRG we are capable of accurately
resolving energy scales down to log10(Ω/ε) ∼ −12, and
validate our results against the free-fermion solution at
the soluble point J̃z = 0.

To construct the AGSP for RRG we use a Trotter ap-
proximation to a thermal operator e−βH . The output
of the RRG algorithm is a subspace of constant dimen-
sion approximating the low-energy states of the model.
We use an implementation based on ITensor51, in which
we explicitly realize the Z2 × Z2 symmetry and solve for
the lowest two eigenstates in each of the four symmetry
sectors52. In each case the MPSs generated by RRG are
then further optimized using DMRG in order to minimize
the overlap with high-energy states. The RRG “hyperpa-
rameters” s and D (see Ref.27 for details) are chosen so
that for the majority of disorder realizations DMRG can
optimize the RRG output in a small number of sweeps.
For approximately the most challenging 1% of realiza-
tions, DMRG requires many sweeps to converge. In these
instances we repeat the calculation, increasing the RRG
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J̃z 0.0 0.2 0.4 0.6 0.8 1.0

(s,D) (8,14) (8,14) (6,10) (6,10) (5,8) (5,8)

Table I. RRG hyperparameters are shown for values of J̃z

studied numerically. As described in the text, we optimize
the output of RRG using DMRG, and for finite J̃z take as a
measure of accuracy the number of sweeps required for con-
vergence. These values of s and D were chosen in order to ac-
curately converge approximately 99% of disorder realizations
on N = 80 spins. For the small fraction of more difficult real-
izations which are not solved by the hyperparameters above
we repeat the algorithm with increased values, finding that
convergence is achieved this way.

hyperparameters, and find that the improved RRG states
are easily converged by DMRG. From comparison with
exact free-fermion results for J̃z = 0 obtained by nu-
merical matrix diagonalization, we find that if RRG pro-
duces states which are successfully converged by DMRG
and the excitation gap is larger than the target threshold
10−12, the ground state energy and gap are numerically
exact in & 99.5% of realizations. As we will show in the

following section, at J̃z > 0 the finite-size gaps tend to
be larger than those at J̃z = 0 and should be easier for
RRG; thus we believe our results are even more reliable
for these points.

B. Results from RRG

1. Critical spin correlations

We measure spin correlations in the RRG ground state
of H[J̃x = 1, J̃y = 1, J̃z] with J̃z ranging from 0 to 1 and
microscopic disorder strength Γ = 2 throughout. Bulk
correlations in an open chain of length N are measured
for r ≤ N

2 including only sites j, j + r ∈ {N4 , . . . , 3N
4 }, in

order to distinguish the power law from the end-to-end
correlations closer to the boundaries. We show disorder-
averaged correlations data measured in chains of length
N = 80 sites in Fig. 3, which includes slices at values
of J̃z moving along the phase boundary from the free-
fermion model to the tricritical point. Already the raw
data clearly shows power laws with varying exponents for
both C⊥ and Cz in the bulk.

End-to-end spin correlations are measured only be-
tween the single pair of sites 1 and N for each disorder
realization, and exhibit correspondingly larger statisti-
cal fluctuations. In addition, reproducing Cze (N) cor-
relations presents a singular challenge for the RRG al-
gorithm. As discussed in Sec. II D, in the SDRG the
likelihood of a nonzero value of 〈σz1σzN 〉 at the XY free-
fermion point is the square of the probability of an end-
to-end singlet in a spin chain of length N in the RS phase.
That is, the distribution is broad on a logarithmic scale,
with the average being dominated by a very small tail.
More importantly, the disorder realizations located in the
tail—of outsize importance in the average—are those on

100 101

r

10−5

10−3

10−1

C
⊥
,z

(r
)

J̃z = 0.0

J̃z = 0.2

J̃z = 0.4

J̃z = 0.6

J̃z = 0.8

J̃z = 1.0

Figure 3. Bulk spin correlations data from RRG are shown
for the random XYZ model with varying bandwidth J̃z, up
to separation r = 40 lattice spacings, from systems of length
N = 80. Open circles indicate C⊥(r) data, while filled cir-

cles mark Cz(r). The disorder averages for each value of J̃z

include 1500 realizations. In the spatial average we include
only the middle half of the spin chain—that is, only sites in
{N

4
, . . . , 3N

4
}—in order to separate the bulk correlations from

the ends, which exhibit different scaling laws. See Fig. 5 for
the critical power law decay exponents extracted from this
data. In order to measure the power laws we show the ab-
solute value of the correlations, which originally have a stag-
gered sign pattern (−1)r. In addition, only odd r are shown
for Cz data because the values for even r, though demonstrat-
ing a similar power law, are much smaller (at J̃z = 0 they are
identically 0, see Sec. II D).

which sites 1 and N were decimated together on both
Majorana chains, which correlate with the smallest exci-
tation gaps in the low-energy spectrum and are the most
difficult realizations for the method to solve accurately.
We show disorder-averaged end-to-end correlations as a
function of N in chains up to N = 80 in Fig. 4. One
sees that the C⊥e correlations depend weakly on J̃z and
have close slopes on the log-log plot, suggesting simi-
lar power law exponents. On the other hand, the Cze
correlations depend strongly on J̃z and despite evident
statistical scatter appear to have varying slopes.

Our unbiased numerical results for the bulk correla-
tions are in broad agreement with the finding of Sla-
gle et al. 4 of critical exponents governing the decay of
spin correlations that vary continuously with J̃z. In con-
trast to the previous approach, we perform direct mea-
surements in optimized MPS for the ground state. We
show the extracted power law exponents for the bulk and
end-to-end correlations in Fig. 5 as a function of J̃z.
As expected, the C⊥ and Cz exponents approach each
other at the tricritical (permutation-symmetric) point

J̃z = 1, where we estimate the bulk critical index to
be η⊥ = ηz ≈ 1.48.
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J̃z = 0.8

J̃z = 1.0

Figure 4. RRG end-to-end correlations data are shown for
the random XYZ model with varying bandwidth J̃z. System
sizes N = 32, 48, 64, 80 are included for C⊥e (N) (open circles)
and Cze (N) (filled circles). These data are noisier than the
bulk data shown in Fig. 3 due both to reduced statistics (same
number of disorder realizations but no averaging over bulk
pairs) as well as the special difficulty of measuring Cze (N) in
RRG, as described in the text. See Fig. 5 for the critical
power law decay exponents extracted from this data. We
use the absolute value of the correlations data here; the true
values all have negative sign because all N are even.
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Figure 5. Critical exponents governing spin correlations in
the RRG ground states are shown, extracted from the data
in Figs. 3 and 4. Both bulk and end-to-end exponents are
included, with known results for the bulk correlations in the
free-fermion model at J̃z = 0 indicated by red stars, and
results for end-to-end correlations by yellow diamonds. An
increase in statistical noise is evident in the end-to-end corre-
lations as compared to the bulk. The reason that these com-
putations, particularly Cze (N), are more difficult, is discussed
in the text.

2. Entanglement structure

We also study measures of entanglement in the RRG
ground states for varying J̃z. The average bipartite en-
tanglement entropy of a connected subsystem of length
` adjacent to the system boundary is known to scale ac-

cording to the conformal field theory result Sb(`) = c̃
6 ln `,

with a universal constant c̃. In some cases the “effec-
tive central charge” c̃ is apparently related to the central
charge of the clean model8; for example, in the criti-
cal phase of a single Majorana chain c̃ = ln 2

2 = c ln 2,

where c = 1
2 is the central charge of a clean Majo-

rana fermion chain. Accordingly, the XY fixed point
has c̃ = ln 2, being equivalent to two decoupled critical
random Majorana chains. From finite-size scaling of the
disorder-averaged half-system bipartite entanglement en-
tropy Sb(N/2) we find with fair precision that c̃ is stable

at this value for any interaction strength J̃z along the
critical line, in agreement with Ref.4.
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J̃z = 1.0

Figure 6. Characterizations of the entanglement structure
of the ground state are shown. We include the power-law
exponent ρ for decay of average long-range mutual informa-
tion I(r), based on the raw data shown in the upper panel.
The subsystems A and B considered in this case are single
spins separated by a distance r, and the average is taken over
sites in the middle half of the chain. Also shown is the ef-
fective central charge c̃, found from finite-size scaling of the
half-chain entanglement entropy. While c̃ appears to be in-
sensitive to the coupling between the two Majorana chains,
the LRMI exponent varies continuously.

We also measure long-range mutual information
(LRMI) between disconnected regions; the formula for
this entropic quantity in terms of the entanglement en-
tropy of a subsystem is I(A : B) = S(A) + S(B) −
S(A∪B). We will take A and B to be single spins sepa-
rated by a distance r; Ref.4 found that up to appropriate
rescaling, the lengths of the subsystems do not affect the
asymptotic behavior. The disorder-averaged LRMI we
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denote I(r), and this quantity will decay no faster than
the slowest observable. That is, in the symmetric ground
state of an ordered phase I(r) will be long-ranged; in a
phase without order one expects exponential decay; and
at a critical point the exponent ρ, I(r) ∼ r−ρ, lower-
bounds the power-law decay exponent of any local ob-
servable. We show disorder-averaged LRMI data in the
upper panel of Fig. 6. The critical exponent ρ varies con-
tinuously with J̃z, as is the case with the other critical
indices measured, and is very close to the exponent η⊥,
suggesting that the correlations of the order parameters
for the adjacent phases saturate the lower bound every-
where along the boundary. Our RRG results for ρ as well
as the effective central charge c̃ are shown in the lower
panel of Fig. 6. At J̃z = 1 we estimate ρ ≈ 1.73, which is
somewhat larger than the estimates of η⊥,z but is in gen-
eral agreement and is also similar to the SBRG estimates
in Ref.4.

3. Scaling of excitation gap

Because RRG produces not only the ground state but
a constant number of low-energy states, it is possible in
principle to study spectral properties as well. We focus
first on the simplest of these, the energy gap to the low-
est excitation in a finite system. From the SDRG for
the free-fermion point one observes that this excitation
consists of flipping the parity of the complex fermion as-
sociated with the lowest-energy (i.e., the last decimated)
pairing on either Majorana chain. As we consider chains
with lengths that are multiples of 4, the ground state
is found in the (gx, gy) = (+1,+1) sector of the global
(Z2)2 symmetry and the first excited state will be found
in either the (+1,−1) or (−1,+1) sector.

The distribution of excitation gaps is known exactly
via the mapping to two decoupled copies of the RTFIM,
where the universal form of the gap distribution is known
from the work of Fisher and Young 29 . The gap in the
random XY model is the minimum of two independent
random variables sampled from the distribution of Ref.29.
In Fig. 7 we show histograms of the (logarithmic) exci-

tation gaps for the random XYZ model with varying J̃z

for chains of length N = 80. The exact distribution for
the J̃z = 0 point is indicated with a dotted line.

Indicated on Fig. 7 by vertical lines and the labels MJ̃z

are the medians of the histograms; these are provided as
a characterization of the distributions that is not overly
sensitive to the tails, where the energy gaps can be close
to the numerical threshold. While the precise tails are
not accessible, it is rare for RRG to make an error which
would move a disorder realization out of the tail into the
bulk of the distribution. Thus, the median provides an
accurate summary of the gap distribution although the
mean cannot be reliably estimated. In Fig. 8 the scaling
with chain length of the median of the gap distribution
is shown with varying J̃z. This allows an estimate of
the exponent ψ controlling the length-energy relation-
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Figure 7. Histograms of the first excitation gap are shown for
the random XYZ model at system size N = 80 sites. Vertical
lines indicate the median MJ̃z of each gap distribution. The
medians include long tails that are not shown, as they contain
energy gaps too small to be accurately measured by the RRG
algorithm; however the estimate of the median is not sensitive
to these uncertainties. The trace for each value of J̃z includes
1500 disorder realizations.

ship Eq. (2), which takes the value ψ = 1
2 at the free-

fermion point. The RRG scaling data suggest that there
may be a systematic drift in ψ as J̃z is varied toward
the permutation-symmetric point J̃z = 1, however it is
difficult to exclude the possibility of a stable ψ with a
long crossover around J̃z = 1. In either case, this result
does not support the n = 3 Damle–Huse universality for
this tricritical point.

4. Symmetry properties of low-energy states

As described in Sec. III B 3, in the non-interacting
model Hxy, the symmetry properties of the ground and
low-lying states can be deduced from the single-particle
excitations used to build the many-body states. For con-
venience we relabel the Z2 × Z2 symmetry sectors (al-
ways working on systems with N ∈ 4Z): denote the free-
fermion ground state sector (gx, gy) = (+1,+1) as 0; the
sector (−1,−1) as 1; (+1,−1) as 2; and (−1,+1) as 3.
Along the critical line, H has a statistical Zstat

2 symmetry
exchanging sectors 2 and 3, and at the tricritical point a
statistical S3 relates sectors 1, 2, and 3.

Beginning from a vacuum state in sector 0, the first
many-body excited state—found by flipping the occu-
pancy of the lowest-energy fermionic mode—comes from
either sector 2 or 3, depending on which Majorana chain
is involved. The next excited state must also be asso-
ciated with a low-energy single particle mode on one of
the Majorana chains, thus will again come from sector 2
or 3. The third many-body excited state can be of the
same type, or can be associated with the simultaneous
excitation of the two lowest energy single-particle states.
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Figure 8. The value of the critical exponent ψ extracted
from finite-size scaling of excitation gaps in RRG is shown.
The upper panel shows the finite-size scaling of the medians
MJ̃z (shown in Fig. 7 for N = 80), with each data point in-
cluding 1500 disorder realizations. The lower panel shows the
extracted power law exponents for both the first gap, denoted
E1 − E0 (found from the data shown in the upper panel) as
well as the second and third energy gaps. At the free-fermion
point J̃z = 0, ψ = 1

2
, and the systematic deviation from the

exact value is likely due to finite-size corrections. At this
point the first and third energy gaps are very often identical,
both being associated with the lowest-energy decimation on
one chain. Away from this point, this is no longer necessarily
the case and a drift in ψ with J̃z is visible in the E1 − E0

curve.

With a logarithmically broad disorder distribution, as at
an IRFP, the third excited state is very likely to be of the
latter type; thus we expect that for sufficiently long N ,
the four lowest-energy states of Hxy will most often come
from the sectors {0, 2, 3, 1} or {0, 2, 2, 0}, or their Zstat

2

counterparts {0, 3, 2, 1} and {0, 3, 3, 0}. The other free-
fermion-allowed configurations are {0, 2, 3, 2}, {0, 2, 3, 3},
{0, 2, 2, 2}, {0, 2, 2, 3}, and Zstat

2 counterparts.

At the tricritical point this picture cannot apply, as
the S3 counterparts of the free-fermion-allowed config-
urations (these include, e.g., {0, 1, 2, 3} and {0, 1, 1, 0})
must also occur and with equal likelihood; thus we study
the critical line by tabulating occurrences of free-fermion-
disallowed low-energy configurations in disorder realiza-
tions with finite J̃z. We classify the various configura-
tions as described in the table in Fig. 9, and their like-
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(2↔ 3)
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{0, 2, 3, 2}, {0, 2, 3, 3},
{0, 2, 2, 2}, {0, 2, 2, 3}, (2↔ 3)

Figure 9. Sampled estimates of the likelihood of the various
symmetry patterns of low-energy states are shown as a func-
tion of J̃z. The lower panel shows the same data as the upper,
zoomed in on the bottom of the y-axis. The free-fermion-
allowed Types 1, 2, and 3 are defined above and drawn with
solid lines, and the free-fermion-disallowed Types 1∗, 2∗, and
3∗ consist of all other partners under the action of the S3 sta-
tistical symmetry, and are drawn with dashed lines. Here we
provide summary data which is averaged over system sizes
N = 32, 48, 64, 80, with 6000 total disorder realizations for
each value of J̃z. (In Fig. 10 we study the dependence on N .)

At J̃z = 0 we assume that only Types 1, 2, and 3 are present
and include eigenstate permutations of the exact symmetry
pattern for very small splittings < 10−12; nevertheless there
is still a low rate of “Other” instances.

lihood in our sample of disorder realizations is plotted.
Note that in this plot we have averaged over all system
sizes, in order to provide an initial summary of the typi-
cal behavior (we will study the scaling behavior with N
later).

For Hxy the dominant pattern is Type 1, with a sub-
stantial minority of Type 2 and very few of Type 3. The
S3 counterparts, which are forbidden in the picture of
decoupled Majorana chains, are labeled Types 1∗, 2∗,
and 3∗. The category “Other” includes all low-energy
configurations not matching any of the types already de-
scribed. There is a very small, though finite, fraction of
such instances; however these are nearly entirely asso-
ciated with very small excitation gaps. As already de-
scribed, in such situations with very small splitting RRG
cannot systematically identify the lowest-energy state or
the exact sequence of excitations, so the precise order of
symmetry sectors is not reproduced. At J̃z = 0 we are
able to “interpret” many such cases by assuming that the
energy-permuted free-fermion-allowed symmetry pattern
is the correct one, though away from this point a cor-
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rected type cannot be uniquely determined. (At J̃z = 0
some low-energy patterns found by RRG cannot be inter-
preted as one of the free-fermion-allowed configurations,
and these are the realizations classified as “Other” at this
point.)

Moving away from J̃z = 0, the Types 1∗, 2∗, and 3∗ oc-
cur with increasing probability. We find that Type 2 de-
creases more quickly for small J̃z than Type 1, which is in
line with our understanding, developed in Sec. IV, of the
interaction as introducing correlations between the Ma-
jorana chains (such correlations make it less likely that
the two lowest-energy single-particle states occur in the
same Majorana chain). The rate of “Other” instances

is very low and decreasing with increasing J̃z, suggest-
ing that these remain attributable to errors due to small
energy gaps, and the only new types of symmetry pat-
tern appearing at low energy are those related to the
free-fermion-allowed types by S3. As one expects from
the definitions of each type, the frequency of Types 1∗,
2, and 3∗, are roughly twice those of Types 1, 2∗, and
3, respectively, at J̃z = 1. Here the S3 partners Types
1+1∗ describe roughly 91% of disorder realizations, with
Types 2 + 2∗ and 3 + 3∗ describing roughly 4.5% each.
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Figure 10. The ratio of the combined likelihood of the free-
fermion-disallowed Types 1∗ + 2∗ + 3∗ to the combined likeli-
hood of Types 1+2+3 is shown as a function of J̃z, separately
for system sizes N = 32, 48, 64, 80. Each data point includes
1500 disorder realizations. For intermediate J̃z ∈ (0, 1), there
is a consistent trend toward lower probabilities as the system
size increases from N = 32 to 64, meaning that the low-energy
symmetry patterns of longer systems are more likely to be

free-fermion-like. The quantity p(1∗+2∗+3∗)
p(1+2+3)

is very similar for

system sizes N = 64 and 80 at all values of J̃z, with the dif-
ference being within the apparent statistical scatter. At the
tricritical point J̃z = 1 the predominant scaling behavior is
reversed, and the quantity appears to be converging toward
its long-distance fixed value from below with increasing sys-
tem size N .

From the above general picture of the low-energy states
we learn that the critical line is characterized by the in-
creasing probability of the free-fermion-disallowed sym-
metry partners Types 1∗, 2∗, and 3∗ with increasing inter-

action strength J̃z. The dependence of these probabilities
on system size provides a hint about the RG relevance
or irrelevance of the interaction. In Fig. 10, we show the
ratio of the combined likelihood of Types 1∗ + 2∗ + 3∗

to that of Types 1 + 2 + 3 as a function of J̃z for each
system size separately53. While these data suffer from
poorer statistics than those of Fig. 9, there is a trend for
all J̃z ∈ (0, 1) toward lower probabilities with increasing
N , meaning that at longer scales the disorder realizations
appear more free-fermion-like. The system sizes N = 64
and 80 are quite similar by this measure, and the differ-
ences between these values are smaller than the apparent
statistical noise. In contrast, the dependence on system
size is opposite at the tricritical point J̃z = 1, as the
likelihoods converge to their asymptotic value from be-
low with increasing length scale. In Secs. VI and VII
we make a conjecture consistent with this observation,
that the interactions may in fact be irrelevant but the
SDRG generates a marginal perturbation (correspond-
ing to the local correlation of renormalized terms, see
Sec. IV) which ultimately takes the system to a line of
free-fermion fixed points with variable exponents.

IV. MEAN FIELD THEORY OF INTERACTION

Turning on J̃z > 0 introduces four-fermion interaction
terms to the quadratic Hamiltonian Hxy. These terms
couple the Majorana chains X and Y in such a way that
the ground state is no longer analytically tractable un-
der SDRG, which generates multi-fermion terms in the
effective Hamiltonian that proliferate with increasing RG
scale. However, as mentioned in Sec. II C 2, if at some
point in the RG the interaction terms are typically weaker
than the hopping terms then the effective higher-order
descendants will be even weaker. One might hope, then,
that by beginning with a bandwidth J̃z � J̃x, J̃y the
strength of these terms may be suppressed at all scales,
leading to only a minimal effect on the criticality.

Based on this understanding, we consider the mean
field theory by “expanding” the interaction into fermion
bilinear terms. In the Majorana language, the mean-
field structure is particularly transparent; here the only
symmetry-allowed bilinear terms act internally on the
chains. For Jzj � 1,

Jzj (iηjζj)(iηj+1ζj+1) ≈
Jzj (iηjζj+1〈iζjηj+1〉+ iζjηj+1〈iηjζj+1〉) . (32)

This can also be seen in terms of the original spins, where
the mean field theory takes the form

Jzj σ
z
jσ

z
j+1 = −Jzj σxj σxj+1σ

y
j σ

y
j+1

≈ −Jz
(
σxj σ

x
j+1〈σyj σyj+1〉+ 〈σxj σxj+1〉σyj σyj+1

)
.

(33)

The effect of the allowed terms is to renormalize the ex-
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isting couplings in the following way:

(Jxj )mf = Jxj + Jzj 〈iηjζj+1〉 = Jxj − Jzj 〈σyj σyj+1〉 , (34)

(Jyj )mf = Jyj − Jzj 〈iζjηj+1〉 = Jyj − Jzj 〈σxj σxj+1〉 . (35)

With expectation values 〈·〉 understood to be evalu-
ated in the ground state of the mean field Hamiltonian
with parameters (Jxj )mf , (Jyj )mf , the above represent self-

consistency equations (i.e., minimization equations in the
variational perspective of the mean field theory). Be-
cause the Majorana chains remain decoupled, the mean-
field theory can be solved in the analytic SDRG, at least
in principle, by accounting for the distributions of effec-
tive Jxj and Jyj couplings no longer being independent. In
the following subsections we numerically investigate the
universal behavior of this mean-field theory, and provide
exact results from the analytic SDRG in Sec. V.

A. Self-consistent Hartree–Fock treatment of
interaction terms
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Figure 11. Bulk correlations data from the self-consistent
Hartree–Fock mean-field theory are shown with varying band-
width J̃z, up to separation r = 64 in chains of lengthN = 128.
Filled markers indicate Cz(r) data, and open C⊥(r). The dis-

order averages for each value of J̃z are taken over 25000 real-
izations and include only the middle half of the spin chain, as
described in the caption to Fig. 3. These simpler free-fermion
calculations are cheaper to perform, and accordingly exhibit
better statistics than those of Figs. 3–10.

We first perform a self-consistent numerical study of
the interaction term in the quadratic mean-field theory
by directly implementing Eqs. (34) and (35) in the BdG
Hamiltonian, iteratively solving the ground state of the
Hamiltonian and updating the mean-field couplings un-
til reaching convergence. The bulk correlations data in
the thus determined mean field ground state are shown
in Fig. 11, end-to-end correlations in Fig. 12, and a sum-
mary of the critical exponents in Fig. 13.

The key finding of the mean field treatment is that the
power law exponents in all correlation functions do evolve
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Figure 12. End-to-end correlations data from the self-
consistent Hartree–Fock mean-field theory are shown with
varying bandwidth J̃z. Filled markers indicate Cze (r) data,
and open C⊥e (r). Each data point is the average end-to-
end correlations from 25000 disorder realizations. Because
for small J̃z the likelihood of simultaneous end-to-end dec-
imations is very low, in computing Cze (L) we are restricted
to shorter systems in order to have reasonable statistics. For
example, in the SDRG picture, Cze (N) = e−7 corresponds to
only 25000× e−7 ≈ 23 important “events.”
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Figure 13. Critical exponents are shown for the self-
consistent Hartree–Fock mean-field theory with varying in-
teraction strength J̃z ∈ [0, 1], extracted from the correlations
data in Figs. 11 and 12. Both bulk and end-to-end exponents
are included, with known results for the bulk correlations in
the free-fermion model at J̃z = 0 indicated by red stars, and
results for the end-to-end correlations by yellow diamonds.
The point J̃z = 1 in this model does not feature any special
symmetry.

with J̃z in a similar way to those of the interacting model.
This not necessarily expected since, e.g., in a clean XXZ
model the mean field, while capturing some short-range
energetics, cannot capture varying power laws in the fully
interacting theory. By understanding the features in the
mean field responsible for capturing the varying power
laws in the random XYZ chain, in the following sections
we will be led to a plausible scenario for the physics of
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this system.
While the mean field theory is reasonably accurate for

J̃z ≤ 0.4, it is evident from Fig. 11 that the magnitudes
of the mean-field correlation functions around J̃z = 1 do
not approach their actual values. At the tricritical point
of the interacting model the statistical S3 symmetry of
the Hamiltonian leads to the equivalence of the averages
C⊥ and Cz; as the mean field lacks this symmetry, it
is not surprising that the distinction persists. Moreover,
there is nothing special about J̃z = 1 in the mean-field
model; note also that this specific mean field does not
allow any symmetry breaking, and we see that the best
it can do upon increasing J̃z is to approach the XX chain,
which is a poor approximation for J̃z ' 1.

Nevertheless, buoyed by the success of the mean field
at small J̃z, we now examine more closely the effective
parameters (Jx,yj )mf . As the interaction strength is in-

creased, the Jxj and Jyj terms tend to become more sim-
ilar. We can clearly see how this happens in the spin
formulation of the self-consistent mean field of Eqs. (34)
and (35): a large bare AFM Jxj > 0 will tend to corre-
late σxj and σxj+1 strongly antiferromagnetically (achiev-
ing 〈σxj σxj+1〉 ≈ −1 if this is the dominant coupling),
and in the presence of AFM Jzj > 0 this will lead to

an increase of the effective AFM Jyj coupling, and vice
versa. However it is not clear what sort of model the
full self-consistent mean field treatment actually consti-
tutes, as the iterated nature of the solution could lead
to long-range correlations effects among the couplings.
In the following section we propose a more straightfor-
ward model intended to broadly capture the features of
this self-consistent Hartree–Fock mean field. We will see
that the ultra-short-range correlations among Jxj and Jyj
identified above can already explain continuously varying
power laws.

B. Numerical study of random XY chain with
locally correlated couplings

1. Definition of locally-correlated XY model

The rules Eqs. (34) and (35) for the mean-field cou-
plings modify bonds on one Majorana chain based on
expectation values across the same bond on the other
chain. As a result, recalling that Jzj > 0 for all j, the
terms on a given bond—which at the mean-field level are
strengthened by the interactions—develop correlations
among themselves. Terms on separate bonds also get cor-
related in less obvious ways, since the mean field ground
state is influenced by all bonds, but we will proceed by
ignoring such longer-range correlations among the cou-
plings. We refer to such an effective model as having
“local correlations,” in order to distinguish from spatial
correlations between terms on separated bonds. One can
mimic the behavior of the mean field theory and explore
the effects of such correlations using the following pa-
rameterization of the couplings: for Aj , Bj independent

random variables and δ ∈ [0, 1], let

Jxj =

(
1− δ

2

)
Aj +

δ

2
Bj , (36)

Jyj =
δ

2
Aj +

(
1− δ

2

)
Bj . (37)

Tuning δ from 0 to 1 interpolates between fully inde-
pendent couplings and the perfectly correlated case with
U(1) symmetry. That is, the parameterization runs along
the line between the random XY and XX spin chains. As
mentioned in Sec. II A, Fisher 3 found that weak random
anisotropy is marginal around the XX point, which is
in the RS phase. However it was not resolved whether
this perturbation is truly marginal, or perhaps instead
marginally relevant or irrelevant. The mean-field numer-
ical results in this section provide an investigation into
this question, a topic which will be discussed in more
detail within the analytic SDRG in Sec. V.

2. Exact diagonalization study of locally correlated
Majorana chains
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Figure 14. Bulk correlations data from the locally-correlated
effective XY model are shown with varying correlation δ, up
to separation r = 64 in spin chains of length N = 128. Filled
markers indicate Cz(r) data, and open C⊥(r). The disorder
averages for each value of δ are taken over 25000 realizations.
In the average we include only the middle half of the spin
chain, as described in the caption to Fig. 3.

It is not immediately clear to what extent the
locally-correlated free fermion effective model defined in
Eqs. (36) and (37) shares the qualitative features of the
XYZ model, or indeed the self-consistent mean field the-
ory. We investigate this by repeating the measurements
of bulk and end-to-end spin correlations in chains of sim-
ilar length to the previous studies, now varying the cou-
pling correlation parameter δ. Figures 14, 15, and 16
demonstrate that these critical indices do vary continu-
ously in a similar way to the interacting case. Our ob-
servation that this mean-field approach indeed exhibits
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Figure 15. End-to-end spin correlations data are shown in
the locally-correlated effective XY model with varying cou-
pling correlation δ. Filled markers indicate Cze (r) data, and
open C⊥e (r). System sizes N = 32, 48, 64, 80, 96, 128 are in-
cluded and each data point averages over 25000 disorder re-
alizations. See Fig. 16 for the critical power law decay expo-
nents extracted from this data.
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Figure 16. Critical exponents governing spin correlations
in the locally-correlated XY model with varying correlation
parameter δ are shown, extracted from data shown in Figs. 14
and 15. Both bulk and end-to-end exponents are shown, with
known results for the bulk correlations in the uncorrelated XY
model at δ = 0 indicated by red stars and known end-to-end
critical spin exponents by yellow diamonds. Known critical
exponents for the U(1)-symmetric XX model at δ = 1 are
similarly indicated; in this case ηe⊥ = ηez = 1 and η⊥ = ηz = 2.
The discrepancy in η⊥ is likely a result of a long crossover, as
the disorder distribution of Eqs. (36) and (37) is somewhat
weaker than Eq. (31) for the same value Γ = 2.

many of the qualitative features of the original case sug-
gests that at least for small J̃z, the primary effect of the
interactions is to correlate the coefficients of the hopping
terms on the two Majorana chains. However, we em-
phasize that although the ηz and η⊥ converge to similar
values at the XX point δ = 1 and the tricritical XYZ
point J̃z = 1, the reasons for this are not necessarily
the same. The mean field should not be taken too seri-

ously as a picture of the interacting phase away from the
perturbative regime.

V. LOCALLY CORRELATED XY MODEL IN
THE RANDOM WALK FORMALISM

Some types of disordered quantum Hamiltonian can be
uniquely associated with a classical random walk (RW).
An alternative picture of the SDRG viewed through this
connection is useful for understanding the properties of
IRFP phases. The RW formulation has previously been
applied to both the RTFIM54,55 and AFM quantum spin
chains30,56. In this section we first review the RW for a
single Majorana chain based on the SDRG procedure of
Sec. II C 1. While all results for correlation functions in
this case are known from Fisher’s analytic solutions for
flows approaching the RS fixed point, we demonstrate
how to obtain some power law exponents from different
arguments, which will generalize to the locally correlated
XY chain where we do not have analytic flows. We first
obtain rigorous bounds in the continuum limit on the
asymptotic scaling of the Majorana pairing probability
(which determines the correlations of the z component
of spin in the random XX and XY chains) based on RW
survival probability, a connection which had previously
been noted in Ref.30. We then consider the problem of
two locally correlated RWs, one for each Majorana chain,
following the effective model developed in Sec. IV B. This
system turns out to correspond to an anisotropic two-
dimensional RW. We again rigorously bound the like-
lihood of decimation using the RW survival probability,
where we find that the power law exponent varies contin-
uously with the local correlation parameter. As a result,
we are able to prove a specific form for continuously vary-
ing critical exponents of spin correlations in the locally-
correlated effective model.

A. RW formulation of SDRG for the Majorana
chain

Returning to the notation of Sec. II C 1, define the log-
arithm of the energy associated with each bond in the
Majorana chain Hamiltonian HM as un = ln(J̃/|hn|),
n = 1, . . . , N−1. Here J̃ is a bare bandwidth for the cou-
pling terms, meant to evoke the parameters of the Hamil-
tonian Eq. (1). From Eq. (5) one sees that if J̃x = J̃y,
in each Majorana chain of the random XY model the
hopping terms are identically distributed. Note that the
signs of hn are not important for the discussion of prob-
abilities of site pairings below, and are only needed to
fix sign factors for the spin correlation functions, as dis-
cussed at the end of Sec. II C 1. We consider the specific
disorder distribution Eq. (31) with J̃x = J̃y = J̃ = 1.
Then the distribution of log-energies is exponential, with
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distribution parameter Γ:

τ(u) =
1

Γ
e−u/Γ , u ∈ (0,∞) , (38)

which has mean 〈u〉 = Γ and variance Var(u) = Γ2. The
Majorana model HM on N sites is associated with a
1d RW m, a Markov chain with state variables (xn, σn),
n = 1, . . . , N , where xn ∈ R is a cumulative log-energy
defined below and σn = (−1)n−1 is an internal Z2 vari-
able determining the sign of the next step to be taken57.
The discrete RW time n matches the spatial index of the
quantum chain. A given disorder realization {hj}1≤j<N
corresponds to a RW step sequence {σjuj}1≤j<N : that
is, the state of m at time n = 1, . . . , N is

m[n] =

n−1∑
j=1

σjuj , σn

 . (39)

In the following we will sometimes leave the σn state vari-
able implicit, and refer to xn as m[n]. Let Prob(x, σ, n) be
the distribution of m[n], which is governed by the master
equation

Prob(x, σ, n+ 1) =

∫ ∞
0

du τ(u) Prob(x− σu,−σ, n) .

(40)
We now consider the behavior under the SDRG of

a RW m associated with a Majorana chain HM. The
largest local energy scale |hk|, for some k, corresponds to
the smallest log-energy uk. The effect of the Shreiffer–
Wolff transformation up to second order is to eliminate
the following hopping terms:

ihk−1γk−1γk + ihkγkγk+1 + ihk+1γk+1γk+2 , (41)

and to introduce the renormalized bond term

ih′k−1γk−1γk+2 , h′k−1 =
hk−1hk+1

hk
. (42)

(There is also a shift of the leading energy scale, but this
will not be important here.) For the RW the new step is

σk−1u
′
k−1 = σk−1uk−1 + σkuk + σk+1uk+1 . (43)

In this way the SDRG transformation corresponds to a
sequential “smoothing” of the RW, in which the global
step of smallest magnitude and its neighbors are removed,
and replaced by a treble step directly connecting xk−1

and xk+2. For an illustration, the reader is referred to
Fig. 8 in App. B of the arXiv version of Ref.56, or Fig. 1
of Ref.11.

We define an inversion operation I acting on a RW m
of length N as

I : m[n] 7→ Im[n] = m[N ]−m[N − n+ 1] . (44)

That is, I flips the spatial and time coordinates of m.
(The constant shifts the starting point of Im to 0.) We

also define reflection Ra of the spatial coordinate about
the line x = a:

Ra : m[n] 7→ Ram[n] = 2a−m[n] . (45)

We will make extensive use of a “gluing” operation ⊕
which joins two RWs at their endpoints. For RWs m1,2

with lengths N1,2, then, n = 1, . . . , N1 +N2,

(m1 ⊕m2)[n] =

{
m1[n] , n ≤ N1

m1[N1] + m2[n−N1] , n > N1 .

(46)
That is, the combined RW m1 ⊕ m2 first performs the
N1 − 1 steps of m1, followed by the N2 − 1 steps of m2.
It is assumed that the first step of m2 has opposite σ
state variable as compared to the last step of m1; this is
required on the spin chain, where m2 begins and m1 ends
on the same sublattice.

Using the above definitions a precise statement can
be made about the decimation of a site n = k, which we
suppose without loss of generality to be a local minimum.
For k to have decimation partner k′ > k in the SDRG,
with k′ − k = r, a RW m must admit a decomposition

m = Imext,L ⊕mint ⊕R0mext,R , (47)

where mext,L has length k, mext,R has length N − k′ + 1,
mint[r] ≡ ∆ > 0, and the following conditions hold:

Condition 1. mint[l] satisfies xl > 0 for l = 2, . . . , r, and
attains the unique maximum xr = ∆;

Condition 2. mext,L and mext,R reach height x ≥ ∆ before
crossing 0.

(For a pictorial description, see also App. B of the arXiv
version of Ref.56.) These conditions relate the likelihood
of a decimation pairing sites k and k′ to the survival
probability of the “interior” and “exterior” partial RWs
on the fully bounded interval (0,∆). The physical inter-
est of this quantity follows from the strong correlations
shared by sites paired in the SDRG; in particular, the
scaling of the decimation probability determines average
spin correlations, as described in Sec. II D.

Note that the writing of Eq. (47) is chosen so that the
exterior RWs mext,L and mext,R have identical structure
to the interior RW mint. That is, all walks evolve forward
in time starting at step 1 with the first step being posi-
tive. Implicit in this is the assumption that the inversion
and reflection operations used result in identical proba-
bilities for the RWs because the microscopic distributions
for un are identical for n even and odd.

Focusing on asymptotic scaling (i.e., n, r � 1), we de-
scribe the RW in continuous time, passing from n → t.
The central limit theorem specifies that a sum of ran-
dom variables approaches a Gaussian distribution for suf-
ficiently large n, provided only that the moments of the
constituent distributions are bounded. The variance of
the continuum distribution is Var(x) = Var(u)t. The ef-
fect of the internal state variable σ can be accounted for
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by noting that sites which decimate together necessarily
inhabit distinct sublattices. This means that one addi-
tional σ = +1 step is always taken. The mean of the
probability distribution, then, is the expectation value of
this step: 〈x〉 ≡ x0 = 〈u〉58. The asymptotic density in
free space we denote by

Gfree(x, t) =
1√

2πVar(u)t
exp

[
− (x− x0)2

2Var(u)t

]
. (48)

Now the continuum limit of Eq. (40) is the diffusion
equation59

∂

∂t
G(x, t) = D

∂2

∂x2
G(x, t) , (49)

with diffusion constant D = Var(u)/2. Eq. (48) is the
Green’s function of Eq. (49) on x ∈ R with initial con-
dition G(x, t = 0) = δ(x − x0). This illustrates that the
continuum limit of the RW can be treated as a diffus-
ing particle initially localized at x = x0. Accordingly,
in the following sections we use the language of the dif-
fusion problem, referring to the counterparts of discrete
RWs associated with particular Majorana Hamiltonians
as “paths,” “histories,” or “trajectories.” We also some-
times write the initial condition explicitly, as G(x, t;x0).
Finally, we will use the notation defined in this section
for the discrete case, e.g., I, Ra, and ⊕, to also refer to
the counterparts of these operations in the continuum.

B. Rigorous bounds on critical exponents in the
Majorana chain from RW survival

The diffusion equation on the fully bounded interval
(0,∆), i.e., with absorbing boundary conditions at x = 0
and x = ∆, can be solved straightforwardly by harmonic
expansion. From the time-dependent solution one can
directly calculate the scaling of the asymptotic decima-
tion probability and reproduce Fisher’s detailed results
in Refs.3,7. However, in Sec. V D the fully bounded geom-
etry for two locally correlated Majorana chains becomes
too complicated to solve this way. Instead we employ a
different approach by proving upper and lower bounds
with the same power-law scaling, based on the survival
probability in a semi-infinite domain. A similar method
will work also for the locally correlated effective model
with an arbitrary degree of correlation.

First consider the survival probability of a RW in the
semi-infinite interval at time t > 0. As in the free case
Eq. (48), the initial condition on the constrained den-
sity G(x, t) is G(x, t = 0) = δ(x − x0), but an ab-
sorbing boundary is present at x = 0, restricting the
solution domain to x ∈ (0,∞) and terminating tra-
jectories that reach x = 0. The boundary condition
G(x = 0, t) = 0 is accounted for by placing an “image
charge” at x = −x0 and superposing the distributions:
G(x, t) = Gfree(x, t;x0) − Gfree(x, t;−x0). We generally

work in a “scaling limit,” where

G(x, t;x0) =
1√
πDt

e−(x2+x2
0)/4Dt sinh

( xx0

2Dt

)
(50)

≈ xx0√
4π(Dt)3

e−x
2/4Dt , (51)

assuming in the last line x0 �
√
Dt. This approxima-

tion is valid at late times in integrals over the spatial
coordinate, as the exponential factor strongly mitigates
the error introduced, and allows us to extract leading
power-law behaviors. The survival probability in the
semi-infinite geometry in the scaling limit is

S(t) =

∫ ∞
0

dxG(x, t;x0) =
x0√
πDt

. (52)

1. End-to-end decimation probability for a single finite
Majorana chain

In order to support end-to-end decimation between
sites 1 and N , the RW m[n = N ] associated with a fi-
nite Majorana chain of length N need only satisfy Con-
dition 1 of the previous section, with r = N . In the
continuum limit for the RW (N → L), the likelihood
that the left end t = 0 is involved in the final decimation
is given by the survival probability S(t = L) ∼ 1/

√
L;

however Condition 1 additionally requires that its deci-
mation partner be the right end t = L. Applying I to
m, one sees that the requirement to reach a maximum
at t = L takes the same form as the absorbing bound-
ary condition x = 0 near t = 0. Thus a naive estimate
of the end-to-end decimation probability pe(L) is the in-
dependent survival of the two ends, or S(L)2 ∼ 1/L.
Although these events are not actually independent, we
will show that the naive estimate turns out to give the
correct scaling. Some intuition for this is that surviving
histories tend to be located increasingly far away from
the absorbing boundary60: consequently, the “special”
low-probability behavior is confined to the neighborhood
of the ends, while the middle of the RW can be allowed to
be nearly typical. A precise statement of these schematic
remarks is that we are able to determine the scaling of
pe(L) by considering two independent “half-RWs” m1,2

of length t = L/2, constructing RWs of length L which
satisfy Condition 1 as m = m1 ⊕ Im2.

To be more concrete, we first give a rigorous upper
bound on the end-to-end decimation probability pe(L).
Any RW m can be decomposed as m = m1 ⊕ Im2, that
is, into two independent “half-RWs” running up to time
t = L/2, one running over times t′ ∈ [0, L/2], and the
other over t′ ∈ [L/2, L], with the two RWs properly
glued at their respective time t′ = L/2. It may be the
case that m1 and m2 never reach the absorbing bound-
ary, and thus each is considered a surviving RW in the
semi-infinite geometry. Any RW instance of length L
producing an end-to-end pairing in the SDRG, i.e., sat-
isfying Condition 1, indeed decomposes in this way, with
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only one absorbing boundary in each case. The converse
statement is not true, because when such two surviving
trajectories are joined, we cannot guarantee that the full
RW satisfies Condition 1. Thus, the desired probability
pe(L) ≤ S(L/2)2 ∼ 1/L.

To prove a lower bound on pe we construct a subset
of all paths satisfying Condition 1 by considering certain
m1 and m2, each of length t = L/2, which when glued
together as m1 ⊕ Im2 satisfy the criterion. Again, in the
present case we can solve the problem with two absorbing
boundaries, but we want to demonstrate how to extract
the behavior using the semi-infinite solution, where the
geometry is simpler, as this will be the only option for
the locally correlated model. Specify constants α and
β, 0 < α < β ≤ 2α, and define a target window x ∈
[α
√
Dt, β

√
Dt] for a time t > 0. In the problem with one

absorbing boundary at x = 0, the fraction of surviving
trajectories contained in the target window at t is

pw(α, β) =
1

S(t)

∫ β
√
Dt

α
√
Dt

dxG(x, t) = e−α
2/4 − e−β2/4 .

(53)

That is, a constant fraction pw(α, β) of the surviving den-
sity of RWs at time t is located within the target window.

The above calculation Eq. (53) leads to an overcount-
ing of valid paths which can be glued to satisfy Condition
1, because it includes “dangerous” histories which take
an excursion to large x values before returning to the tar-
get window at time t. Half-RWs m1 and m2 constrained
in this way and glued as m1 ⊕ Im2 may cross the even-
tual decimation log-energy scale ∆ prematurely, which
would spoil the lower bound. To account for the dan-
gerous cases, we exclude those histories which ever cross
x = β

√
Dt and then return to the target window.

The way we achieve the exclusion is the following. Sup-
pose that a history m[t′], t′ ∈ [0, t], performs q crossings

of the line x = β
√
Dt at times {t1, t2, . . . , tq} before re-

turning to the target window at t′ = t. Immediately
after tq, the history must travel downwards and remain

below x = β
√
Dt until t′ = t. We apply the following

transformation:

T : m = mt′≤tq⊕mt′>tq 7→ mt′≤tq⊕Rβ
√
Dtmt′>tq , (54)

where as indicated by the subscripts mt′≤tq describes the
RW up to time t′ = tq and mt′>tq the section t′ ∈ (tq, t].
T does not change the earlier partial RW but reflects
the later about the line x = β

√
Dt. Because m[t] ∈

[α
√
Dt, β

√
Dt], the transformed endpoint Tm[t] necessar-

ily lies in a “shadow window” x ∈ [β
√
Dt, (2β−α)

√
Dt].

Moreover, the likelihood of the trajectory is unaffected
by T. Now every dangerous path with q ≥ 1 crossings
can be identified with a transformed partner terminating
in the shadow window and having the same probabil-
ity. Thus the density in the shadow window at time t
upper bounds the contribution to the density in the tar-
get window arising from dangerous histories. (The upper

bound is not saturated, because a trajectory included in
the shadow window could deviate above x = 2β

√
Dt for

some t′ ∈ (tq, t], and this RW would have no T−1 coun-
terpart due to the absorbing boundary at x = 0.)

From the previous calculation, the fraction of the
surviving density contained in the shadow window is

psw(α, β) = e−β
2/4 − e−(2β−α)2/4. Consequently a lower

bound on the density of valid surviving histories in the
target window at time t is given by

pcorr
w (α, β) = pw(α, β)− psw(α, β) (55)

= e−α
2/4 − 2e−β

2/4 + e−(2β−α)2/4 . (56)

There is an extended region of (α, β) for which the coeffi-
cient is positive; for example, pcorr

w (α = 2, β = 4) ≈ 0.33.

t′

x/
√
Dt

2β − α

β

α

t1 t2 t3 t4 t

Figure 17. A dangerous trajectory contributing to the count-
ing pw of the density in the target window, colored in blue,
is illustrated. The shadow window used to eliminate these
trajectories is also shown, colored in orange. The particular
history m shown has q = 4 crossings of the upper limit of the
target window and the reflected partial path Rβ

√
Dtmt′>tq ,

terminating in the shadow window, is shown in green. Be-
cause the diffusion is unbiased, both m and the transformed
Tm path have the same probability, and as any such danger-
ous trajectory has a counterpart under the transformation,
the density in the shadow window upper-bounds the associ-
ated contribution to the density in the target window.

Now take t = L/2. Two RWs m1 and m2 fulfilling
the criteria above are suitable for constructing a RW of
length L which satisfies Condition 1 as m = m1 ⊕ Im2.
The result is a trajectory of length L reaching a maximum
at t = L (assured by taking β ≤ 2α) without crossing
x = 0. Not all RWs of length L which support end-to-
end decimation in the SDRG can be constructed this way,
only those with m[L/2] lying in the target window and
m[t′ ≤ L/2] below the upper limit of the target window,
but every RW coming from this construction evidently
satisfies Condition 1. Thus this probability is a lower
bound on pe(L) ≥ [pcorr

w (α, β)S(L/2)]2 ∼ 1/L.
Together with the upper bound, this establishes the

scaling of end-to-end decimation probability pe(L)—and
thus the power law for end-to-end correlations in a single
random Majorana chain—as 1/L.
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2. Bulk decimation probability in a single Majorana chain

Guaranteeing decimation away from the edges of a Ma-
jorana chain requires satisfying both Conditions 1 and 2.
To find the probability pb(r) of decimation at scale r in
the bulk—i.e., that two fixed sites separated by r are
decimated as a pair—we decorate interior RWs mint by
gluing exterior RWs to the left and right. We showed that
the probability of such an mint is pe(L = r) ∼ 1/r, so we
need only find suitable exterior RWs satisfying Condi-
tion 2 (while bearing in mind conditions involving both
interior and exterior RWs).

For the probabilities associated with the exterior
walks, we are interested in the likelihood ω(x;A) that a
RW with spatial coordinate x′ starting from x′ = x ≥ 0
eventually reaches a value x′ = A before being absorbed
at the domain boundary x′ = 0. We require the con-
sistency condition ω(x;A) = 〈ω(x − dx;A)〉, where the
average is taken over sufficiently small displacements dx,
and 〈dx〉 = 0, 〈(dx)2〉 6= 0 (reflective of the micro-
scopic step distribution)60,61. Taylor expanding leads to
Laplace’s equation ∇2ω = 0 which, together with the
boundary conditions ω(0) = 0 and ω(A) = 1, has solu-
tion ω(x;A) = x/A.

A lower bound on pb(r) is now straightforward based
on mint as defined in Sec. V B 1, coming from a subset
of all RWs of length L = r supporting end-to-end dec-
imation. Any such mint is constructed from two glued
half-RWs, each terminating at t = r/2 inside of a tar-

get window x ∈ [α
√
Dr/2, β

√
Dr/2]; thus the total

and maximum deviation at t = r is bounded above by
∆(r) = β

√
2Dr. Given mint, the probability of a suitable

exterior RW mext,L or mext,R is greater than or equal to
ω(x0; ∆(r)); writing a full RW satisfying all conditions,
we find that pb(r) ≥ [pcorr

w (α, β)S(r/2)]2ω(x0; ∆(r))2 ∼
r−2.

In the same spirit as the upper bound on end-to-end
decimation probability, consider mint = m1 ⊕ Im2; that
is, decomposed as two half-RWs surviving until t = r/2,
with final spatial deviations ∆1 and ∆2 and likelihoods
G(∆1, r/2;x0) and G(∆2, r/2;x0), respectively. All RWs
with end-to-end decimation are of this form. Now in-
corporating the probability of exterior RWs which must
reach a height ∆1 + ∆2, the likelihood of the full RW
provides an upper bound on the probability of bulk dec-
imation:

pb(r) ≤
∫ ∞

0

∫ ∞
0

d∆1d∆2G(∆1, r/2;x0)G(∆2, r/2;x0)

× ω(x0; ∆1 + ∆2)2 . (57)

Making use of ω(x0; ∆1 + ∆2)2 ≤ 1
2ω(x0; ∆1)ω(x0; ∆2)

the integrals factorize, and we find

pb(r) ≤ 1

2

[∫ ∞
0

d∆1G(∆1, r/2;x0)ω(x0; ∆1)

]2

(58)

=
x4

0

2(Dr)2
. (59)

Again these upper and lower bounds exhibit the same
scaling, proving that pb(r) ∼ r−2 for a single Majorana
chain, in agreement with known results (see the XX case
in Sec. II D).

C. Locally-correlated Majorana chains as a
two-dimensional RW

To make statements about locally correlated Majo-
rana chains requires dealing simultaneously with two
RWs (returning for the moment to the discrete formu-
lation) mx[n] and my[n], associated respectively with the
X and Y Majorana hopping chains. In the general case,
the steps taken by each at time n are not independent,
being instead drawn from a joint distribution µ(u, v).
If the full state of the system is specified by variables
(xn, yn, n), the master equation for the probability dis-
tribution Prob(x, y, n) is

Prob(x, y, n+1) =

∫
du

∫
dv µ(u, v) Prob(x−u, y−v, n) .

(60)
This is however just the master equation for a RW in two
dimensions (2d). In the natural 2d vector notation with
x = (x, y)> and u = (u, v)>,

Prob(x, n+ 1) =

∫
d2uµ(u) Prob(x− u, n) . (61)

The continuum limit of the master equation Eq. (61) is
determined by the details of the microscopic distribution
µ, and does not in general reduce to the simple Laplacian.
As a remedy we begin by transforming the problem into
isotropic diffusion.

Let µ be centered, with covariance matrix62

Σ = σ2

[
1 δ

δ 1

]
, (62)

where corr(u, v) = cov(u, v)/σ2 ≡ δ ∈ [0, 1], with fixed
σ2 = Var(u) = Var(v). (The value of δ here is related
to, but not necessarily the same as, the bare δ defined in
Sec. IV B. δ > 0 implies positive correlation between u
and v, as observed in the mean field for the AFM spin
chain.) The continuum limit of evolution driven by µ is
anisotropic diffusion along the eigenvectors of Σ, ê± =
1√
2
(1,±1)>, with diffusion coefficients D± = σ2

2 (1± δ).
The 2d RW evolves by isotropic diffusion under a linear

transformation of the plane W : x 7→ x̃ ≡Wx, with

W =
1√
2

[
1
λ − 1

λ

λ λ

]
, λ ≡

(
1− δ
1 + δ

)1/4

. (63)

W performs a rotation about the origin by π/4, followed
by a δ-dependent anisotropic rescaling. There is a diver-
gence at δ = 1, where Σ is rank-deficient; this reflects the
fundamentally one-dimensional nature of the perfectly
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correlated case. We will refer to the (x, y) coordinates
of the original problem as the “physical geometry,” and
the image (x̃, ỹ) of W as the “solution geometry,” where
the governing equation is isotropic diffusion, now with

coefficient D ≡
√
D+D− = σ2

2

√
1− δ2:

∂

∂t
G = D

(
∂2

∂x̃2
+

∂2

∂ỹ2

)
G . (64)

D. Rigorous bounds on critical exponents in the
locally correlated model

1. End-to-end decimation probability for two locally
correlated finite Majorana chains

Investigating end-to-end decimation directly in the ex-
act solution for the fully bounded geometry would ne-
cessitate solving Eq. (64) in a parallelogram. A har-
monic decomposition is not possible here, and as far as
we are aware the solution requires a prohibitively compli-
cated Schwarz–Christoffel conformal transformation usu-
ally performed numerically63. Nevertheless, analytic re-
sults for two Majorana chains with arbitrary local cor-
relations are possible by utilizing the connection to the
survival probability in the simpler semi-infinite geometry.

As was the case for the single Majorana chain, we em-
ploy a semi-infinite domain, now bounded by the lines
x = 0 and y = 0. The origin is evidently fixed by W,
and the boundaries map to the lines ỹ = ±λ2x̃, where x̃
lies in the ê− direction and ỹ in ê+. These boundaries
delimit an absorbing wedge geometry with opening angle
Θ given by cos Θ = −δ, which runs from Θ = π/2 at
δ = 0 to Θ = π at δ = 1. In terms of the wedge half-
angle θ ≡ Θ/2, the domain boundaries are ỹ = ±(cot θ)x̃.
For easy reference, we collect some relationships between
these geometric parameters:

cos Θ = −δ , sin Θ =
√

1− δ2 , (65)

cos θ =

√
1− δ

2
, sin θ =

√
1 + δ

2
, λ =

√
cot θ . (66)

The Green’s function in the infinite wedge can be found
from the free-space distribution by the method of im-
ages for opening angles Θ = π/m, with m a positive
integer. This entails 2m − 1 image charges with alter-
nating sign, arranged symmetrically around the wedge
apex. However this approach is of limited use, as we need
Θ ∈ [π2 , π), and instead we will use the Green’s function
known for arbitrary opening angle from an alternative
solution. In polar coordinates, with the wedge apex at
radius ρ = 0 and solution domain bounded by absorbing
walls G(ρ, φ = 0, t) = G(ρ, φ = Θ, t) = 0 (i.e., the angle
φ is defined relative to one of the absorbing boundaries),

we have64

G(ρ, φ, t; ρ0, φ0) =

e−(ρ2+ρ20)/4Dt

ΘDt

∞∑
l=1

Ilν

( ρρ0

2Dt

)
sin(lνφ) sin(lνφ0) , (67)

where ν = π/Θ and Ilν is a modified Bessel function of
the first kind:

Is(x) =

∞∑
m=0

(x/2)s+2m

m! Γ(s+m+ 1)
. (68)

In the physical geometry the initial condition is (x0, y0) =
(〈u〉, 〈v〉), where 〈u〉 = 〈v〉 is again the result of each 1d
RW taking one additional positive step according to the
discrete microscopic distribution. In the solution geom-
etry this point maps to ρ0ê+, where ρ0 =

√
2λ〈u〉. In

polar coordinates the source point is (ρ0, φ0 = θ). Con-
sequently, in Eq. (67) the factor sin(lνφ0) vanishes for
even l and for odd l is equal to a sign (−1)(l−1)/2. As in
the 1d case, we work in the scaling regime at late times
t, where we are able to extract the leading power-law
behavior. Again, spatial integrals are regulated by the
exponential factor, which decays fast enough to suppress
errors arising at large ρ. Because ν ∈ (1, 2] the leading
behavior requires only the l = 1, m = 0 term in the

double sum, and sets e−ρ
2
0/4Dt → 1.

The survival probability is determined from the
Green’s function by integration over the wedge. Explic-
itly, in the scaling limit

S(t) =

∫
ρ dρ dφG(ρ, φ, t; ρ0, φ0 = θ) (69)

=

∫ Θ

0
dφ sin(νφ)

ΘΓ(ν + 1)Dt

∫ ∞
0

ρ dρ e−ρ
2/4Dt

( ρρ0

4Dt

)ν
(70)

=
2 Γ(ν2 )

πΓ(ν)

(
ρ0√
4Dt

)ν
. (71)

The survival exponent depends on the opening angle as

S(t) ∼ t−π/2Θ . (72)

This result for a RW in a 2d wedge is in fact well
known60,61,65. As Θ is a function of the correlation coef-
ficient δ, continuously varying behavior of this type is in
agreement with the numerical observations in Sec. IV B.
Specifically, again relying on the naive assumption that
the two ends of the chain decimate independently, the
likelihood of this pairing scales as [S(L)]2 ∼ L−π/Θ,
which matches the known end-to-end scaling exponents
ηe
z = 2 for the uncorrelated model at δ = 0 and ηe

z = 1
for δ = 1.

Our strategy for rigorously bounding the probability
of end-to-end decimation occurring on both chains using
the infinite wedge results is analogous to that of Sec. V B.
From the Green’s function we establish that at late times
a constant fraction of surviving RWs are suitable for sub-
sequent gluing to contribute to this probability, being
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found in a specified target window, using a shadow win-
dow to exclude dangerous trajectories. By gluing the
ends of two RWs at time t = L/2 we establish bounds on
the power law. We will use the notation of the previous
section, namely I and ⊕, to refer to the generalizations
of the relevant transformations to 2d.

In particular, we can write an upper bound immedi-
ately. Any 2d RW of length (duration) L corresponding
to two locally correlated Majorana chains can be decom-
posed into half-chains of length L/2 as m = m1 ⊕ Im2,
as in the 1d case. m1 and m2 may be valid surviving
trajectories in their semi-infinite wedge, and some will
produce end-to-end decimations on both physical Majo-
rana chains described by the 2d RW m. Trajectories that
do not decompose in this way into surviving half-chains
will not satisfy Condition 1. Because not every pair of
surviving m1 and m2 will do so either, the probability is
upper-bounded as pe(L) ≤ S(L/2)2 ∼ L−π/Θ.

Now in order to prove a lower bound on pe(L), let α
and β be positive constants, α < β ≤ 2α, and define the
target window for a 2d RW at time t to be the square
(x, y) ∈ [α

√
Dt, β

√
Dt]× [α

√
Dt, β

√
Dt]. In the physical

geometry the window is a square; however, when mapped
to the solution geometry the window becomes a parallel-
ogram. The corners {a, b, c, d} map to

{ã, b̃, c̃, d̃} =

√
Dt

2

{
2αλê+ ,

α− β
λ

ê− + (α+ β)λê+ ,

β − α
λ

ê− + (α+ β)λê+ , 2βλê+

}
.

(73)

as illustrated in Fig. 18. Treating this exact shape in
the polar coordinates of Eq. (67) is complicated; instead
we define an integration volume that is a subset of the
target window, with the same t scaling, but which leads
to a simpler bound. Consider the midpoints of the edges
of the target window in the solution geometry, which we
denote {ẽ, f̃ , g̃, h̃}. They describe the four corners of a
rectangle, symmetric about the line φ = θ, with edges
in the directions ê− and ê+ (see Fig. 18). We define
an integration domain bounded by radial values ρ+ (of

points f̃ and h̃) and ρ− (of ẽ and g̃), and the angular

deviation ψ of points f̃ and h̃ from the midline φ = θ.

The proof that this “sector” geometry is indeed a sub-
volume of the target domain for any opening angle Θ < π
can be seen by drawing a picture. The specific integration
bounds can be found straightforwardly from Eq. (73), but
the crucial property is their scaling with t. Define the
radial limits as ρ± = C±(α, β, δ)

√
Dt; the angular inte-

gration half-width ψ = ψ(α, β, δ) turns out to be purely
geometric, with no t dependence. Again extracting the
leading behavior for late times t, the fraction of surviv-
ing paths whose position at time t is in the integration

window is

p2d
w (α, β, δ) =

1

S(t)

∫ ρ+

ρ−

ρ dρ

∫ θ+ψ

θ−ψ
dφG(ρ, φ, t; ρ0, θ)

(74)

=
4 sin(νψ)

νΓ(ν2 )
I(α, β, δ) , (75)

where

I(α, β, δ) =

∫ C+/2

C−/2

du e−u
2

uν+1 . (76)

So p2d
w is indeed a constant, determined only by the cor-

relation coefficient δ and the constants α and β.
As was the case for the 1d RW, the calculation above

includes a “dangerous” contribution which should be sub-
tracted in order to lower-bound the decimation probabil-
ity by subsequent gluing of half-chains m1 and m2. Again
we upper-bound this contribution by calculating the frac-
tion in a shadow window. We consider those paths to
be dangerous which ever cross the lines x = β

√
Dt or

y = β
√
Dt in the physical space before returning to the

target window at time t. In the solution geometry these
lines map to

DR : λ x̃+
1

λ
ỹ − β

√
2Dt = 0 , (77)

DL : −λ x̃+
1

λ
ỹ − β

√
2Dt = 0 . (78)

We define the boundary for dangerous trajectories piece-
wise as (see Fig. 18)

D(φ) =

{
DR , 0 < φ ≤ θ
DL , θ < φ < Θ .

(79)

Suppose a trajectory with time parameter t′ makes
q crossings of D at times {t1, . . . , tq} at various points
{(ρ1, φ1), . . . , (ρq, φq)} before returning to the target win-
dow at time t′ = t. After its last crossing at (ρq, φq), it
must stay within the allowed region for times (tq, t]. We
transform the trajectory by reflecting the partial RW for
times t′ ∈ (tq, t] about the component of D that was
crossed at t′ = tq, either DR if φq ∈ (0, θ] or DL if
φq ∈ (θ,Θ). This is the counterpart in 2d to the 1d
transformation T. Because the step distribution in the
solution geometry is isotropic, the transformed path has
the same probability as the dangerous original. (The
reflection must be performed in the solution geometry,
and does not commute with W.) The shadow window
in this case has two components, which are disconnected
for Θ < 2π

3 but overlap for Θ > 2π
3 . Note that overlap of

the mapped regions does not introduce the possibility of
double-counting, as the full dangerous and transformed
trajectories are uniquely related.

The corners c̃ and d̃ of the target window lie on line
DR, and b̃ and d̃ on line DL. Thus we need only reflect ã
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ê+

ê−

DRDL
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2ψ

Θ

ã

b̃ c̃

d̃
ãL

c̃L

ãR

b̃R

ẽ

f̃

g̃

h̃

Figure 18. The solution geometry is illustrated for the 2d
RW problem in the wedge with opening angle Θ, found from
the correlation coefficient by cos Θ = −δ. The exact target
window is colored in blue, and the sector defining the easier
integration subregion for the target in yellow. The two com-
ponents of the shadow window are found by reflecting the
exact target window across the lines DL and DR and are col-
ored in orange, with the easier bounding shadow integration
region, which necessarily covers these areas, in green.

and b̃ about DR, and ã and c̃ about DL. The coordinates
of the points reflected about DR are

{ãR, b̃R} =
√

2Dt×{
λ(β − α)

cosh(2 lnλ)
ê− +

(
β − α

λ cosh(2 lnλ)
+ αλ

)
ê+ ,(

λ(β − 2α)

cosh(2 lnλ)
+
α− β
λ

)
ê−

+

(
β − 2α

λ cosh(2 lnλ)
+ λ(α+ β)

)
ê+

}
, (80)

with similar forms for ãL and c̃L. The four-sided fig-
ures described by the exact shadow window are evidently
complicated. As with the target window, we bound the
area using a sector which scales in the same way, how-
ever in this case an upper bound is required. The upper
limit ρsw

+ is the radial coordinate of points c̃L and b̃R,

and the lower limit ρsw
− is that shared by the corners b̃

and c̃. The angular half-width is the maximum of the
angular half-widths of points c̃ and ãR; this depends on
the specific value of Θ. Again we find integration limits
ρsw
± = Csw

± (α, β, δ)
√
Dt, and ψsw = ψsw(α, β, δ).

Based on the previous calculation, p2d
sw(α, β, δ) =

4 sin(νψsw)
νΓ( ν2 ) Isw(α, β, δ) and the corrected fraction is

p2d,corr
w (α, β, δ) = p2d

w (α, β, δ)− p2d
sw(α, β, δ) (81)

=
4

νΓ(ν2 )

(
sin(νψ)I − sin(νψsw)Isw

)
.

(82)

By working explicitly through the algebra one can verify
that p2d,corr

w is positive for all values of δ ∈ [0, 1), e.g., for
the choice α = 1, β = 2.

Now, taking t = L/2, for any such m1 and m2 we
can construct a RW which satisfies Condition 1 for
end-to-end decimation in the quantum chain as m =
m1 ⊕ Im2. Therefore a lower bound on the simul-
taneous end-to-end decimation probability is given by
pe ≥ [p2d,corr

w S(L/2)]2 ∼ L−π/Θ. In combination with
the upper bound, this shows that the power law expo-
nent controlling end-to-end decimation probability (and
consequently ηe

z) varies continuously with δ as

ηe
z = π/ arccos(−δ) . (83)

2. Bulk decimation probability in two locally correlated
Majorana chains

Once again we can extend the result for end-to-end dec-
imation pe—requiring that both Majorana chains satisfy
Condition 1—to the bulk likelihood pb(r) (for two fixed
spins separated by r) by considering also Condition 2.
We first write a lower bound on the bulk pair decimation
probability by identifying exterior RWs which are guar-
anteed to satisfy Condition 2 when properly adjoined to
an interior RW of the type used for the lower bound on pe

in the previous section. Specifically, we restrict to exte-
rior RWs with endpoints at time t ≡ r (for concreteness,
but any constant multiple of r would do as well) within
a particular sector (specified below) in the solution ge-

ometry. In the physical geometry, ∆(r) = β
√

2Dr is an
upper bound on the total deviation of each of the 1d RWs
mx and my described by the 2d interior RW mint.

One way to guarantee the bulk decimation is to require
that each of the physical 1d RWs described by each of the
exterior 2d RWs mext,L and mext,R survive, and exceed
∆(r) at t = r. A point (ρ, φ) in the solution geometry
corresponds to

x =
ρ sin(Θ− φ)√

sin Θ
, y =

ρ sin(φ)√
sin Θ

(84)

in the physical geometry. Employing angular integration
limits φ ∈ (θ−ψ, θ+ψ), where ψ can be chosen to be the
same value used for mint, sufficient radial limits for our
purposes are ρext

− = ∆(r)
√

sin Θ/ sin(θ−ψ) and ρext
+ →∞

(noticing that sin(θ − ψ) ≤ sin(θ + ψ) for all ψ ∈ [0, θ]).
From the calculation of the previous section there is a
constant probability κ(α, β, δ) that any surviving RW lies
in a window bounded by ρ ∈ [ρext

− , ρext
+ ] and φ ∈ [θ −
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ψ, θ + ψ] at t = r. Such a RW has deviation at least
∆(r) in the physical x and y coordinates and thus as
either mext,L or mext,R is suitable for satisfying Condition
2 for bulk decimation when properly adjoined to mint as
constructed previously; thus pb(r) ≥ pe(r)[κS(t = r)]2 ∼
r−2π/Θ.

Similar to the case of a single Majorana chain, for an
upper bound we make use of the probability ω(ρ, φ;A)
of a RW with spatial coordinates (ρ′, φ′) reaching ra-
dius ρ′ = A in the wedge given a starting point (ρ, φ).
This probability follows Laplace’s equation ∇2ω = 0,
now with boundary conditions ω(ρ, φ = 0) = ω(ρ, φ =
Θ) = 0, ω(ρ = A, φ) = 1. Assuming a separable solution
ω(ρ, φ) = R(ρ)T (φ), we find that for the angular coordi-
nate the solutions are Tn(φ) = sin(nνφ), n = 1, 2, 3, . . . ,
where as before ν = π/Θ. For the radial coordinate

ρ2 ∂
2R

∂ρ2
+ ρ

∂R

∂ρ
− (nν)2R = 0 , (85)

which has solutions of the form Rn(ρ) = ρ±nν . Deter-
mining the constants from the boundary conditions,

ω(ρ, φ;A) =

∞∑
n=1
n odd

4

nπ

( ρ
A

)nν
sin(nνφ). (86)

Along the relevant line φ = θ, the probability simplifies
to

ω(ρ, φ = θ;A) =
4

π
arctan

[( ρ
A

)ν]
≤ 4

π

( ρ
A

)ν
. (87)

In order to write an upper bound on the bulk dec-
imation probability, we consider a full RW satisfying
both Conditions assembled from an mint = m1 ⊕ Im2,
where each of m1 and m2 must survive until t ≡ r/2,
along with exterior RWs mext,L and mext,R which must
reach a particular radial coordinate (determined from
mint as specified below) without being absorbed. Sup-
pose that m1 and m2 terminate at coordinates (ρ1, φ1)
and (ρ2, φ2), which define the deviations of the physical
RWs (∆x,1,∆y,1), and (∆x,2,∆y,2) according to Eq. (84).
The full deviation of the interior walk mint in the physi-
cal coordinates is (∆x,∆y) = (∆x,1 + ∆x,2,∆y,1 + ∆y,2)
and the physical 1d RWs described by mext,L and mext,R

must exceed the corresponding ∆x or ∆y before be-
ing absorbed. For this to be the case it is necessary,
but not sufficient, that the 2d exterior RWs each sur-
vive in the wedge until reaching radial coordinate A ≡√

sin Θ min(∆x,∆y) in the solution geometry. Defining

for m1 and m2 similar A1 ≡
√

sin Θ min(∆x,1,∆y,1) and

A2 ≡
√

sin Θ min(∆x,2,∆y,2), we note that A ≥ A1, A2.
The probability of finding two such mext,L and mext,R

given the terminating locations of m1 and m2 is

p(ext|ρ1, φ1, ρ2, φ2) ≤ ω(ρ0, θ;A)2 (88)

≤
(

4

π

)2 (ρ0

A

)2ν

(89)

≤
(

4

π

)2(
ρ0

A1

)ν (
ρ0

A2

)ν
. (90)

Then, integrating over the distribution of the interior
half-chain coordinates,

pb(r) =

∫
ρ1 dρ1 dφ1G(ρ1, φ1, r/2; ρ0, θ)×∫
ρ2 dρ2 dφ2G(ρ2, φ2, r/2; ρ0, θ)×

p(ext|ρ1, φ1, ρ2, φ2) (91)

≤
[

8

π

∫ ∞
0

ρ1 dρ1

∫ θ

0

dφ1×

G(ρ1, φ1, r/2; ρ0, θ)

(
ρ0

ρ1 sinφ1

)ν ]2

(92)

=

(
16Iφ
π2Γ(ν)

)2(
ρ2

0

2Dr

)2ν

. (93)

We restrict to the right half-wedge, as the integrand is
symmetric about φ = θ. The angular integral is

Iφ =

∫ θ

0

dφ1
sin(νφ1)

(sinφ1)ν
, (94)

which converges for Θ > π/2, equivalently δ > 0. (The
exponent we are bounding is known at δ = 0, and follows
from the result of Sec. V B 2.)

Combining the upper and lower bounds, we prove that
pb(r) ∼ r−2ν , and the bulk correlations exponent for two
locally correlated Majorana chains with parameter δ is

ηz = 2π/ arccos(−δ) . (95)

E. Numerical SDRG study

The final results of this section, Eqs. (83) and (95),
are in qualitative agreement with the quantum simula-
tions of Sec. IV B for relatively short Majorana chains,
and are consistent with previously-known results at the
points δ = 0, 1, where the locally-correlated model de-
scribes the random uncorrelated XY and perfectly corre-
lated XX IRFPs. For further verification we implement
the SDRG update Eq. (19) directly for two Majorana
chains with locally-correlated terms, and are able to ac-
cess larger system sizes. This also allows us to study
the bulk C⊥(r) power laws, which are not analytically
tractable in the mapping to RWs used in the preceding
subsections.

The numerically extracted exponents are shown in
Fig. 19. The bare correlation coefficient δ may become
slightly renormalized from the lattice scale definition in
Eqs. (36)–(37) compared to the meaning in the contin-
uum 2d RW treatment in Sec. V D, but these simulations
are in good agreement with the analytic forms for ηe

z(δ)
and ηz(δ) we obtained. While we have precise analyti-
cal knowledge only of the critical exponents ηe

z and ηz,
we observe that η⊥ also varies continuously. In contrast,
ηe
⊥ = 1 for any value of δ, by the argument presented in

Sec. II D.
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Figure 19. Numerical SDRG data are shown for two locally-
correlated Majorana chains, with the end-to-end and bulk
decimation probability exponents—equivalent to ηez and ηz,
respectively, in the quantum model—compared to the ana-
lytic forms Eqs. (83) and (95) (dashed lines). Also shown
are critical exponents ηe⊥ and η⊥ measured in the numerical
SDRG, as well as red stars indicating known values of bulk
correlations exponents at δ = 0 and 1, and yellow diamonds
indicating known values of end-to-end correlations exponents.
The end-to-end correlations data were taken from 1 000 000
disorder realizations each for system sizes up to N = 128,
and the bulk correlations data were taken from 100 000 disor-
der realizations at system size N = 256, utilizing the middle
half of each of the two Majorana chains.

VI. FIXED POINTS FOR THE INTERACTING
MODEL

In Sec. V we performed a study of the behavior of
critical exponents under a varying degree of local cor-
relations in a random free-fermion model. Despite the
lack of tractable SDRG flow equations, we showed that
the local correlation controlled by δ is a marginal per-
turbation which tunes along a line of IRFPs. In the
present section we advance the perspective that this line
of non-interacting fixed points in fact also controls the
long-distance behavior of the interacting model for small

Jz strength below the transition to the z-AFM phase.
To do so requires a study of the SDRG at intermediate

stages, taking into account more general terms produced
by the interactions. Equation (29) describes the result of
an initial decimation, but eventually descendant terms
will be frequent and must also be taken into account.
We change our conventions here from those of Sec. II C 2
for convenience: namely, we denote the Majorana chains
by I, II rather than X ,Y; and by a gauge transformation
(described at the end of Sec. II C 1) we set the signs of
hI
n, h

II
n > 0 for all n = 1, . . . , N − 1, and Kn ≡ Kn,n < 0.

In order to capture the effect of iterated decimations,
we observe that in Eq. (29) descendants of the form
Kn,m(iγI

nγ
I
n+1)(iγII

mγ
II
m+1) are produced, which general-

ize the Kn of Eq. (22). We enlarge the space of cou-
plings to include all such terms, with initial distribution
Kn,m = 0, n 6= m. If the average K ≡ |〈Kn,m〉| can
be considered to be a small parameter (for weak inter-
actions K < |〈hn〉|), the higher-fermion term in Eq. (29)
appears at order O(K2) and can thus be neglected. We
will demonstrate that the space of couplings including
all Kn,m is closed under RG flow up to O(K), and that
the structure of the signs is preserved. Furthermore, we
will show that the strength of the K terms decreases in
some sense relative to the h terms, suggesting that inter-
actions are irrelevant, at least in the neighborhood of the
free-fermion fixed point.

Following the approach of Sec. II C, denote the largest
term as H0 = ihI

kγ
I
kγ

I
k+1 and associate with the eigen-

states of this term a complex fermion f†0 = 1
2 (γI

k + iγI
k+1)

with projectors π+ = f0f
†
0 and π− = f†0f0 into the even-

and odd-parity sectors, or the high- and low-energy eigen-
states, respectively, of H0. The off-diagonal terms in the
Schrieffer-Wolff treatment share exactly one Majorana
operator with H0:

Vod = ihI
k−1γ

I
k−1γ

I
k + ihI

k+1γ
I
k+1γ

I
k+2 (96)

+

N−1∑
m=1

(
Kk−1,m(iγI

k−1γ
I
k)(iγII

mγ
II
m+1)

+Kk+1,m(iγI
k+1γ

I
k+2)(iγII

mγ
II
m+1)

)
. (97)

Separating Vod into symmetry sectors, we find that

π+Hπ− =

[(
hI
k−1 +

∑
m

Kk−1,m(iγII
mγ

II
m+1)

)
iγI
k−1 +

(
hI
k+1 +

∑
m

Kk+1,m(iγII
mγ

II
m+1)

)
γI
k+2

]
f0 (98)

≡ (ihI,int
k−1γ

I
k−1 + hI,int

k+1γ
I
k+2)f0 , (99)

π−Hπ+ =

[(
hI
k−1 +

∑
m

Kk−1,m(iγII
mγ

II
m+1)

)
iγI
k−1 −

(
hI
k+1 +

∑
m

Kk+1,m(iγII
mγ

II
m+1)

)
γI
k+2

]
f†0 (100)

≡ (ihI,int
k−1γ

I
k−1 − hI,int

k+1γ
I
k+2)f†0 . (101)

We make use of the “interacting couplings” notation used also in Sec. II C 2 to connect with the non-interacting



26

case, but here it is not evident that these couplings—
which are really operators—all commute. Nevertheless,

a suitably generalized version of Eq. (19) implements the
Schrieffer–Wolff transformation:

H ′ = H0 + Vd +
(hI,int
k−1)2 + (hI,int

k+1)2

2hI
k

(iγI
kγ

I
k+1) +

hI,int
k−1h

I,int
k+1 + hI,int

k+1h
I,int
k−1

2hI
k

(iγI
k−1γ

I
k+2) (102)

= H0 + Vd + (iγI
kγ

I
k+1)

[
(hI
k−1)2 + (hI

k+1)2

2hI
k

+
hI
k−1

hI
k

∑
m

Kk−1,m(iγII
mγ

II
m+1) +

hI
k+1

hI
k

∑
m

Kk+1,m(iγII
mγ

II
m+1)

]

+ (iγI
k−1γ

I
k+2)

[
hI
k−1h

I
k+1

hI
k

+
hI
k−1

hI
k

∑
m

Kk+1,m(iγII
mγ

II
m+1) +

hI
k+1

hI
k

∑
m

Kk−1,m(iγII
mγ

II
m+1)

]
+O(K2) . (103)

The effective terms in the first line of Eq. (103) (and
the first term of the second line) are h-type, with pos-
itive coefficients in the low-energy sector of H0 where
〈iγI

kγ
I
k+1〉 = −1. Conversely, the remaining terms in the

second line are K-type (recalling that γI
k−1 and γI

k+2 be-

come adjacent after the decimation of γI
k and γI

k+1), and
have coefficients with negative signs. One sees that the
signs of the initial distributions, namely hI,II

n > 0 and
Kn,m < 0, are maintained during the RG flow, and it
is evident from Eq. (103) that these types of terms are
closed under the SDRG up to O(K).

As a measure of the evolution of the relative strength
of K terms to h terms under this RG step, we compare
the renormalized Keff

k−1,m to the geometric mean of the

proximate h terms hI,eff
k−1 and hII

m:

Keff
k−1,m√
hI,eff
k−1h

II
m

=

√
hI
k−1

hI
k

Kk+1,m√
hI
k+1h

II
m

+

√
hI
k+1

hI
k

Kk−1,m√
hI
k−1h

II
m

(104)
We see that if such ratios are small to begin with, i.e.,

Kk+1,m/
√
hI
k+1h

II
m,Kk−1,m/

√
hI
k−1h

II
m � 1 before the

decimation, they will likely become even smaller under
the RG flow if the disorder in the Majorana hoppings is

strong, so that hI
k−1, h

I
k+1 � hI

k. This suggests that if
the h terms are dominant initially, they will be even more
so during the SDRG and will asymptotically constitute
the entirety of the decimations.

The diagonal terms which contain both decimated Ma-
joranas are ∑

m

Kk,m(iγI
kγ

I
k+1)(iγII

mγ
II
m+1) . (105)

Upon decimation, setting 〈iγI
kγ

I
k+1〉 = −1 in the ground

state gives O(K) contributions to the Majorana hoppings
in the other chain, hII,eff

m = hII
m −Kk,m. Given the oppo-

site signs of the h and K couplings, this increases the
overall strength of the remaining Majorana hoppings.
This is the local SDRG analog of the “mean field” of
Eqs. (34) and (35) where the Jz interactions renormalize
the Jx and Jy couplings by strengthening and correlating
them, as was already noted in Sec. II C 2 and discussed
in Sec. IV. Here we note that including these renormal-
izations of the h couplings only improves our arguments
for the persistence of the dominance of these couplings
over the K couplings.

The terms omitted from Eq. (103) at O(K2) are the
following:

1

2hI
k

(iγI
kγ

I
k+1)

∑
m

(K2
k−1,m +K2

k+1,m) +
∑

m,l 6=m,m±1

(Kk−1,mKk−1,l +Kk+1,mKk+1,l)(iγ
II
mγ

II
m+1)(iγII

l γ
II
l+1)


+

1

hI
k

(iγI
k−1γ

I
k+2)

∑
m

Kk−1,mKk+1,m +
∑

m,l 6=m,m±1

Kk−1,mKk+1,l(iγ
II
mγ

II
m+1)(iγII

l γ
II
l+1)

 . (106)

The first terms in each line are corrections to the ground-
state energy and the strength of the renormalized bond
coupling on chain I [which again preserves the sign struc-

ture and strengthens this hopping compared to the lead-
ing contribution in Eq. (103)]. Along with these, four-
fermion terms within chain II and six-fermion inter-chain
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terms appear at O(K2). The former are expected to be
ultimately irrelevant, based on previous studies of a sin-
gle Majorana chain realized in the quantum Ising model3.
However these four-fermion terms and the six-fermion
terms will produce yet more complicated descendants in
subsequent RG steps, and there will also be “degrada-
tion” processes leading to fewer-fermion terms, including
renormalization of the two-fermion terms, similar to the
discussion after Eq. (105)22. In this case we must rely
on the perturbative argument to justify dropping them,
viewing them as irrelevant other than feeding into strictly
marginal correlations among the effective Majorana hop-
pings in the two chains.

Together with the understanding of the locally corre-
lated XY model in the previous section, this leads us to
propose the following picture for the critical XYZ chain
along the line separating the x-AFM and y-AFM phases.
For small J̃z, this critical line is actually controlled by
the line of free Majorana fixed points with locally corre-
lated hoppings characterized in Sec. V. The effect of the
interactions Jz in the original model with no correlations
among the couplings (δ = 0) is to develop such correla-
tions among the renormalized Jx and Jy couplings under
RG while the Jz couplings flow to zero. The ultimate
degree of such correlations (i.e., the fully renormalized
parameter δeff) then determines the long-distance power
laws in the average spin correlation functions. We further
conjecture that this persists for all J̃z < J̃zcrit = 1 below
the transition to the z-AFM phase. While we do not
have perturbative control close to this transition, any al-
ternative would require yet another transition below J̃zcrit

which we did not observe and consider to be less natural.
Note that in this scenario the transition to the z-AFM
phase is controlled by a different non-free-fermion fixed
point, and we do not have access to this S3-symmetric
fixed point in the present study. We will further discuss
the above conjecture, its corollaries and possible tests, as
well as open questions in the concluding section.

VII. DISCUSSION

In this paper, motivated by the observations of Sla-
gle et al. 4 , we have performed a study of the low-energy
properties of the random XYZ model using unbiased nu-
merics. We focus on the line separating the x-AFM and
y-AFM phases, which exhibits statistical symmetry be-
tween Jx and Jy couplings. At all points allowing com-
parison our results are in general agreement with the pre-
vious findings of Ref.4 which used SBRG and presumed
critical MBL physics at arbitrary energy density. Our
results strongly suggest that—regardless of the behavior
of highly excited states—there is quantum critical behav-
ior in the ground state and the critical line is described
by IRFPs with continuously varying critical exponents in
the disorder-averaged correlation functions. Perhaps sur-
prisingly, a Hartree–Fock mean-field theory treating the
Jz interaction terms as perturbations around the ran-

dom XY (free-fermion) fixed point yielded results that
are qualitatively rather consistent with the full interact-
ing model at small to moderate Jz couplings, including
continuously varying power laws. This is in contrast to
the clean case, where the mean field model is not quali-
tatively accurate due to divergences in the perturbation
theory66.

The locally correlated XY effective model, introduced
with the idea of distilling the essential feature of the mean
field theory, again exhibited continuously varying criti-
cal exponents, which we were able to establish numeri-
cally in larger sizes than for the XYZ chain. Because of
the particular free-fermion form of this effective model,
we were able to treat it in the SDRG using the random
walk formulation in two dimensions. By making use of
a connection between survival probability and the struc-
ture of decimation in the RG, we showed analytically
that critical exponents for end-to-end and bulk Cz spin
correlations vary continuously as the coupling correla-
tion parameter δ is tuned, and we also observed varying
exponents in the bulk C⊥ correlations by running the
SDRG numerically. This result singles out and proves
one of the scenarios of Fisher 3 that random anisotropy
is strictly marginal along the critical line connecting the
random XX and random XY fixed points; that is, there
is a line of fixed points connecting the XX and XY IRFPs
as sketched in Fig. 1.

Motivated by the successful understanding of the lo-
cally correlated XY model, we revisited the SDRG for
the full interacting XYZ chain in the regime of small
interactions and proposed a scenario where these inter-
actions are irrelevant, but during the initial flows they
generate effective correlations between the local Jx and
Jy couplings (i.e., Majorana hopping amplitudes on the
two chains). Such flows are sketched in Fig. 2. These lo-
cal correlations in the free-fermion couplings then lead to
non-universal power laws in the average spin correlations:
this is our story for the continuously varying criticality
in the XYZ spin chain.

We note that continuously varying critical exponents
were previously observed in IRFPs associated with corre-
lated disorder by Rieger and Iglói 67 , however in a qual-
itatively different setting than ours. Specifically, disor-
dered fixed points perturbed by the introduction of long-
range correlations ∼ r−a to the disorder in the random
transverse-field Ising chain exhibit critical indices vary-
ing continuously with a for a < 1. Their setting has
only one Majorana chain and the correlated disorder is
within the chain. Also, in their case the ψ exponent
varies continuously, which reflects a different character
of the corresponding “random walker” imprinted by the
long-range correlations in the disorder.

Non-universal exponents at IRFPs were also observed
in cases with very broad (singular) distributions of ran-
dom couplings68,69. This again occurs already in a single
chain and has varying exponent ψ, and the variation can
be traced directly to the singularity in the probability
distribution of the microscopic couplings, while the ex-



28

ponents are universal for non-singular probability distri-
butions.

The XYZ chain studied here is different from the above
examples with varying exponents in that there are no
long-range correlations or singular distributions input
into the microscopic disorder. In this way the contin-
uously varying exponents are intrinsic to this system
rather than imprinted extrinsically. What is important
in the XYZ chain is that we have two simultaneously
critical Majorana chains whose couplings become locally
correlated. This insight may be useful when looking for
other IRFPs with intrinsic continuously varying critical
indices.

We conclude by returning to the discussion of the pro-
posed scenario for the fully interacting XYZ chain. This
scenario is based on the conjecture that the four-fermion
and higher terms are irrelevant other than feeding into
correlations between the Majorana hoppings. While this
is plausibly justified for small interactions in Sec. VI, we
have not fully proved it and the status for intermediate
interactions is less certain. In this respect, it would be
useful to carry out a systematic numerical SDRG study
of the fully interacting problem (e.g., using the scheme
of Monthus 22) keeping track of all generated interactions
as well as allowing decimations of the interaction terms
when they happen to be the strongest. If our scenario
is correct, we should see the interaction terms progres-
sively decreasing relative to the Majorana hoppings. One
should be able to perform such a study also directly in the
spin variables using the SBRG approach of Slagle et al. 4

projected onto the ground state branch, e.g., as used in
Ref.70 in a different problem. Employing the insights
gained here, it should be helpful to interpret various Pauli
string terms generated under the SBRG as either Majo-
rana hoppings or specific multi-fermion interactions. The
SBRG can also be indispensable for studying the puta-
tive S3-symmetric fixed point describing the transition
to the z-AFM phase, as a possible new IRFP that is not
tractable with available analytical tools.

Thinking about a broader phase diagram, our work
suggests that it could be fruitful to add another param-
eter “axis” and study the XYZ chain with locally corre-
lated Jx and Jy couplings in the bare model (analogous
to parameter δ in the correlated XY model), in addition

to the interactions Jz. Figure 2 shows this parameter
space, and constitutes a mild abuse inasmuch as it serves
as both a phase diagram and a picture of RG flows, the
latter of which occur in space not captured by just the
two parameters. In the space shown, the bare δ = 0 cor-
responds to the present XYZ chain, with the transition
from the critical phase to the z-AFM phase at the S3

symmetric point, marked XYZC in Fig. 2. On the other
hand, δ = 1 corresponds to the XXZ chain studied in the
original work by Fisher 3 . For J̃z below some threshold
value, the XXZ spin chain is critical and controlled by
the free-fermion XX point, while for larger J̃z it under-
goes a transition to the z-AFM phase. Fisher concluded
that this transition is controlled by the so-called XXZC
fixed point which is essentially random singlet–like, also
marked in Fig. 2. An interesting question is the nature of
the transition to the z-AFM phase driven by the J̃z cou-
pling as we vary the disorder correlation parameter from
δ = 1 (XXZC fixed point) to the statistically isotropic
XYZC fixed point. This line is marked with a question
mark in Fig. 2, and one possibility is that it is also de-
scribed by a line of fixed points, but we cannot at present
exclude other scenarios. We leave these questions for fu-
ture investigations, noting that the possibility of novel
IRFPs is quite tantalizing and worth further exploration.
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